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Abstract

Multicore architectures, which have multiple processing
units on a single chip, are widely viewed as a way to achieve
higher processor performance, given that thermal and power
problems impose limits on the performance of single-core
designs. Accordingly, several chip manufacturers have already
released, or will soon release, chips with dual cores, and it
is predicted that chips with up to 32 cores will be available
within a decade. To effectively use the available processing
resources on multicore platforms, software designs should
avoid co-executing applications or threads that can worsen
the performance of shared caches, if not thrash them. While
cache-aware scheduling techniques for such platforms have
been proposed for throughput-oriented applications, to the best
of our knowledge, no such work has targeted real-time appli-
cations. In this paper, we propose and evaluate a cache-aware
Pfair-based scheduling scheme for real-time tasks on multicore
platforms.

Keywords: Multicore architectures, multiprocessors, real-time
scheduling.

1 Introduction
Thermal and power problems limit the performance that single-
processor chips can deliver. Multicore architectures, or chip
multiprocessors, which include several processors on a single
chip, are being widely touted as a solution to this problem. Sev-
eral chip makers have released, or will soon release, dual-core
chips. Such chips include Intel’s Pentium D and Pentium Ex-
treme Edition, IBM’s PowerPC, AMD’s Opteron, and Sun’s Ul-
traSPARC IV. A few designs with more than two cores have also
been announced. For instance, Sun expects to ship its eight-
core Niagara chip by early 2006, while Intel is expected to re-
lease four-, eight-, 16-, and perhaps even 32-core chips within a
decade [20].

In many proposed multicore platforms, different cores share
either on- or off-chip caches. To effectively exploit the available
parallelism on these platforms, shared caches must not become
performance bottlenecks. In this paper, we consider this issue
in the context of real-time applications. To reasonably constrain
the discussion, we henceforth limit attention to the multicore
architecture shown in Fig. 1, wherein all cores are symmetric
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and share a chip-wide L2 cache. This general architecture has
been widely studied.
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Figure 1: Multicore architecture.

Of greatest relevance
to this paper is prior work
by Fedorova et al. [12]
pertaining to throughput-
oriented systems. They
noted that L2 misses affect
performance to a much
greater extent than L1
misses. This is because
the cost of an L2 miss can be as high as 100-300 cycles,
while the penalty of an L1 miss that can be serviced by the
L2 cache is only 10-30 cycles. Based on this fact, Fedorova
et al. proposed an approach for improving throughput by
reducing L2 contention. In this approach, threads that generate
significant memory-to-L2 traffic are discouraged from being
co-scheduled.

The problem. The problem addressed herein is motivated by
the work of Fedorova et al.—we wish to know whether, in real-
time systems, tasks that generate significant memory-to-L2 traf-
fic can be discouraged from being co-scheduled while ensuring
real-time constraints. Our focus on such constraints (instead of
throughput) distinguishes our work from Fedorova et al.’s. In
addition, for simplicity, we assume that each core supports one
hardware thread, while they considered multithreaded systems.

Other related work. The only other related paper on multi-
core systems known to us is one by Kim et al. [15], which is
also directed at throughput-oriented applications. In this pa-
per, a cache-partitioning scheme is presented that uniformly
distributes the impact of cache contention among co-scheduled
threads.

In work on (non-multicore) systems that support simultane-
ous multithreading (SMT), prior work on symbiotic schedul-
ing is of relevance to our work [14, 18, 21]. In symbiotic
scheduling, the goal is to maximize the overall “symbiosis
factor,” which is a measure that indicates how well various
thread groupings perform when co-scheduled. To the best of
our knowledge, no analytical results concerning real-time con-
straints have been obtained in work on symbiotic scheduling.

Proposed approach. The need to discourage certain tasks
from being co-scheduled fundamentally distinguishes the prob-
lem at hand from other real-time multiprocessor scheduling
problems considered previously [8]. Our approach for doing
this is a two-step process: (i) combine tasks that may induce
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significant memory-to-L2 traffic into groups; (ii) at runtime, use
a scheduling policy that reduces concurrency within groups.

The group-cognizant scheduling policy we propose is a hi-
erarchical scheduling approach based on the concept of a
megatask. A megatask represents a task group and is treated
as a single schedulable entity. A top-level scheduler allocates
one or more processors to a megatask, which in turn allocates
them to its component tasks. Let γ be a megatask comprised of
component tasks with total utilization I + f , where I is integral
and 0 < f < 1. (If f = 0, then component-task scheduling
is straightforward.) Then, the component tasks of γ require be-
tween I and I +1 processors for their deadlines to be met. This
means that it is impossible to guarantee that fewer than I of the
tasks in γ execute at any time. If co-scheduling this many tasks
in γ can thrash the L2 cache, then the system simply must be
re-designed. In this paper, we propose a scheme that ensures
that at most I + 1 tasks in γ are ever co-scheduled, which is the
best that can be hoped for.

Example. Consider a four-core system in which the objective
is to ensure that the combined working-set size [11] of the tasks
that are co-scheduled does not exceed the capacity of the L2
cache. Let the task set τ be comprised of three tasks of weight
(i.e., utilization) 0.6 and with a working-set size of 200 KB
(Group A), and four tasks of weight 0.3 and with a working-set
size of 50 KB (Group B). (The weights of the tasks are assumed
to be in the absence of heavy L2 contention.) Let the capacity
of the L2 cache be 512 KB. The total weight of τ is 3, so co-
scheduling at least three of its tasks is unavoidable. However,
since the combined working-set size of the tasks in Group A ex-
ceeds the L2 capacity, it is desirable that the three co-scheduled
tasks not all be from this group. Because the total utilization of
Group A is 1.8, by combining the tasks in Group A into a single
megatask, it can be ensured that at most two tasks from it are
ever co-scheduled.

Contributions. Our contributions in this paper are four-fold.
First, we propose a scheme for incorporating megatasks into
a Pfair-scheduled system. Our choice of Pfair scheduling is
due to the fact that it is the only known way of optimally
scheduling recurrent real-time tasks on multiprocessors [6, 22].
This optimality is achieved at the expense of potentially fre-
quent task migrations. However, multicore architectures tend
to mitigate this weakness, as long as L2 miss rates are kept
low. This is because, in the absence of L2 misses, migra-
tions merely result in L1 misses, pipeline flushes, etc., which
(in comparison to L2 misses) do not constitute a significant ex-
pense. Second, we show that if a megatask is scheduled us-
ing its ideal weight (i.e., the cumulative weight of its com-
ponent tasks), then its component tasks may miss their dead-
lines, but such misses can be avoided by slightly inflating the
megatask’s weight. Third, we show that if a megatask’s weight
is not increased, then component-task deadlines are missed by
a bounded amount only, which may be sufficient for soft real-
time systems. Finally, through extensive experiments on a mul-
ticore simulator, we evaluate the improvement in L2 cache be-
havior that our scheme achieves in comparison to both a cache-
oblivious Pfair scheduler and a partitioning-based scheme. In
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Figure 2: (a) Windows of subtasks T1, . . . , T3 of a periodic task T
of weight 3/7. (b) T as an IS task; T2 is released one time unit late.
(c) T as a GIS task; T2 is absent and T3 is released one time unit late.

these experiments, the use of megatasks resulted in significant
L2 miss-rate reductions (a reduction from 90% to 2% occurred
in one case—see Table 2 in Sec. 4). Indeed, megatask-based
Pfair scheduling proved to be the superior scheme from a per-
formance standpoint, and its use was much more likely to result
in a schedulable system in comparison to partitioning.

