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Abstract. We study the problem of sorting on a parallel computer with limited communication
bandwidth. By using the PRAM(m) model, where p processors communicate through a globally
shared memory which can service m requests per unit time, we focus on the trade-off between the
amount of local computation and the amount of interprocessor communication required for parallel
sorting algorithms. Our main result is a lower bound of Ω(n logm

m logn
) on the time required to sort

n numbers on the exclusive-read and queued-read variants of the PRAM(m). We also show that
Leighton’s Columnsort can be used to give an asymptotically matching upper bound in the case
where m grows as a fractional power of n. The bounds are of a surprising form in that they have
little dependence on the parameter p. This implies that attempting to distribute the workload across
more processors while holding the problem size and the size of the shared memory fixed will not
improve the optimal running time of sorting in this model. We also show that both the lower and the
upper bounds can be adapted to bridging models that address the issue of limited communication
bandwidth: the LogP model and the bulk-synchronous parallel (BSP) model. The lower bounds
provide further convincing evidence that efficient parallel algorithms for sorting rely strongly on high
communication bandwidth.
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1. Introduction. A large body of theoretical research has concentrated on al-
gorithms designed in the parallel random access machine (PRAM) model of compu-
tation. The PRAM allows processors to communicate with each other in unit time
through a large globally shared memory, which leads to algorithms that have a high
degree of parallelism but perform a great deal of interprocessor communication, an
inexpensive operation in the PRAM model. This leaves unresolved the question of how
to design algorithms for machines which have limited interprocessor communication
bandwidth.

Addressing this limitation has motivated the development of other models of
parallel computation, representative of which are the BSP model [33], the LogP model
[15], and the PRAM(m) model [35]. Provably efficient algorithms in the PRAM model
are not necessarily the most efficient algorithms for these models, so a host of problems
must be reevaluated in this framework. In this paper, we examine the problem of
sorting in the context of parallel machines with limited communication bandwidth.
We formalize the sorting problem as follows.

Definition 1.1. The Sorting Problem.
Input: n distinct keys k1 . . . kn, with total order k(1) < k(2) < · · · < k(n).
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Output at processor i: A sorted list of keys: k( in
p +1) . . . k( in

p +n
p ).

We concentrate on the complexity of sorting in the PRAM(m) model. In this
variant of the classical PRAM model, p processors communicate through a globally
shared memory consisting of m memory cells and the entire input, assumed to be of
size n, is provided to each processor in a globally shared read-only memory (ROM).
This model allows us to focus on the trade-off between the amount of information
derived from local computation and the amount of information derived from inter-
processor communication.

Each of the m shared memory cells consists of log n bits. As in traditional PRAM
models, the resolution of contention for these shared memory cells can be defined
in a variety of ways. In this paper, we focus on the exclusive-read and queued-read
variants of the PRAM(m) model (ER PRAM(m) and QR PRAM(m), respectively);
these are defined in section 2. The main result of this paper is the proof of a lower
bound that holds for both the ER PRAM(m) and the QR PRAM(m) on the time
required to sort n distinct keys of

Ω

(
n logm

m log n

)
.

The bound holds when n > p2, which is the case of primary interest, since typical
parallel applications involve problems where the input size is much larger than the
number of processors. This lower bound does not rely on any restriction on the local
computation of a processor. This is in contrast to sorting results which prove lower
bounds on comparison-based algorithms. The proof extends to both Monte Carlo and
Las Vegas randomized algorithms and to algorithms which allow for the m shared
memory cells to employ a concurrent write contention resolution rule.

In order to prove the lower bound, we introduce the oracle model of computation,
a model that allows us to quantify a trade-off between local computation and infor-
mation received from other processors. In this model, which is defined more fully in
section 2.1, processors are not required to transmit any information. Rather, all inter-
processor communication is simulated by an oracle that is assumed to know the entire
input before computation begins. The oracle is of unlimited computational power, and
thus can precompute any function of the inputs before computation begins. We prove
that even in this setting, local computation is of such limited utility that the oracle
must provide a large amount of information in order to enable the processors to solve
the sorting problem efficiently.

When m = O(nβ), for some β < 1, we show that a version of Columnsort [26]
has a running time that is bounded by

O
( n
m
(1− β)−3.42

)
.

For n� m, the case of greatest interest, the final factor becomes a small constant and
so in this setting the ratio between the upper and lower bounds is Θ( log n

logm ). When
sorting k-bit keys, the algorithm used in the upper bound runs with a slowdown of
a factor of O( k

logn ) on a machine model in which the input is distributed among all
processors rather than stored in a globally shared ROM. This gives the algorithm
more credibility from a practical standpoint.

We also show that our results can be generalized to two other models that in-
corporate limited communication throughput, the LogP model and the BSP model.
In both of these models, the processors communicate using point-to-point messages,
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and a parameter g represents the minimum number of cycles between transmission of
successive messages from a processor. To prove a lower bound for the ER PRAM(m)
model, we show a lower bound on the number of bits which must be transmitted
through the network in order to solve the sorting problem efficiently. Coupling this
bound with model-dependent lower bounds on the amount of time required to trans-
mit a fixed number of bits in the BSP and LogP models results in lower bounds for
sorting in these two models. We defer definitions of the models and the exact form of
the bounds to the section where those results are discussed.