In the rest of the paper, we present an overview of Pfair
scheduling (Sec. 2), discuss megatasks and their properties
(Sec. 3), present our experimental evaluation (Sec. 4), and dis-
cuss avenues for further work (Sec. 5).

2 Background on Pfair Scheduling

Pfair scheduling [6, 22] can be used to schedule a periodic,
intra-sporadic (IS), or generalized-intra-sporadic (GIS) (see
below) task system τ on M ≥ 1 processors. Each task T
of τ is assigned a rational weight wt(T ) ∈ (0, 1] that de-
notes the processor share it requires. For a periodic task T ,
wt(T ) = T.e/T.p, where T.e and T.p are the (integral) execu-
tion cost and period of T . A task is light if its weight is less
than 1/2, and heavy, otherwise.

Pfair algorithms allocate processor time in discrete quanta;
the time interval [t, t + 1), where t ∈ N (the set of nonnega-
tive integers), is called slot t. (Hence, time t refers to the be-
ginning of slot t.) All references to time are non-negative inte-
gers. Hence, the interval [t1, t2) is comprised of slots t1 through
t2 − 1. A task may be allocated time on different processors,
but not in the same slot (i.e., interprocessor migration is allowed
but parallelism is not). A Pfair schedule is formally defined by a
function S : τ ×N �→ {0, 1}, where

∑
T∈τ S(T, t) ≤ M holds

for all t. S(T, t) = 1 iff T is scheduled in slot t.

Periodic and IS task models. In Pfair scheduling, each task
T is divided into a sequence of quantum-length subtasks, T1,
T2, · · ·. Each subtask Ti has an associated release r(Ti) and
deadline d(Ti), defined as follows.

r(Ti) = θ(Ti)+
⌊

i − 1
wt(T )

⌋
∧ d(Ti) = θ(Ti)+

⌈
i

wt(T )

⌉
(1)

In (1), θ(Ti) denotes the offset of Ti. The offsets of T ’s various
subtasks are nonnegative and satisfy the following: k > i ⇒
θ(Tk) ≥ θ(Ti). T is periodic if θ(Ti) = c holds for all i (and is
synchronous also if c = 0), and is IS, otherwise. Examples are
given in insets (a) and (b) of Fig. 2. The restriction on offsets
implies that the separation between any pair of subtask releases
is at least the separation between those releases if the task were
periodic. The interval [r(Ti), d(Ti)) is termed the window of
Ti. The lemma below follows from (1).
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Lemma 1 (from [5]) The length of any window of a task T is

either
⌈

1
wt(T )

⌉
or

⌈
1

wt(T )

⌉
+ 1.

GIS task model. A GIS task system is obtained by remov-
ing subtasks from a corresponding IS (or GIS) task system.
Specifically, in a GIS task system, a task T , after releasing sub-
task Ti, may release subtask Tk, where k > i + 1, instead of
Ti+1, with the following restriction: r(Tk) − r(Ti) is at least⌊

k−1
wt(T )

⌋
−

⌊
i−1

wt(T )

⌋
. In other words, r(Tk) is not smaller than

what it would have been if Ti+1, Ti+2, . . . ,Tk−1 were present
and released as early as possible. For the special case where
Tk is the first subtask released by T , r(Tk) must be at least⌊

k−1
wt(T )

⌋
. Fig. 2(c) shows an example. Note that a periodic task

system is an IS task system, which in turn is a GIS task system,
so any property established for the GIS task model applies to
the other models, as well.

Scheduling algorithms. Pfair scheduling algorithms func-
tion by scheduling subtasks on an earliest-deadline-first ba-
sis. Tie-breaking rules are used in case two subtasks have the
same deadline. The most efficient optimal algorithm known
is PD2 [5, 22], which uses two tie-breaks. PD2 is optimal,
i.e., it correctly schedules any GIS task system τ for which∑

T∈τ wt(T ) ≤ M holds.

3 Megatasks

A megatask is simply a set of component tasks to be treated as
a single schedulable entity. The notion of a megatask extends
that of a supertask, which was proposed in previous work [17].
In particular, the cumulative weight of a megatask’s component
tasks may exceed one, while a supertask may have a total weight
of at most one. For simplicity, we will henceforth call such a
task grouping a megatask only if its cumulative weight exceeds
one; otherwise, we will call it a supertask. A task system τ
may consist of g ≥ 0 megatasks, with the jth megatask denoted
γj . Tasks in τ are independent and each task may be included
in at most one megatask. A task that is not included in any
megatask is said to be free. (Some of these free tasks may in
fact be supertasks, but this is not a concern for us.) The cumu-
lative weight of the component tasks of γj , denoted Wsum(γj),
can be expressed as Ij + fj , where Ij is a positive integer and
0 ≤ fj < 1. Wsum(γj) is also referred to as the ideal weight of
γj . We let Wmax(γj) denote the maximum weight of any com-
ponent task of γj . (To reduce clutter, we often omit both the j
superscripts and subscripts and also the megatask γj in Wsum

and Wmax.)
The megatask-based scheduling scheme we propose is a two-

level hierarchical approach. The root-level scheduler is PD2,
which schedules all megatasks and free tasks of τ . Pfair
scheduling with megatasks is a straightforward extension to or-
dinary Pfair scheduling wherein a dummy or fictitious, syn-
chronous, periodic task F j of weight fj is associated with
megatask γj , Ij processors are statically assigned to γj in ev-
ery slot, and M − ∑g

�=1 I� processors are allocated at runtime

C
o
m
p
o
n
e
n
t

T
a
s
k
s

o
f

M
e
g
a
t
a
s
k

deadline
miss

−
−2
8

−
−5
8

−
−7
8

−
−4
8

−
−1
8

−
−3
8

−6
8

1−2
8

0 −2
8

−4
8

0

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

F (3/8)

1/3

1/8

11/12

0 1 2 3 4 5 6 7 8 9 10 11 12 13

LAG (γ, t)

Figure 3: PD2 schedule for the component (GIS) tasks of a megatask
γ with Wsum = 1+ 3

8
. F represents the fictitious task associated with

γ. γ is scheduled using its ideal weight by a top-level PD2 scheduler.
The slot in which a subtask is scheduled is indicated using an “X.”
γ is allocated two processors in slots where F is scheduled and one
processor in the remaining slots. In this schedule, one of the processors
allocated to γ at time 8 is idle and a deadline is missed at time 12.

to the fictitious tasks and free tasks by the root-level PD2 sched-
uler. Whenever task F j is scheduled, an additional processor is
allocated to γj .

Unfortunately, even with the optimal PD2 algorithm as
the second-level scheduler, component-task deadlines may be
missed. Fig. 3 shows a simple example. Hence, the prin-
cipal question that we address in this paper is the follow-
ing: With two-level hierarchical scheduling as described above,
what weight should be assigned to a megatask to ensure that
its component-task deadlines are met? We refer to this in-
flated weight of a megatask as its scheduling weight, denoted
Wsch. Holman and Anderson answered this question for su-
pertasks [13]. However, megatasks require different reasoning.
In particular, uniprocessor analysis techniques are sufficient for
supertasks (since they have total weight at most one), but not
megatasks. In addition, unlike a supertask, the fractional part
(f ) of a megatask’s ideal weight may be less than Wmax. Hence,
there is not much semblance between the approach used in this
paper and that in [13].

Other applications of megatasks. Megatasks may also be
used in systems wherein disjoint subsets of tasks are constrained
to be scheduled on different subsets of processors. The exis-
tence of a Pfair schedule for a task system with such constraints
is proved in [16]. However, no optimal or suboptimal online
Pfair scheduling algorithm has been previously proposed for
this problem.

In addition, megatasks can be used to schedule tasks that ac-
cess common resources as a group. Because megatasks restrict
concurrency, their use may enable the use of less expensive syn-
chronization techniques and result in less pessimism when de-
termining synchronization overheads (e.g., blocking times).

Megatasks might also prove useful in providing an open-sys-
tems [10] infrastructure that temporally isolates independently-
developed applications running on a common platform. In work
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on open systems, a two-level scheduling hierarchy is usually
used, where each node at the second level corresponds to a dif-
ferent application. All prior work on open systems has focused
only on uniprocessor platforms or applications that require the
processing capacity of at most one processor. A megatask can
be viewed as a multiprocessor server and is an obvious building
block for extending the open-systems architecture to encompass
applications that exceed the capacity of a single processor.

Reweighting a megatask. We now present reweighting rules
that can be used to compute a megatask scheduling weight that
is sufficient to avoid deadline misses by its component tasks
when PD2 is used as both the top- and second-level scheduler.
Let Wsum, Wmax, and ωmax be defined as follows. (ωmax de-
notes the smaller of the at most two window lengths of a task
with weight Wmax—refer to Lemma 1.)

Wsum =
∑

T∈γ wt(T ) = I + f (2)

Wmax = max
T∈γ

wt(T ) (3)

ωmax = 
1/Wmax� (4)

Let the rank of a component task of γ be its position in a non-
increasing ordering of the component tasks by weight. Let ω
be as follows. (In this paper, Wmax = 1

k is used to denote that
Wmax can be expressed as the reciprocal of an arbitrary positive
integer.)

ω=

⎧⎪⎪⎨
⎪⎪⎩

min(smallest window length of task of rank
(ωmax · I + 1), 2ωmax), if Wmax = 1

k , k ∈ N
+

min(smallest window length of task of rank
((ωmax−1) · I + 1), 2ωmax−1), otherwise

(5)

Then, a scheduling weight Wsch for γ may be computed using
(6), where Δf is given by (7).

Wsch = Wsum + Δf (6)

Δf =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
Wmax−f

1+f−Wmax

)
× f, if Wmax ≥ f + 1/2

min(1 − f,max(
(

Wmax−f
1+f−Wmax

)
× f,

min(f, 1
ω−1 ))), if f + 1/2 > Wmax > f

min(1 − f, 1
ω ), if Wmax ≤ f

0, if f = 0
(7)

Reweighting example. Let γ be a megatask with two compo-
nent tasks of weight 2

5 each, and three more tasks of weight 1
4

each. Hence, Wmax = 2
5 and Wsum = I + f = 111

20 , so I = 1
and f = 11

20 . Since Wmax < f , by (7), Δf = min(1 − f, 1
ω ).

We determine ω as follows. By (4), ωmax = 3. Since
Wmax �= 1

k , ω = min(smallest window length of task of rank
((ωmax − 1) · I + 1), 2ωmax − 1). (ωmax − 1) · I + 1 = 3,
and the weight of the task of rank 3 is 1

4 . By Lemma 1, the
smallest window length of a task with weight 1

4 is 4. Hence,
ω = min(4, 5) = 4, and Δf = min( 9

20 , 1
4 ) = 1

4 . Thus,
Wsch = Wsum + Δf = 116

20 . �

Correctness proof. In an appendix, we prove that Wsch,
given by (6), is a sufficient scheduling weight for γ to ensure
that all of its component-task deadlines are met. The proof is
by contradiction: we assume that some time td exists that is the
earliest time at which a deadline is missed. We then determine
a bound on the allocations to the megatask up to time td and
show that, with its weight as defined by (6), the megatask re-
ceives sufficient processing time to avoid the miss. This setup
is similar to that used by Srinivasan and Anderson in the opti-
mality proof of PD2 [22]. However, a new twist here is the fact
that the number of processors allocated to the megatask is not
constant (it is allocated an “extra” processor in some slots). To
deal with this issue, some new machinery for the proof had to
be devised. From this proof, the theorem below follows.

Theorem 1 Under the proposed two-level PD2 scheduling
scheme, if the scheduling weight of a megatask γ is determined
by (6), then no component tasks of γ miss deadlines.

Why does reweighting work? In the absence of reweight-
ing, missed component-task deadlines are not the result of the
megatask being allocated too little processor time. After all,
the megatask’s total weight in this case matches the combined
weight of its component tasks. Instead, such misses result be-
cause of mismatches with respect to the times at which alloca-
tions to the megatask occur. More specifically, misses happen
when the allocations to the fictitious task F are “wasted,” as
seen in Fig. 3.

Reweighting works because, by increasing F ’s weight, the al-
locations of the extra processor can be made to align sufficiently
with the processor needs of the component tasks so that misses
are avoided. In order to minimize the number of wasted proces-
sor allocations, it is desirable to make the reweighting term as
small as possible. The trivial solution of setting the reweighting
term to 1 − f (essentially providing an extra processor in all
slots), while simple, is wasteful. The various cases in (7) fol-
low from systematically examining (in the proof) all possible
alignments of component-task windows and windows of F .

Tardiness bounds without reweighting. It is possible to
show that if a megatask is not reweighted, then its compo-
nent tasks may miss their deadlines by only a bounded amount.
(Note that, when a subtask of a task misses its deadline, the
release of its next subtask is not delayed. Thus, if deadline tar-
diness is bounded, then each task receives its required processor
share in the long term.) Due to space constraints, it is not feasi-
ble to give a proof of this fact here, so we merely summarize the
result. For Wmax ≤ f (resp., Wmax > f ), if Wmax ≤ I+q−1

I+q

(resp., Wmax ≤ I+q−2
I+q−1 ) holds, then no deadline is missed by

more than q quanta, for all I ≥ 1 (resp., I ≥ 2). For I = 1 and
Wmax > f , no deadline is missed by more than q quanta, if the
weight of every component task is at most q−1

q+1 . Note that as I
increases, the restriction on Wmax for a given tardiness bound
becomes more liberal.

Aside: determining execution costs. In the periodic task
model, task weights depend on per-job execution costs, which
depend on cache behavior. In soft real-time systems, profiling
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tools used in work on throughput-oriented applications [1, 7]
might prove useful in determining such behavior. In test
applications considered by Fedorova et al. [12], these tools
proved to be quite accurate, typically producing miss-rate pre-
dictions within a few percent of observed values. In hard real-
time systems, determining execution costs is a difficult tim-
ing analysis problem. This problem is made no harder by the
use of megatasks—indeed, cache behavior will depend on co-
scheduling choices, and with megatasks, more definitive state-
ments regarding such choices can be made. Since multicore
systems are likely to become the “standard” platform in many
settings, these timing analysis issues are important for the real-
time research community to address (and are well beyond the
scope of this paper).