Our results show that fast parallel algorithms to solve the sorting problem must
rely on large amounts of communication. Furthermore, we have the surprising result
that both our upper and lower bounds are unaffected by attempting to distribute the
work across an unlimited number of processors, while holding fixed the problem size,
the size of the shared memory, and the number of processors that actually output
the result. Therefore, to increase the speed of parallel sorting on a machine with
limited communication bandwidth, increasing bandwidth is more likely to improve
the running time than is increasing the number or computational power of processors.

The remainder of the paper is organized as follows. In the rest of section 1, we
briefly compare our results with previous work in parallel sorting. In section 2, we
provide a complete description of both the PRAM(m) model and our lower bound
tool, the oracle model of communication. Sections 3 and 4 provide proofs of our lower
bound for deterministic and randomized algorithms for sorting in the ER PRAM(m)
and QR PRAM(m) models of computation. Section 5 provides the matching upper
bound, and section 6 briefly describes extensions of those proofs to the LogP and BSP
models.

1.1. Previous work. From the large body of research in the realm of paral-
lel sorting algorithms, we discuss several results which also focus on interprocessor
communication requirements. Using Thompson’s VLSI model [32], Leighton, in [26],
proves a lower bound of AT2 = Ω(n2 log2 n) for sorting n keys of size Θ(log n), where
A is the area of a VLSI chip and T is the running time of the chip. His methods can
be used to show bounds of the form Ω

(
n
m

)
in a PRAM model with a globally shared

memory of size m, but in which the input is evenly distributed across the p processors,
rather than stored in a globally shared ROM. Indeed, an interesting question would
be to determine whether we could apply our lower bound technique to a nonstandard
VLSI model in which the chip could receive each input in more than one location and
at more than one time.

Other related work on parallel sorting includes [12], where Borodin and Cook

prove that sorting requires TIME · SPACE = Ω( n2

logn ). Aggarwal, Chandra, and Snir

show in [3] that any parallel comparison-based algorithm that sorts n words requires
Ω( n logn

p log(n
p ) ) communication steps. Also, the same authors show in [5] that sorting

requires time Ω(n logn
p + l log p) in a model where reading or writing a block of size b

from memory takes time l + b.

The PRAM(m) model was introduced in [35] and has been studied subsequently
in [28], [19], [18], [9], [30], [1], and [10]. The case where n � p was first examined in
[30], where Mansour, Nisan, and Vishkin prove a lower bound of Ω( n√

mp ) for several

problems, including sorting, in a concurrent read version of the PRAM(m), which
implies the same bound in the ER PRAM(m) and the QR PRAM(m).

An easy upper bound on the time required for sorting can be obtained by using
a variant of Cole’s parallel merge sort [13] for the PRAM. Cole’s algorithm uses
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n processors to sort n keys in time O(log n) time. This algorithm requires the use
of a total of O(n log n) shared memory cells per time step, but by letting each of
the m words of shared memory simulate O(n log n

m ) cells of the PRAM memory, we

can run Cole’s algorithm in time O(n log2 n
m ) on the ER PRAM(m). Related work on

upper bounds includes [16], in which Cypher and Sanz discuss a recursive version of
Columnsort and introduce Cubesort, which can be used to obtain a running time of
O( n

m (1−β)−2)25log∗ n−log∗(n/m) for sorting on the ER PRAM(m), where m = O(nβ).
However, this algorithm has substantial overhead and is considerably more involved
then the one presented in this paper. A recursive version of Columnsort is also used
by Aggarwal and Huang in [6] to obtain an algorithm for sorting in fixed connection
networks.

Subsequent to a preliminary version of this paper in [2], Adler [1] provides an
algorithm for sorting in the concurrent-read PRAM(m) (CR PRAM(m)) that is con-
siderably faster than the lower bound for the ER PRAM(m) presented in this paper.
Thus, that result together with the lower bound presented here imply that the CR
PRAM(m) is strictly more powerful than the ER PRAM(m). [1] also slightly improves
the ER PRAM(m) upper bound to O( n log p

m log n ).
Finally, with respect to BSP algorithms for sorting, Gerbessiotis and Valiant

[21] introduce a randomized algorithm for parallel sorting in the BSP model. Also,
subsequent to an earlier version of this paper, the upper bound for sorting in the BSP
model has been improved by both Goodrich [24] and by Gerbessiotis and Siniolakis
[20]. The form of these bounds is deferred to section 5.2, where they are described in
the context of our description of the BSP model.

2. The PRAM(m) model. In this section, we define the PRAM(m) model,
and then describe a theoretical tool derived from the PRAM(m) model, the ora-
cle model of communication. The primary goal of these models is to examine the
effectiveness of parallel computation given a sharp limitation on interprocessor com-
munication.