4 Experimental Results

To assess the efficacy of megatasking in reducing cache con-
tention, we conducted experiments using the SESC Simula-
tor [19], which is capable of simulating a variety of multicore
architectures. We chose to use a simulator so that we could ex-
periment with systems with more cores than commonly avail-
able today. The simulated architecture we considered consists
of a variable number of cores, each with dedicated 16K L1
data and instruction caches (4- and 2-way set associative, re-
spectively) with random and LRU replacement policies, respec-
tively, and a shared 8-way set associative 512K on-chip L2
cache with an LRU replacement policy. (Later, in Sec. 4.2,
we comment on why these cache sizes were chosen.) Each
cache has a 64-byte line size. Each scheduled task was assigned
a utilization and memory block with a given working-set size
(WSS). A task accesses its memory block sequentially, looping
back to the beginning of the block when the end is reached. We
note that all scheduling, preemption, and migration costs were
accounted for in these simulations.

The following subsections describe two sets of experiments,
one involving hand-crafted example task sets, and a second
involving randomly-generated task sets. In both sets, Pfair
scheduling with megatasks was compared to both partitioned
EDF and ordinary Pfair scheduling (without megatasks).

4.1 Hand-Crafted Task Sets

The hand-crafted task sets we created are listed in Table 1. Each
was run on either a four- or eight-core machine, as specified,
for the indicated number of quanta (assuming a 1-ms quantum
length). Table 2 shows for each case the L2 cache-miss rates
that were observed (first line of each entry) and the minimum,
average, and maximum number of per-task memory accesses

No. No. No.
Name Tasks Task Properties Cores Quanta
BASIC 3 Wt. 3/5, WSS 250K 4 100
SMALL BASIC 5 Wt. 7/20, WSS 250K 4 60
ONE MEGA 5 Wt. 7/10, WSS 120K 8 50
TWO MEGA 6 3 with Wt. 3/5, WSS 190K 8 50

3 with Wt. 3/5, WSS 60K

Table 1: Properties of example task sets.

Name Partitioning Pfair Megatasks
BASIC 89.12% 90.35% 2.20%

(1.73, 1.73, 1.73) (1.71, 1.72, 1.72) (10.9, 11.1, 11.3)
SMALL BASIC 17.24% 28.84% 2.89%

(0.61, 2.01, 4.12) (0.48, 1.21, 4.14) (3.72, 3.74, 3.77)
ONE MEGA 11.07% 11.36% 0.82%
(1 megatask) (1.40, 4.89, 7.27) (1.35, 4.83, 7.26) (7.06, 7.10, 7.15)
ONE MEGA 11.07% 11.36% 1.79%
(2 megatasks, (1.40, 4.89, 7.27) (1.35, 4.83, 7.26) (6.36, 6.84, 7.20)
Wt. 2.1 and 1.4)
TWO MEGA 10.94% 10.97% 5.67%
(1 megatask, (0.85, 3.58, 6.32) (0.86, 3.59, 6.32) (2.55, 4.98, 6.25)
all task incl.)
TWO MEGA 10.94% 10.97% 5.52%
(1 megatask, (0.85, 3.58, 6.32) (0.86, 3.59, 6.32) (2.56, 5.07, 6.22)
only 190K WSS tasks)
TWO MEGA 10.94% 10.97% 1.02%
(2 megatasks, one each (0.85, 3.58, 6.32) (0.86, 3.59, 6.32) (5.43, 5.85, 6.20)
for 190K & 60K tasks)

Table 2: L2 cache miss ratios per task set and (Min., Avg., Max.) per-
task memory accesses completed, in millions, for example task sets.

completed (second line). In obtaining these results, megatasks
were not reweighted because we were more concerned here with
cache behavior than timing properties. Reweighting impact was
assessed in the experiments described in Sec. 4.2. We begin our
discussion by considering the miss-rate results for each task set.

BASIC consists of three heavy-weight tasks. Running any
two of these tasks concurrently will not thrash the L2 cache,
but running all three will. The total utilization of all three
tasks is less than two, but the number of cores is four. Both
Pfair and partitioning use more than two cores, causing thrash-
ing. By combining all three tasks into one megatask, thrash-
ing is eliminated. In fact, the difference here is quite dramatic.
SMALL BASIC is a variant of BASIC with tasks of smaller uti-
lization. The results here are similar, but not quite as dramatic.

ONE MEGA and TWO MEGA give cases where one mega-
task is better than two and vice versa. In the first case, one
megatask is better because using two megatasks of weight 2.1
and 1.4 allows an extra task to run in some quanta. In the
second case, using two megatasks ensures that at most two of
the 190K-WSS tasks and two of the 60K-WSS tasks run con-
currently, thus guaranteeing that their combined WSS is under
512K. Packing all tasks into one megatask ensures that at most
four of the tasks run concurrently. However, it does not allow
us to specify which four. Thus, all three tasks with a 190K WSS
could be scheduled concurrently, which is undesirable. Inter-
estingly, placing just these three tasks into a single megatask
results in little improvement.

The average memory-access figures given in Table 2 show
that megatasking results in substantially better performance.
This is particularly interesting in comparing against partition-
ing, because the better comparable performance of megatask-
ing results despite higher scheduling, preemption, and migra-
tion costs. Under partitioning and Pfair, substantial differences
were often observed for different tasks in the same task set,
even though these tasks have the same weight, and for four
of the sets, the same WSS. For example, the number of mem-
ory accesses (in millions) for the tasks in SMALL BASIC was
{0.614, 4.123, 0.613, 4.103, 0.613} under partitioning, but
{3.755, 3.765, 3.743, 3.717, 3.723} for megatasking. Such
nonuniform results led to partitioning having higher maximum
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memory-access values in some cases.

4.2 Randomly-Generated Task Sets

We begin our discussion of the second set of experiments by
describing our methodology for generating task sets.

Task-set generation methodology. In generating task sets at
random, we limited attention to a four-core system, and consid-
ered total WSSs of 768K, 896K, and 1024K, which correspond
to 1.5, 1.75, and 2.0 times the size of the L2 cache. These values
were selected after examining a number of test cases. In partic-
ular, we noted the potential for significant thrashing at the 1.5
point. We further chose the 1.75 and 2.0 points (somewhat ar-
bitrarily) to get a sense of how all schemes would perform with
an even greater potential for thrashing.

The WSS distribution we used was bimodal in that large
WSSs (at least 128K) were assigned to those tasks with the
largest utilizations, and the remaining tasks were assigned a
WSS (of at least 1K) from what remained of the combined
WSS. We believe that this is a reasonable distribution, as tasks
that use more processor time tend to access a larger region of
memory. Per-task WSSs were capped at 256K so that at least
two tasks could run on the system at any given time. Other-
wise, it is unlikely any approach could reduce cache thrashing
for these task sets (unless all large-WSS tasks had a combined
weight of at most one).

Total system utilizations were allowed to range between 2.0
and 3.5. Total utilizations higher than 3.5 were excluded to give
partitioning a better chance of finding a feasible partitioning.
Utilizations as low as 2.0 were included to demonstrate the ef-
fectiveness of megatasking on a lightly-loaded system. Task
utilizations were generated uniformly over a range from some
specified minimum to one, exclusive. The minimum task uti-
lization was varied from 1/10 (which makes finding a feasible
partitioning easier) to 1/2 (which makes partitioning harder).
We generated and ran the same number of task sets for each
{task utilization, system utilization} combination as plotted in
Fig. 4, which we discuss later.

In total, 552 task sets were generated. Unfortunately, this
does not yield enough samples to obtain meaningful confidence
intervals. We were unable to generate more samples because of
the length of time it took the simulations to run. The SESC sim-
ulator is very accurate, but this comes at the expense of being
quite slow. We were only able to generate data for approxi-
mately 20 task sets per day running the simulator on one ma-
chine. For this reason, longer and more detailed simulations
also were not possible.

Justification. Our WSSs are comparable to those considered
by Fedorova et al. [12] in their experiments, and our L2 cache
size is actually larger than any considered by them. While it is
true that proposed systems will have shared caches larger than
512K (e.g. the Sun Niagara system mentioned earlier will have
at least 3MB), we were somewhat constrained by the slowness
of SESC to simulate platforms of moderate size. In addition,
it is worth pointing out that WSSs for real-time tasks also have
the potential to be much larger. For example, the authors of [9]

claim that the WSS for a high-resolution MPEG decoding task,
such as that used for HDTV, is about 4.1MB. As another exam-
ple, statistics presented in [24] show that substantial memory
usage is necessary in some video-on-demand applications.

We justify our range of task utilizations, specifically the
choice to include heavy tasks, by observing that for a task to ac-
cess a large region of memory, it typically needs a large amount
of processor time. The MPEG decoding application mentioned
above is a good example: it requires much more processor time
than low-resolution MPEG video decoders. Additionally, our
range of task utilizations is similar to that used in other com-
parable papers [14, 23], wherein tasks with utilizations well-
spread among the entire (0, 1) range were considered.

Algorithm No. Disq. % Disq.
Partitioning 91 16.49
Pfair 0 0.00
Pfair with Megatasks 9 1.63

Table 3: Disqualified task sets for each
approach (out of 552 task sets in total).

Packing strategies.
For partitioning, two
attempts to partition
tasks among cores
were made. First, we
placed tasks onto cores
in decreasing order of WSS using a first-fit approach. Such a
packing, if successful, minimizes the largest possible combined
WSS of all tasks running concurrently. If this packing failed,
then a second attempt was made by assigning tasks to cores in
decreasing order of utilization, again using a first-fit approach.
If this failed, then the task set was “disqualified.” Such
disqualified task sets were not included in the results shown
later, but are tabulated in Table 3.

Tasks were packed into megatasks in order of decreasing
WSSs. One megatask was created at a time. If the current
task could be added to the current megatask without pushing
the megatask’s weight beyond the next integer boundary, then
this was done, because if the megatask could prevent thrashing
among its component tasks before, then it could do so after-
wards. Otherwise, a check was made to determine whether cre-
ating a new megatask would be better than adding to the current
one. While this is an easy packing strategy, it is not necessar-
ily the most efficient. For example, a better packing might be
possible by allowing a new task to be added to a megatask gen-
erated prior to the current one. For this reason, we believe that
the packing strategies we used treat partitioning more fairly than
megatasking.

After creating the megatasks, each was reweighted. If this
caused the total utilization to exceed the number of cores, then
that task set was “disqualified” as with partitioning. As Ta-
ble 3 shows, the number of megatask disqualifications was an
order of magnitude less than partitioning, even though our task-
generation process was designed to make feasible partitionings
more likely, and we were using a rather simple megatask pack-
ing approach.

Results. Under each tested scheme, each non-disqualified
task set was executed for 20 quanta and its L2 miss rates were
recorded. Fig. 4 shows the recorded miss rates as a function
of the total system utilization (top) and minimum per-task uti-
lization (bottom). The three columns correspond to the three
total WSSs tested, i.e., 1.5, 1.75, and 2.0 times the L2 cache
size. Each point is an average obtained from between 19 and
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Figure 4: L2 cache miss rate versus both total system utilization (top) and minimum task utilization (bottom). The different columns correspond
(left to right) to total WSSs of 1.5, 1.75, and 2.0 times the L2 cache capacity, respectively.

48 task sets. (This variation is due to discarded task sets, pri-
marily in the partitioning case, and the way the data is orga-
nized.) In interpreting this data, note that, because an L2 miss
incurs a time penalty at least an order of magnitude greater than
a hit, even when miss rates are relatively low, a miss-rate differ-
ence can correspond to a significant difference in performance.
For example, see Fig. 5, which gives the number of cycles-per-
memory-reference for the data shown in Fig. 4(b). Although
the speed of the SESC simulator severely constrained the num-
ber and length of our simulations, we also ran a small subset of
our task sets for 100 quanta (as opposed to 20) and saw approx-
imately the same results. This further justifies 20 quanta as a
reasonable “stopping point.”

As seen in the bottom-row plots, the L2 miss rate increases
with increasing task utilizations. This is because the heaviest
tasks have the largest WSSs and thus are harder to place onto
a small number of cores. The top-row plots show a similar
trend as the total system utilization increases from 2.0 to 2.5.
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Figure 5: Cycles-per-memory-reference for the data in Fig. 4(b).

Beyond this point, however, miss rates level off or decrease.
One explanation for this may be that our task-generation pro-
cess may leave little room to improve miss rates at total utiliza-
tions beyond 2.5. The fact that the three schemes approximately
converge beyond this point supports this conclusion. With re-
spect to total WSS, at 1.5 times the L2 cache size (left column),
megatasking is the clear winner. At 1.75 times (middle column)
and 2.0 times (right column), megatasking is still the winner in
most cases, but less substantially, because all schemes are less
able to improve L2 cache performance. This is particularly no-
ticeable in the 2.0-times case.

Two anomalies are worth noting. First, in inset (e), Pfair
slightly outperforms megatasking at the 3.5 system-utilization
point. This may be due to miss-rate differences in the schedul-
ing code itself. Second, at the right end point of each plot (3.5
system utilization or 0.5 task utilization), partitioning some-
times wins over the other two schemes, and sometimes loses.
These plots, however, are misleading in that, at high utiliza-
tions, many of the task sets were disqualified under partitioning.
Thus, the data at these points is somewhat skewed. With only
non-disqualified task sets plotted (not shown), all three schemes
have similar curves, with megatasking always winning.

In addition to the data shown, we also performed similar ex-
periments in which per-task utilizations were capped. We found
that, as these caps are lowered, the gap between megatasking
and partitioning narrows, with megatasking always either win-
ning or, at worst, performing nearly identically to partitioning.

As before, we tabulated memory-access statistics, but this
time on a per-task-set rather than per-task basis. (For each
scheme, only non-disqualified task sets under it were consid-
ered.) These results, as well as instruction counts, are given
in Table 4. These statistics exclude the scheduling code itself.
Thus, these results should give a reasonable indication of how
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Algorithm No. Instr. No. Mem. Acc.
Partitioning (177.36, 467.83, 647.64) (51.51, 131.50, 182.20)
Pfair (229.87, 452.41, 613.77) (65.96, 124.21, 178.04)
Pfair with Megatasks (232.23, 495.47, 666.62) (66.16, 137.62, 182.41)

Table 4: (Min., Avg., Max.) instructions and memory accesses com-
pleted over all non-disqualified task sets for each scheduling policy, in
millions. From Table 3, every (almost every) task set included in the
partitioning counts is included in the Pfair (megatasking) counts.

the different migration, preemption, and scheduling costs of the
three schemes impact the amount of “useful work” that is com-
pleted. As seen, megatasking is the clear winner by 5-6% on
average and by as much as 30% in the worst case (as seen by
the minimum values).