In a classical PRAM, p processors communicate by writing to and reading from
a large globally shared memory in unit time. However, in practice, the available per-
processor bandwidth to shared memory can be quite small. Access to shared memories
is slowed by such factors as long message send overheads [15], contention at memory
banks, the fact that memory banks are much slower than processors [11], and band-
width limitations of the network connecting processors to memory banks. Similar
difficulties exist in distributed memory parallel machines. The parameter m of the
PRAM(m) model focuses attention on this bottleneck, by enforcing the condition
that the shared memory can service only m requests per unit time, where m < p.
This is modeled as a PRAM consisting of m shared memory cells, each of size log n
bits, as shown in Figure 2.1. We note that all the results in this paper can easily be
extended to a model in which each memory cell can hold a word of w bits, independent
of the input size.

The input of size n is provided to the PRAM(m) in a read-only shared memory
(ROM) concurrently available to all of the processors. Conceptually, this is equivalent
to having each processor begin with an identical copy of the input in its local mem-
ory. This capability serves to concentrate our lower bound efforts on the amount of
communication required for actual computation, rather than on the amount required
to distribute the input. Since such a ROM may be unrealistic from a practical stand-
point, upper bounds achieved in this model that rely on use of the ROM are only
applicable to problems in which the entire input is initially known by all the proces-
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processorsp

n input size

shared memory cells

Fig. 2.1. The PRAM(m) model.

sors. During each synchronized round of computation, every processor can perform
one of four actions: it can read the contents of a ROM location, read the contents
of a globally shared memory location, write to a globally shared memory location, or
perform local computation.

As defined in [35], the PRAM(m) model allows processors concurrent read, con-
current write access to the globally shared memory. In this paper, we consider exclusive-
read and queued-read variants of the PRAM(m) model. In the ER PRAM(m), two
distinct processors are forbidden from reading the same memory cell at the same time
step. We also define the QR PRAM(m), where read contention at a memory cell is
resolved as follows: each step of an algorithm completes in k time steps, where k is
the maximum number of processors reading the same memory location during that
step of the algorithm. Finally, we define the asynchronous QR PRAM(m), where ev-
ery memory cell services one request if any requests to that cell are pending, and
all other requests are stored in a FIFO queue. We note that both queued contention
resolution strategies are analogous to those devised in [22] and [23] for the standard
PRAM. The contention resolution strategy for write access to the shared memory
can be either concurrent write, queued write, or exclusive write. Our upper and lower
bounds are not affected by this choice, and thus, we leave this component of the model
unspecified.

2.1. The oracle model of communication. It is often the case in parallel
computing that the amount of computation required by a processor is greatly re-
duced by receiving results of computations performed by other processors. In order to
quantify a trade-off between local computation and information received from other
processors, we define the oracle model of computation. This lower bound tool uses the
principle that the combined information a processor receives from all other processors
is no more useful than the information it can receive from a single processor with
unlimited computational resources and access to all the information the processors
have.

In the oracle model, shown in Figure 2.2, processors do not transmit any infor-
mation. Rather, each processor only receives information from an oracle of unlimited
computational power, and a read-only memory (ROM) that contains the input. The
oracle transmits information to the processors through p oracle memories consisting
of cells of size log n bits. Each of these memory cells is referred to as an oracle word.
Processor i has read-only access to the ith oracle memory but is not able to access any
of the other oracle memories. We subject the oracle to the restriction that it compute
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Oracle Memories Processors ROMOracle

Fig. 2.2. The flow of information in the oracle model.

and set all the values of the oracle memory before the processors begin computation.
This restriction does not alter the power of the model; it only serves to simplify the
analysis.

The processors access the input using a concurrently readable ROM, which is
identical to the ROM of the PRAM(m) model. During computation, at each syn-
chronous time step every processor is allowed to perform one of three actions: it can
read the contents of a cell from its oracle memory, read an input from the ROM,
or perform local computation. The oracle knows the entire input and the programs
executed by each of the processors. We are interested in the trade-off between the
maximum number of time steps required by any processor and the total number of
cells read from the oracle memory. Lower bounds on the number of cells that must be
read from the oracle memory by all processors combined with the limited throughput
of the memory give corresponding lower bounds on the execution time.

More formally, consider algorithms Ae and Ao designed for the ER PRAM(m) and
the oracle model, respectively. Let r(Ae, i, p) denote the aggregate number of reads
the p processors perform from the shared memory and the ROM on input i. Likewise,
let t(Ae, i, p) denote the number of time steps Ae runs on i with p processors. Define
r(Ao, i, p) and t(Ao, i, p) similarly for algorithm Ao.

Definition 2.1. An oracle algorithm Ao exactly simulates a PRAM(m) algo-
rithm Ae if for all values of p and on all inputs i, r(Ao, i, p) = r(Ae, i, p), t(Ao, i, p) =
t(Ae, i, p), and Ao computes the same output as Ae.

Lemma 2.2. Given any ER PRAM(m) algorithm Ae, there is an oracle algorithm
Ao such that Ao exactly simulates Ae.