These experiments should certainly not be considered defini-
tive. Indeed, devising a meaningful random task-set genera-
tion process is not easy, and this is an issue worthy of further
study. Nonetheless, for the task sets we generated, megatasking
is clearly the best scheme. Its use is much more likely to result
in a schedulable system, in comparison to partitioning, and also
in lower L2 miss rates (and as seen in Sec. 4.1, for some specific
task sets, miss rates may be dramatically less).

5 Concluding Remarks

We have proposed the concept of a megatask as a way to re-
duce miss rates in shared caches on multicore platforms. We
have shown that deadline misses by a megatask’s component
tasks can be avoided by slightly inflating its weight and by us-
ing Pfair scheduling algorithms to schedule all tasks. We have
also given deadline tardiness thresholds that apply in the ab-
sence of reweighting. Finally, we have assessed the benefits
of megatasks through an extensive experimental investigation.
While the theoretical superiority of Pfair-related schemes over
other approaches is well known, these experiments are the first
(known to us) that show a clear performance advantage of such
schemes over the most common multiprocessor scheduling ap-
proach, partitioning.

Our results suggest a number of avenues for further research.
First, more work is needed to determine if the deadline tardi-
ness bounds given in Sec. 3 are tight. Second, we would like to
extend our results for SMT systems that support multiple hard-
ware thread contexts per core, as well as asymmetric multicore
designs. Third, as noted earlier, timing analysis on multicore
systems is a subject that deserves serious attention. Fourth, we
have only considered static, independent tasks in this paper. Dy-
namic task systems and tasks with dependencies warrant atten-
tion as well. Fifth, in some systems, it may be useful to actu-
ally encourage some tasks to be co-scheduled, as in symbiotic
scheduling [14, 18, 21]. Thus, it would be interesting to in-
corporate symbiotic scheduling techniques within megatasking.
Finally, a task’s weight may actually depend on how tasks are
grouped, because its execution rate will depend on cache behav-
ior. This gives rise to an interesting synthesis problem: as task
groupings are determined, weight estimates will likely reduce,
due to better cache behavior, and this may enable better group-
ings. Thus, the overall system design process may be iterative
in nature.
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Appendix: Detailed Proofs

In this appendix, detailed proofs are given. We begin by provid-
ing further technical background on Pfair scheduling [3, 4, 5, 6,
22].

Ideal fluid schedule. Of central importance in Pfair schedul-
ing is the notion of an ideal fluid schedule, which is defined
below and depicted in Fig. 6. Let ideal(T, t1, t2) denote the
processor share (or allocation) that T receives in an ideal fluid
schedule in [t1, t2). ideal(T, t1, t2) is defined in terms of
share(T, u), which is the share (or fraction) of slot u assigned to
task T . share(T, u) is defined in terms of a similar per-subtask
function f :

f(Ti, u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
⌊

i−1
wt(T )

⌋
+1)×wt(T )−

(i−1), u=r(Ti)
i−(

⌈
i

wt(T )

⌉
−1)×wt(T ), u=d(Ti)−1

wt(T ), r(Ti)<u<d(Ti)−1
0, otherwise.

(8)
Using (8), it follows that f(Ti, u) is at most wt(T ). Given f ,
share(T, u) can be defined as share(T, u) =

∑
i f(Ti, u), and

then ideal(T, t1, t2) as
∑t2−1

u=t1
share(T, u). The following is

proved in [22] (see Fig. 6).

(∀u ≥ 0 :: share(T, u) ≤ wt(T )) (9)
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Figure 7: Classification of three GIS tasks T , U , and V at time t. The
slot in which each subtask is scheduled is indicated by an “X.”

Lag in an actual schedule. The difference between the total
processor allocation that a task receives in the fluid schedule
and in an actual schedule S is formally captured by the concept
of lag. Let actual(T, t1, t2,S) denote the total actual allocation
that T receives in [t1, t2) in S. Then, the lag of task T at time t
is

lag(T, t,S) = ideal(T, 0, t) − actual(T, 0, t,S)

=
∑t−1

u=0 share(T, u) − ∑t−1
u=0 S(T, u).(10)

(For conciseness, when unambiguous, we leave the schedule
implicit and use lag(T, t) instead of lag(T, t,S).) A schedule
for a GIS task system is said to be Pfair iff

(∀t, T ∈ τ :: −1 < lag(T, t) < 1). (11)

Informally, each task’s allocation error must always be less than
one quantum. The release times and deadlines in (1) are as-
signed such that scheduling each subtask in its window is suffi-
cient to ensure (11). Letting 0 ≤ t′ ≤ t, from (10), we have

lag(T, t + 1) = lag(T, t) + share(T, t) − S(T, t), (12)

lag(T, t + 1) = lag(T, t′) + ideal(T, t′, t + 1) −
actual(T, t′, t + 1). (13)

Another useful definition, the total lag for a task system τ in a
schedule S at time t, LAG(τ, t), is given by

LAG(τ, t) =
∑

T∈τ lag(T, t). (14)

Letting 0 ≤ t′ ≤ t, from (12)–(14), we have

LAG(τ, t + 1) = LAG(τ, t) +∑
T∈τ (share(T, t) − S(T, t)), (15)

LAG(τ, t + 1) = LAG(τ, t′) +
ideal(τ, t′, t + 1) − actual(τ, t′, t + 1). (16)

Task classification. A GIS task U is active at time t if it has
a subtask Uj such that r(Uj) ≤ t < d(Uj). The set A(t) (B(t))
includes all active tasks scheduled (not scheduled) at t. The set
I(t) includes all tasks that are inactive at t. (See Fig. 7.)
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Proof of Theorem 1

We now prove that Wsch, given by (6), is a sufficient scheduling
weight. It can be verified that Wsch is at most I + 1. If Wsch

is I + 1, then γ will be allocated exactly I + 1 processors in
every slot, and hence, correctness follows from the optimality
of PD2 [22]. Similarly, no component task deadlines will be
missed when f = 0. Therefore, we only need to consider the
case

f > 0 ∧ Δf < 1 − f. (17)

Let F denote the fictitious synchronous, periodic task F of
weight f + Δf associated with γ. If S denotes the root-level
schedule, then because PD2 is optimal, by (11), the following
holds. (We assume that the total number of processors is at least
the total weight of all the megatasks after reweighting and any
free tasks.)

(∀t :: −1 < lag(F, t,S) < 1) (18)

Our proof is by contradiction. Therefore, we assume that td and
γ defined as follows exist.

Defn. 1: td is the earliest time that the component task sys-
tem of any megatask misses a deadline under PD2, when the
megatask itself is scheduled by the root-level PD2 scheduler ac-
cording to its scheduling weight. �

Defn. 2: γ is a megatask with the following properties.

(T1) td is the earliest time that a component-task deadline is
missed in Sγ , a PD2 schedule for the component tasks of γ.
(T2) The component task system of no megatask satisfying (T1)
releases fewer subtasks in [0, td) than that of γ. �

As noted earlier, the setup here is similar to that used by Srini-
vasan and Anderson in the optimality proof of PD2 [22], except
that the number of processors allocated to a megatask is not
constant. Despite this difference, a number of properties proved
in [22] apply here, so we borrow them without proof. In what
follows, S denotes the root-level schedule for the task system to
which γ belongs. The total system LAG of the component task
system of γ with respect to Sγ (as defined earlier in (T1)) at any
time t is denoted LAG(γ, t,Sγ) and is given by

LAG(γ, t,Sγ) =
∑

T∈γ lag(T, t,Sγ). (19)

By (9),

share(γ, t,Sγ) =
∑

T∈γ share(T, t,Sγ)
≤ ∑

T∈γ wt(T ) = I + f. (20)

By (6), the fictitious task F is assigned a weight of f + Δf

by the top-level scheduler, and hence, receives an allocation of
f + Δf in each slot in an ideal schedule. Before beginning the
proof, we introduce some terms.