Proof. Consider the execution of the ER PRAM(m) algorithm Ae on input i. Let
w(u, v) denote the contents of the cell processor u would read at time v. The oracle can
compute w(u, v) for all u, v instantaneously in advance of the simulation by using its
unlimited resources. To perform the simulation, the oracle simply furnishes w(u, v)
in oracle memory u at time v for all u, v. The processors then execute their ER
PRAM(m) algorithms, ignoring all write operations and reading from their oracle
memory in place of reading from shared memory locations. The simulation has zero
slowdown and the processors read the same total number of cells in both execu-
tions.

Note that the oracle model can also exactly simulate any QR PRAM(m) algo-
rithm, as well as any asynchronous QR PRAM(m) model. Furthermore, a similar
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lemma shows that an oracle model in which processors have concurrent read access
to a single, m cell oracle memory can exactly simulate any CR PRAM(m) algorithm,
but proving strong lower bounds for sorting in this model remains open. The oracle
model can also be used to prove lower bounds for randomized algorithms. To allow
the oracle to simulate the programs of processors in such a setting, we give the or-
acle access to the random bits used by each processor prior to the execution of the
algorithm.

3. Lower bounds. In this section, we prove lower bounds for sorting algorithms
in the oracle model by showing that even when all processors know the range of keys
that need to be output by each processor, the task of locating those keys within the
input is difficult. If we wish to sort n keys, and if all processors know the range of
key values that will be output by each processor, but not the value of these keys, nor
their location within the ROM, then the work remaining can be formalized as the
permutation routing problem.

Definition 3.1.

The permutation routing problem.
Input: n memory locations, each containing a processor ID, such that each processor
ID appears exactly n

p times.
Output at processor i: a list of the locations where i appears.

Lemma 3.2. Any algorithm for the ER PRAM(m) that sorts n distinct keys in
time T can solve any instance of the permutation routing problem of size n in time
T . The same is true for the QR PRAM(m).

Proof. We derive from each location of the permutation routing problem a key
to be sorted, where the key is the concatenation of the processor ID stored at that
location and the location index within the ROM. Sorting these keys is sufficient to
inform each processor i of the locations where i appears.

Thus, any lower bound for the permutation routing problem implies an identical
lower bound for sorting. In order to prove our lower bounds for this problem in
different scenarios, we first prove a lower bound on a simpler problem in the oracle
model. This problem is called the processor d permutation routing problem, and is
defined as follows, with d any processor ID between 1 and p. The input is chosen
uniformly at random from the set of all possible n element inputs to the permutation
routing problem. Processor d is required to determine the list of locations in the ROM
where d appears, but the remaining processors are not required to do anything. We
are interested in the average, over all possible n element inputs to the permutation
routing problem, of the number of oracle words processor d reads, given a limitation
on how many ROM locations processor d reads.

Lemma 3.3. In any deterministic algorithm for the oracle model that solves the
processor d permutation routing problem when n > p2, if the average number of oracle
words read by processor d is at most n logm

8p logn , and processor d never reads more than
n logm
m logn ROM locations, then on an input chosen uniformly at random, processor d

produces an incorrect result with probability at least 1
4 .

The proof of this lemma is the main technical portion of our lower bound, and is
deferred to section 3.1. We first discuss its implications.

Theorem 3.4. For any deterministic ER PRAM(m) algorithm that solves the
sorting problem for any set of n distinct keys, where n > p2, the average over all
permutations of the input keys of the time required by the algorithm is at least n logm

8m logn .

The same is true for any deterministic algorithm for the QR PRAM(m).
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Proof. We assume there is a sorting algorithm A for the ER PRAM(m), where the
average over all permutations of the input keys of the time to perform A is less than
n logm
8m logn , and we reach a contradiction. Let w(A,C) be the total number of words read

from the shared memory when algorithm A is executed on input C. Let r(A,C, i) be
the number of ROM locations read by processor i when A is executed on input C. We
shall use w(A,C) and r(A,C, i) to represent these quantities for both the PRAM(m)
as well as the oracle model.

Since at most m words can be read from the shared memory at any time step,
when C ranges over all permutations of the input keys, the average of w(A,C) is
less than n logm

8 log n . Also, the average over all such C of maxi r(A,C, i) is less than
n logm
8m logn . By Lemmas 2.2 and 3.2, this implies the existence of an oracle algorithm A′

for the permutation routing problem, where the average over all input permutations
C of w(A′, C) is less than n logm

8 log n , and the average over all input permutations of

maxi r(A,C, i) is less than
n logm
8m logn .

For any such A′, there is some processor d such that the average over all inputs
of the number of oracle words read from the oracle memory for processor d is less
than n logm

8p logn , and the average over all inputs of r(A′, C, d) is at most n logm
8m logn . By

Markov’s inequality, in A′, the fraction of inputs C where r(A′, C, d) ≥ n logm
m logn is at

most 1
8 . Thus, we can use A′ to construct algorithm A′′ for the oracle model. In A′′,

processor d behaves the same as in A′, except that it only performs at most n logm
m logn

ROM queries. If in A′ processor d requires more ROM queries on a given input,
on that input in A′′, processor d returns an arbitrarily chosen permutation. Since
algorithm A′ responds correctly on all inputs, A′′ responds correctly on at least 7

8
of all possible inputs. This contradicts Lemma 3.3, and thus there does not exist
such an algorithm A for the ER PRAM(m). The proof for the QR PRAM(m) is
identical.

For Las Vegas algorithms, or randomized strategies that are guaranteed to provide
a correct solution with a bound only on the expected running time, we have a lower
bound which follows from a direct application of Yao’s lemma [36].

Theorem 3.5. For any Las Vegas algorithm Av for the ER PRAM(m) where
n > p2, there is some permutation of the inputs I for the sorting problem such that
Av requires expected time at least

n logm
8m logn to solve I. Also, the expected running time

of any Las Vegas algorithm on an input chosen uniformly at random from the set of
all inputs is at least n logm

8m logn . The same is true for the QR PRAM(m).

Proof. Yao’s lemma [36] states that if there is a distribution over the inputs such
that every deterministic algorithm requires time at least L for that distribution, then
for any randomized algorithm there exists an input for which the expected running
time is at least L. This combined with Theorem 3.4 directly implies the first claim
of Theorem 3.5. The second claim follows from Theorem 3.4 and the fact that any
Las Vegas algorithm is actually a distribution over deterministic algorithms and thus
cannot fare better than the best deterministic algorithm.

For Monte Carlo algorithms, or randomized strategies with bounded running time
which provide a correct solution with probability greater than 3

4 , we have the following
lower bound.

Theorem 3.6. For any Monte Carlo algorithm Am for the ER PRAM(m) where
n > p2, there is some input I for the sorting problem such that Am requires time at
least n logm

8m logn to solve I. Also, for the uniform distribution over all possible inputs, the

running time of any Monte Carlo algorithm is at least n logm
8m logn . The same is true for
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the QR PRAM(m).
We prove this theorem using an alternate formulation of Yao’s lemma, provided

in [29].
Lemma 3.7. Let P1 be the success probability of a T step randomized algorithm

solving problem B, where the success probability is taken over the random choices made
by the algorithm and minimized over all possible inputs. Let P2 be the success proba-
bility over a distribution D of inputs, maximized over all possible T step deterministic
algorithms to solve B. Then, P1 ≤ P2.

Theorem 3.6 follows from a direct application of Lemma 3.7 to the following
lemma.

Lemma 3.8. For any deterministic ER PRAM(m) algorithm A that solves the
sorting problem for any set of n distinct keys, where n > p2, if A always uses fewer
than n logm

8m logn time steps, then when the input is chosen uniformly at random from
the set of all possible permutations of the inputs, the probability that every processor
successfully produces the correct output is ≤ 3

4 . The same is true for any deterministic
algorithm for the QR PRAM(m).

Proof. We assume that there is such a deterministic algorithm Ad which produces
the correct output with probability greater than 3

4 , and we reach a contradiction. In

such an algorithm, for every input C, w(Ad, C) <
n logm
8 log n and maxi r(Ad, C, i) <

n logm
8m logn . By Lemmas 2.2 and 3.2, this implies the existence of an oracle algorithm A′

d

for the permutation routing problem, where the total number of oracle words read by
all of the processors is less than n logm

8 log n , and maxi r(A
′
d, C, i) <

n logm
8m log n . For any such

A′, there is some processor d such that the average over all inputs of the number of
oracle words read from the oracle memory for processor d is less than n logm

8p logn , and

r(A′
d, C, d) ≤ n logm

8m logn . However, this implies the existence of an algorithm for the
processor d permutation routing problem, where the average over all inputs of the
number of oracle words read from the oracle memory for processor d is less than
n logm
8p logn , r(A

′
d, C, d) <

n logm
8m logn , and yet processor d responds correctly with probability

> 3
4 . This contradicts Lemma 3.3, and thus there does not exist such an algorithm

Ad.

3.1. The processor d permutation routing problem. In this subsection,
we prove Lemma 3.3, restated here for convenience.

Lemma 3.9. In any deterministic algorithm for the oracle model that solves the
processor d permutation routing problem when n > p2, if the average number of oracle
words read by processor d is at most n logm

8p logn , and processor d never reads more than
n logm
m logn ROM locations, then on an input chosen uniformly at random, processor d

produces an incorrect result with probability at least 1
4 .

For concreteness and simplicity, we represent an input to the permutation routing
problem as a bit matrix B with n rows and p columns. If processor ID j appears in
location i in the permutation routing problem instance, then Bij = 1; otherwise Bij =
0. Rows of B correspond to locations, and columns of B correspond to processors,
so each column of B has exactly n

p ones, and there is exactly one 1 in each row. A
ROM query to location k reveals row k of this matrix. In order to solve the processor
d permutation routing problem correctly, processor d must be able to specify column
d of B exactly.

The proof of this lower bound employs the “little birdie” principle: giving a
processor additional information never increases the complexity of the problem that
the processor must solve. The side information that the “little birdie” reveals a priori



2006 MICAH ADLER, JOHN W. BYERS, AND RICHARD M. KARP




1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
1 0 0




Fig. 3.1. Permutation routing problem input: n = 6, p = 3.
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0 1 0




Fig. 3.2. A hidden matrix for processor 1 consistent with input in Figure 3.1

to processor d is a perturbed representation of the input specification B called a
hidden matrix. Providing this matrix to processor d allows us to prove lower bounds
on the amount of information subsequent ROM queries provide to processor d.