Tight and non-tight slots. A time slot in which I (resp., I+1)
processors are allocated to γ is said to be a tight (resp., non-
tight) slot for γ. Slot t is a non-tight iff F is allocated in S. In
Fig. 3, slots 0 and 2 are non-tight, whereas slot 1 is tight.

Holes. If k of the processors assigned to γ in slot t are idle,
then we say that there are k holes in Sγ at t.

Defn. 3: A slot in which every processor allocated to γ is idle
(busy) is called a fully-idle slot (busy slot) for γ. A slot that
is neither fully-idle nor busy is called a partially-idle slot. An
interval [t1, t2) in which every slot is fully-idle (resp., partially-
idle, busy) is called a fully-idle (resp., partially-idle, busy) in-
terval. �

Lemma 2 (from [22]) The properties below hold for γ and Sγ .

(a) For all Ti in γ, d(Ti) ≤ td.

(b) Exactly one subtask of γ misses its deadline at td.

(c) LAG(γ, td,Sγ) = 1.

(d) There are no holes in slot td − 1.

Parts (a) and (b) follow from (T2); (c) follows from (b). Part (d)
holds because the subtask missing its deadline could otherwise
be scheduled at td − 1. By Lemma 2(c) and (18),

LAG(γ, td,Sγ) > lag(F, td,S). (21)

Because LAG(γ, 0,Sγ) = lag(F, 0,S) = 0, by (21),∗

(∃u : u < td :: LAG(γ, u) ≤ lag(F, u) ∧
LAG(γ, u + 1) > lag(F, u + 1)). (22)

In the remainder of the proof, we show that for every u as de-
fined in (22), there exists a time u′, where u + 1 < u′ ≤ td,
such that LAG(γ, u′) ≤ lag(F, u′) (i.e., we show that the lag
inequality is restored by td), and thereby derive a contradiction
to Lemma 2(c), and hence, to our assumption that γ misses a
deadline at td.

The next lemma shows that the lag inequality LAG(γ, t) ≤
lag(F, t) can be violated across slot t only if there are holes in
t. The lemma holds because if there is no hole in slot t, then
the difference between the allocations in the ideal and actual
schedules for γ would be at most that for F , and hence, the
increase in LAG cannot be higher than the increase in lag . This
lemma is analogous to one that is heavily used in work on Pfair
scheduling [22].

Lemma 3 If LAG(γ, t) ≤ lag(F, t) and LAG(γ, t + 1) >
lag(F, t + 1), then there is at least one hole in slot t.

The next lemma bounds the total ideal allocation in the inter-
val [t, u + 1), where there is at least one hole in every slot in
[t, u), and u is a busy slot. For an informal proof of this lemma,
refer to Fig. 8. As shown in this figure, if task T is in B(t)
(as defined earlier in this appendix), then no subtask of T with
release time prior to t can have its deadline later than t + 1.
Otherwise, because there is a hole in every slot in [t + 1, u), re-
moving such a subtask would not cause any subtask scheduled
at or after u to shift to the left, and hence, the deadline miss at
td would not be eliminated, contradicting (T2). Similarly, no
subtask of T can have its release time in [t + 1, u), and thus,
no subtask in B(t) is active in [t + 1, u). Furthermore, it can
be shown that the total ideal allocation to T in slots t and u is
at most wt(T ), using which, it can be shown that the total ideal

∗In the rest of this paper, LAG within γ and the lag of F should be taken
to be with respect to Sγ and S, respectively.
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Ti

Tj

Tk

Vl Vm

Any task scheduled in [t+1,u)
is in A(t).
For t < v < u, only tasks in A(v)
are active in v.

ut t+1

slots with holes

X

busy slot

X

V is in B(t)

V is inactive in [t+1,u)

share(V,t)+share(V,u) < wt(V)

Figure 8: Lemma 4. The slot in which a subtask is scheduled is indi-
cated with an “X.” If T is in B(t), subtasks like Ti or Tj cannot exist.
Also, a task in B(t) is inactive in [t + 1, u).

allocation to γ in slots t and u is at most I + f (because this
bounds from above the total weight of tasks in B(t) ∪ A(t))
plus the cumulative weights of tasks scheduled in t (i.e., tasks
in A(t)), which is at most |A(t)|Wmax. Finally, it can be shown
that the ideal allocation to γ in a slot s in [t + 1, u) is at most
|A(s)|Wmax. Adding all of these values, we get the value indi-
cated in the lemma. A full proof is available in [2].

Lemma 4 Let t < td − 1 be a fully- or partially-idle slot
in Sγ and let u < td be the earliest busy slot after t (i.e.,
t + 1 ≤ u < td) in Sγ . Then, ideal(γ, t, u + 1) =∑u

s=t

∑
T∈γ share(T, s) ≤ I + f +

∑u−1
s=t |A(s)|Wmax.

The next lemma concerns fully-idle slots.

Lemma 5 Let t < td be a fully-idle slot in Sγ . Then all slots in
[0, t + 1) are fully idle in Sγ .

Proof: Suppose, to the contrary, that some subtask Ti is sched-
uled before t. Then, removing Ti from Sγ will not cause any
subtask scheduled after t to shift to the left to t or earlier.
(If such a left displacement occurs, then the displaced subtask
should have been scheduled at t even when Ti is included.)
Hence, even if every subtask scheduled before t is removed,
the deadline miss at td cannot be eliminated. This contradicts
(T2). �

We are now ready to prove the main lemma, which shows that
the lag inequality, if violated, is restored by td.

Lemma 6 Let t < td be a slot such that LAG(γ, t) ≤
lag(F, t), but LAG(γ, t + 1) > lag(F, t + 1). Then, there
exists a time u, where t + 1 < u ≤ td, such that LAG(γ, u) ≤
lag(F, u).

Proof: Let ΔLAG(γ, t1, t2) = LAG(γ, t2) − LAG(γ, t1),
where t1 < t2, and let Δlag(F, t1, t2) be analogously defined.
It suffices to show that ΔLAG(γ, t, u) ≤ Δlag(F, t, u), where
u is as defined in the statement of the lemma.

By the statement of the lemma and Lemma 3, there is at least
one hole in t, and hence, t is either fully- or partially-idle. These

two cases differ somewhat, and due to space constraints, we
present only the case where t is partially-idle. A complete anal-
ysis is available in [2]. (In the case of multiprocessors, a fully-
idle slot provides a clean starting point for the analysis, and
hence, in a sense, the partially-idle case is more interesting.)
Thus, in the rest of the proof, assume that t is partially-idle. By
this assumption and Lemma 5, we have the following.

(I) No slot in [t, td) is fully-idle.

Because t is partially-idle, by Lemma 2(d), t < td − 1 holds.
Let I denote the interval [t, td). We first partition I into dis-
joint subintervals as shown in Fig. 9, where each subinterval is
either partially-idle or busy. Because t is partially-idle, the first
subinterval is partially-idle. Similarly, because there is no hole
in td − 1, the last subinterval is busy. By (I), no slot in [t, td)
is fully-idle. Therefore, the intermediate subintervals of I alter-
nate between busy and partially-idle, in that order. In the rest of
the proof, the notation in Fig. 10 will be used, where the subin-
tervals Hk, Bk, and Ik, where 1 ≤ k ≤ n, are as depicted in
Fig. 9.