The hidden matrix is chosen as follows. A permutation routing problem instance
B is chosen uniformly at random and revealed to the oracle. Then, based on the
choice of B, a hidden matrixH is chosen and revealed to processor d and the oracle. To
construct the hidden matrix H, we first choose an n×p matrix G uniformly at random
from binary matrices whose dth column is identical to the dth column of B, and the
remaining columns each have either � n

p(p−1)	 1’s or 
 n
p(p−1)� 1’s, such that every row

with a 1 in column d has exactly one 1 in some other column, and all other rows have
no 1’s. The hidden matrix H is defined to be H = B⊕G, where ⊕ denotes the bitwise
XOR of the two matrices. This mapping evenly redistributes the 1’s from column
d of B across the other columns while leaving all other rows unchanged. A pictorial
representation of an input matrix and a possible hidden matrix constructed from it
are given in Figures 3.1 and 3.2. Based on B and H, the oracle places some number
of words in processor d’s oracle memory. Processor d then executes its deterministic
algorithm and produces its output.

We say that an input C is consistent with a hidden matrix H if there is a matrix
G perturbing C as defined above such that C ⊕ G = H. Let C(H) denote the set of
inputs that are consistent with hidden matrix H. For deterministic algorithms, the
pair 〈C,H〉, where C is an input consistent with hidden matrixH uniquely determines
S, the setting of oracle memory d. We say that S is consistent with hidden matrix
H if there is C ∈ C(H) such that H and C determine S. Let S(H) be the set of all
settings of the oracle memory S that are consistent with H. Also, we say that input
C is consistent with both H and S if H and C determine S. Let C(H,S) be the set
of all inputs C that are consistent with H and S. Finally, for a hidden matrix H and
an input C ∈ C(H), let the indicator variable R(H,C) = 1 if processor d produces
the correct output on C when given H and 0 otherwise.
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We first demonstrate that for any given hidden matrix, setting of the oracle
memory, and algorithm, there cannot be too many inputs for which the algorithm
produces the correct result.

Claim 3.9. In any algorithm for the processor d permutation routing problem,
where processor d is provided with any hidden matrix H and any setting of the oracle
memory S, if processor d performs no more than n logm

m logn ROM queries, then

∑
C∈C(H,S)

R(H,C) ≤ Z, where Z =

n
p∑

r=1

(n logm
m logn

r

)
.

Proof. After the setting of the oracle memory and the hidden matrix have been
fixed, we can model processor i’s actions by a decision tree, in which each node of the
decision tree corresponds to a ROM query, and each leaf of the tree corresponds to a
processor state achievable after performing at most n logm

m logn ROM queries. The number
of distinct results that processor d can produce is at most the number of leaves in
this tree. We show that for any nonredundant algorithm, i.e., an algorithm that only
examines each ROM location once, the tree has at most Z leaves. Any redundant
algorithm can be simulated by a nonredundant algorithm, and thus the number of
distinct results processor d can produce is at most Z for all algorithms.

Suppose processor d reads the value of row i of C from the ROM. Then, either (a)
row i of H is identical to row i of C, or (b) C has a 1 in column d of row i whereas H
has a 1 in some other column. Since processor d knows H at the start of the algorithm,
the decision tree has branching factor two. Since processor ID d only appears in n

p
elements, at most n

p of these ROM queries can discover elements where processor ID
d appears. Mapping successful discoveries to left branches and unsuccessful queries
to right branches ensures that any algorithm which is nonredundant has a decision
tree where any path from root to leaf can have at most n

p left branches. The number
of distinct leaves of the decision tree that can be reached by a path from root to leaf

with k left branches is at most
(n log m

m log n

k

)
. Thus, the possible number of leaves in the

decision tree is at most
(n log m

m log n

0

)
+
(n log m

m log n

1

)
+ · · ·+ (n log m

m log n

n/p

)
.

For any algorithm for the processor d permutation routing problem, let a(H) be
the average number of oracle words provided to processor d, where the average is
taken over all inputs in C(H).

Claim 3.10. Consider any algorithm for the processor d permutation routing
problem where n > p2, where the little birdie provides processor d with a hidden
matrix, and where processor d performs at most n logm

m logn ROM queries. For any H, if

a(H) < n logm
4p logn , then on an input chosen uniformly at random from the set C(H), the

probability that processor d produces the correct output is < 1
2 .

Proof. The total number of inputs in C(H) on which processor d responds correctly
is at most

∑
C∈C(H)

R(H,C) =
∑

S∈S(H)

∑
C∈C(H,S)

R(H,C),

and so the probability of a successful response is at most

1

|C(H)|
∑

S∈S(H)

∑
C∈C(H,S)

R(H,C).
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But, by Claim 3.9, this is at most Y, where

Y =
∑

S∈S(H)

min

(
Z

|C(H)| ,
|C(H,S)|
|C(H)|

)
.

We assume that Y ≥ 1
2 , and we reach a contradiction by showing that this implies

that a(H) ≥ n logm
4p logn . First, note that Y ≥ 1

2 implies that |S(H)| ≥ |C(H)|
2Z . Let |S|

denote the number of words in oracle memory setting S. Because there are at most

2r logn settings of the oracle memory with ≤ r words, there are at least 3|C(H)|
8Z oracle

memory settings S ∈ S(H) such that

|S| ≥
log

(
|C(H)|

8Z

)
log n

.

We call such oracle memory settings large settings. We use this to minimize a(H)
subject to Y ≥ 1

2 . Note that

a(H) =
∑

S∈S(H)

|S| |C(H,S)||C(H)| .

By counting the total contribution to a(H) of the large settings, we see that

a(H) ≥ 3|C(H)|
8Z

·
log

(
|C(H)|

8Z

)
log n

· |C(H,S)||C(H)| .

We can assume that for any S ∈ S(H), |C(H,S)| ≥ Z, since given any valid solu-
tion, any sets C(H,S) of smaller cardinality can be combined into sets of cardinality
Z without changing the value of Y and without increasing a(H). Thus,

a(H) ≥
3 log

(
|C(H)|

8Z

)
8 log n

.

Using the fact that n > p2, we have that for any H,

|C(H)| ≥
( � n

p−1	
� n
p(p−1)	

)p−1

.

Using the inequality
(
a
b

)b ≤ (
a
b

) ≤ (
ae
b

)b
, and the fact that m ≤ p implies that the

sum expressed by Z is dominated by the final term, this gives us

a(H) ≥ 3n logm

8p log n
− o

(
n logm

p log n

)
,

which is a contradiction. Thus, the probability of a correct response from processor d
is less than 1

2 .
Proof of Lemma 3.3. The number of hidden matrices consistent with a given input

is invariant over the choice of input and the number of inputs consistent with a given
hidden matrix is invariant over the choice of matrix. Thus, if the average, over all
inputs, of the number of oracle words read by processor d is at most n logm

8p logn , then the
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average of a(H) over all H is at most n logm
8p logn . By Markov’s inequality, this implies that

a(H) ≤ n logm
4p logn for at least 1

2 of the hidden matrices H. The input to the permutation
routing problem is chosen uniformly at random from the set of all inputs. One method
for producing this uniform distribution is as follows: first a hidden matrixHi is chosen
uniformly at random from the set of all hidden matrices that can be given to d. Then,
an input Ci is chosen uniformly at random from C(Hi). With probability at least 1

2 , for

the resulting choice of Hi, a(Hi) ≤ n logm
4p logn . By Claim 3.10, if a(Hi) ≤ n logm

4p logn , then the

probability that processor d responds correctly is at most 1
2 . Therefore, the probability

that processor d responds correctly on an input chosen uniformly at random, when
given a hidden matrix, is at most 3

4 . By the little birdie principle, the probability that
processor d responds correctly on an input chosen uniformly at random, when not
given a hidden matrix, also is at most 3

4 .

4. The upper bound. We show that a version of Leighton’s Columnsort [26]
performs well in both the ER PRAM(m) and the QR PRAM(m). Moreover, this
algorithm runs in a model where there is no globally shared ROM for the input
(which may not always be realistic in practice), but instead the input is distributed
across the processor’s local memories.

Theorem 4.1. There is an ER PRAM(m) algorithm for sorting n keys which
runs in time

O
( n
m
(1− β)−3.42)

)
,

provided p ≥ m log n and m = O(nβ), for some β < 1. This algorithm has the same
running time on the QR PRAM(m).

Proof. It is sufficient to provide a sorting algorithm for the ER PRAM(m). To do
so, we use a recursive version of Columnsort, which we describe below. In Columnsort,
the n keys are thought of as elements in a matrix M . There is a requirement on the
aspect ratio ofM : ifM is an s×r matrix, then s must be larger than r2. The elements
are sorted using seven phases, where each phase is one of three types: phases that
sort the columns of the matrix, phases that perform an odd-even transposition sort
along the rows of the matrix, and phases that route a fixed permutation of the matrix
elements, where each column routes an equal number of elements to every other
column. The following simple description of Columnsort is provided in [27]. In phases
1, 3, and 7, the columns are sorted into increasing order. In phase 5, odd columns
are sorted into increasing order and even columns are sorted into decreasing order. In
phase 2, the matrix is “transposed”: the items are picked up in column-major order
and set down in row-major order (preserving the shape of the matrix). Phase 4 applies
the reverse of the permutation applied in phase 2, and phase 6 performs two steps of
odd-even transposition sort to each row.

We specify a call to recursive Columnsort in the ER PRAM(m) by two parameters:
k, the number of keys to be sorted, and a, the number of memory cells dedicated to
this function call. We develop the following recurrence relation for the running time
of recursive Columnsort, where the keys are contained in a ROM of size n:

RC(k, a) = O

(
k

a

)
if k ≥ a3 log n,

RC(k, a) = 4 RC
(
k2/3, ak−1/3

)
+ O

(
k

a

)
otherwise.
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In the version of Columnsort we use to obtain this recurrence, each of the m
memory cells is assigned a set of log n processors. These m log n processors sort the
n keys, and inform each of the p−m log n remaining processors of the range of keys
that they need to output. Note that since the algorithm makes effective use of only
m log n processors, this algorithm is consistent with the observation that increasing
communication throughput, as opposed to adding processors, is required for faster
parallel sorting.