In order to show that there exists a u, where t + 1 < u ≤ td
and ΔLAG(γ, t, u) ≤ Δlag(F, t, u), we compute the ideal and
actual allocations to the tasks in γ and to F in I. By Lemma 4,
the total allocation to the tasks in γ in Hk and the first slot of
Bk in the ideal schedule is given by ideal(γ, tsHk

, tsBk
+ 1) ≤

I + f +
∑hk

i=1 |A(t + Pk−1 + i − 1)| · Wmax. By (20), the
tasks in γ are allocated at most Wsum = I + f time in each
slot in the ideal schedule. Hence, the total ideal allocation to
the tasks in γ in Ik, which is comprised of Hk and Bk, is given
by ideal(γ, tsHk

, teBk
) ≤ ∑hk

i=1(|A(t+Pk−1+i−1)| ·Wmax)+
(I + f) + (bk − 1) · (I + f) =

∑hk

i=1(|A(t + Pk−1 + i − 1)| ·
Wmax)+bk ·(I +f). Thus, the total ideal allocation to the tasks
in γ in I is given by

ideal(γ, t, td) ≤∑n
k=1

((∑hk

i=1(|A(t+Pk−1+i−1)|·Wmax)
)

+bk ·(I+f)
)
.(23)

The number of processors executing tasks of γ in Sγ is |A(t′)|
for a slot t′ with a hole, and is I (resp., I + 1) for a busy tight
(resp., non-tight) slot. Hence,

actual(γ, t, td) =
∑n

k=1

((∑hk

i=1 |A(t + Pk−1 + i − 1)|
)

+

I · bT
k + (I + 1) · (bk − bT

k )
)

. (24)

By (23) and (24), we have

ΔLAG(γ, t, td) = LAG(γ, td) − LAG(γ, t)
= ideal(γ, t, td) − actual(γ, t, td) {by (16)}
≤ ∑n

k=1

((∑hk

i=1(|A(t+ Pk−1+i−1)|·(Wmax−1))
)

+

bT
k ·f +(bk−bT

k )(f−1)
)

(30)

≤ ∑n
k=1

((∑hk

i=1(Wmax−1)
)

+bT
k ·f +(bk−bT

k )(f−1)
)

{Wmax ≤ 1, and hence, (30) decreases with increasing

|A(t+Pk−1+i−1)|. However, by (I), H1, . . . , Hn are

partially-idle, so, |A(t+Pk−1+i−1)| ≥ 1, 1 ≤ k ≤ n.}
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Figure 9: Subintervals of the interval I = [t, td) as explained in Lemma 6. Sample windows and allocations for the fictitious task corresponding
to γ (after reweighting) are shown below the time line.

Hk
def
= [ts

Hk
, te

Hk
) {s = “start”, e = “end”}

Bk
def
= [ts

Bk
, te

Bk
)

t
def
= ts

H1

td
def
= te

Bn

te
Hk

def
= ts

Bk
, 0 ≤ k ≤ n

te
Bk

def
= ts

Hk+1 , 0 ≤ k ≤ n − 1

hk
def
= te

Hk
− ts

Hk
, 0 ≤ k ≤ n {= |H(k)|}

bk
def
= te

Bk
− ts

Bk
, 0 ≤ k ≤ n {= |B(k)|}

hT
k (bT

k )
def
= no. of tight slots in Hk (Bk)

hN
k (bN

k )
def
= no. of non-tight slots in Hk (Bk)

L
def
=

PN
k=1(hk + bk) (25)

LT def
=

PN
k=1(h

T
k + bT

k ) (26)

LN def
=

PN
k=1(h

N
k + bN

k ) (27)

Pk
def
=

Pk
i=1(hi + bi) (28)

P0
def
= 0 (29)

Figure 10: Notation for Lemma 6.

=
∑n

k=1(hk(Wmax−1)+bT
k ·f +(bk−bT

k )(f−1))
=

∑n
k=1(hk(Wmax−1)+bk·f−bk +bT

k )
=

∑n
k=1(hk · ((Wmax−f−1)+f)+bk·f−bk +bT

k )
=

∑n
k=1((hk +bk)·f +

hk ·(Wmax−f−1)−bN
k ) {bk = bT

k + bN
k }

= L · f +
∑n

k=1(hk · (Wmax − f − 1) − bN
k ) {by (25)}

= L · f +
∑n

k=1(h
T
k · (Wmax − f − 1) +

hN
k · (Wmax − f − 1) − bN

k ) {hk = hT
k + hN

k }
≤ L · f +

∑n
k=1(h

N
k · (Wmax − f − 1) − bN

k ) {Wmax ≤ 1}
= L · f − LN +

∑n
k=1 hN

k · (Wmax − f) {by (27)}
≤

{
L · f + LN(Wmax − f − 1), Wmax > f
L · f − LN, Wmax ≤ f.

(31)

We now determine the change in F ’s lag across I. F receives

an ideal allocation of f + Δf in every slot. Hence, by (25),

ideal(F, t, td) =
∑n

k=1(hk + bk)(f + Δf ) = L · (f + Δf ).
(32)

In S, F is allocated in every non-tight slot in I. Hence, by (27),

actual(F, t, td) =
∑n

k=1(h
N
k + bN

k ) = LN. (33)

Thus, by (13), the change in lag of F across I is given by

Δlag(F, t, td) = lag(F, td) − lag(F, t)
= ideal(F, t, td) − actual(F, t, td)
= L · (f + Δf ) − LN. (34)

We are now ready to show that ΔLAG(γ, t, td) ≤
Δlag(F, t, td), establishing the lemma with u = td.

If Wmax ≤ f holds, then from (31), (34), and Δf > 0,
we have ΔLAG(γ, t, td) < Δlag(F, t, td). Hence, in the rest
of the proof, we assume Wmax > f . In this case, by (31),
ΔLAG(γ, t, td) ≤ L · f + LN · (Wmax − f − 1), and by (34),
Δlag(F, t, td) = L(f + Δf ) − LN. By Lemma 2(c),

LAG(γ, td) = 1
⇒ ΔLAG(γ, t, td) + LAG(γ, t) = 1
⇒ L · f + LN · (Wmax − f − 1) + LAG(γ, t) ≥ 1
⇒ L · f + LN · (Wmax − f − 1) + 1 > 1
{from the statement of the lemma and (18), LAG(γ, t) < 1}
⇒ L > (LN(1 + f − Wmax))/f. (35)

Because Wmax > f , by (7) and (17), Δf ≥ ( Wmax−f
1+f−Wmax

) ·
f holds. Hence, by (35), L · Δf > LN(Wmax − f) holds.
Therefore, using the expressions derived above for ΔLAG and
Δlag , ΔLAG(γ, t, td) − Δlag(F, t, td) ≤ LN(Wmax − f) −
L · Δf < 0 follows, establishing the lemma. �

Let t be the largest u satisfying (22). Then, by Lemma 6,
there exists a t′ ≤ td such that LAG(τ, t′) ≤ lag(F, t′). If t′ =
td, then (21) is contradicted, and if t′ < td, then (21) contradicts
the maximality of t. Theorem 1 follows. (This result can be
extended to apply when “early” subtask releases are allowed,
as defined in [5], at the expense of a slightly more complicated
proof.)
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