The base case for the recurrence, where k ≥ a3 log n, works as follows. The k keys
are thought of as being entries in a matrix M of keys of size k

a logn × a log n; this
matrix satisfies the aspect ratio requirement of Columnsort. We have a log n available
processors, and each of these is assigned to one column of M . Thus, a memory cell
serving a set of log n processors handles data transfer for logn columns. Recall that
each memory cell is assigned to the set of log n columns to which its processors are
assigned. We now show that we can implement each of the three types of phases of
Columnsort on the PRAM(m) in time O(ka ). Sorting the columns can be performed

by each of the a processors locally in time O( k log k
a logn ) = O(ka ) by any of a variety of

known serial algorithms.

Routing the fixed permutation on the matrix elements requires each processor to
send an identical number of keys to every other processor, and thus can be done with
a single pass through all the entries. A single element is routed by the source and
destination processors using the shared memory location that is assigned to the desti-
nation processor. The source processor writes to this memory cell the key’s address in
the ROM, and then the destination processor reads this address. Since each memory
cell handles log n columns, and each column contains k

a logn keys, the total number

of addresses written to each memory cell is O(ka ). Thus, the entire permutation can

be routed in time O(ka ). One phase of odd-even transposition sort can be performed
by each processor routing all the keys currently in its column to the processor that is
assigned to the neighboring column. This can also be done in time O(ka ).

For the case where k < a3 log n, we sort the keys as follows. The keys are thought
of as the elements in a matrix M of size k2/3 × k1/3. This matrix satisfies the aspect
ratio of Columnsort, and thus we use Columnsort to sort this matrix as well. We
can still route the permutations of the matrix M and perform the phases of odd-even
transposition sort in time O(ka ). This follows from the fact that for each permutation
only k keys need to be routed through the shared memory and this operation can be
performed without conflict while making use of each cell during each of the O(ka ) time
steps. For the phases which sort the columns of the matrix, we employ parallel calls
to recursive Columnsort, one call per column. Each column consists of k2/3 keys, and
we evenly distribute the a available memory cells (with their associated processors)
across the columns. Thus, each of the 4 sorting phases takes time RC

(
k2/3, ak−1/3

)
.

An example which graphically describes one level of this recursive procedure is given
in Figure 4.1.

The algorithm starts with a call to recursive Columnsort with n keys and m
memory cells (with each assigned log n processors). After the n keys are sorted, the
m log n processors can inform each of the remaining p − m log n processors of the
correct sorted list of n

p keys to output in the same amount of time as is required
to route one permutation. To analyze the running time of sorting n keys on the ER
PRAM(m), we evaluate the recurrence RC (n,m). The running time of the algorithm
is dominated by the time for sorting at the bottom of the recursion at level j: O( n

m4j).
When m is a fixed function of n where m = O(nβ) for β < 1, this j is the smallest



PARALLEL SORTING WITH LIMITED BANDWIDTH 2011

m = n 5 / 9

n

2 / 3

1 / 3

4 / 9n

n n n n n2 / 9 2 / 9 2 / 9 2 / 9 2 / 9

n

Fig. 4.1. The recursive algorithm when m = n5/9

integer that satisfies n((2/3)j) ≤ n1−β , and the following bound on 4j follows directly:

4j ≤ (1− β)
2

log 2
3 ≈ (1− β)−3.42.

Substituting into the formula above gives an upper bound on the running time of
O( n

m (1− β)−3.42).

5. Other limited bandwidth models. We can use the techniques discussed
for the PRAM(m) to derive bounds in other parallel models which address the issue
of limited communication throughput. We give a brief discussion of translating the
ER PRAM(m) lower bound for sorting into the LogP model [15] and the BSP model
[33] and state the best known upper bounds for sorting in these models.

5.1. The LogP model. In the LogP model, limited communication throughput
in a parallel machine is enforced by requiring that each processor must wait for a gap
of at least g cycles between the transmission of consecutive point-to-point messages.
The three other LogP parameters are P, the number of processors, L, the latency of a
message in the network, and o, the overhead (in cycles) to place a fixed-size message
onto the network. Note that this model uses point-to-point messages for communica-
tion, as opposed to using the global shared memory used in the PRAM(m) model. We
make the additional assumption that the point-to-point messages, or packets, have a
maximum size w, measured in bits.

In this model, only P packets can be issued into the network each g time steps,
and thus the throughput of the network is

mL =

⌈
wP

g log n

⌉

log n-bit words per machine cycle. We denote this expression for throughput by mL

to make plain its correspondence with m in the PRAM(m) model. In order to prove
a lower bound for sorting in the LogP model, we first show that any LogP model
algorithm can be simulated in the oracle model.

Lemma 5.1. If w > log g, then given any LogP algorithm Al that completes in
time T, there is an oracle algorithm Ao that computes the same function as Al, also
in time T, and Ao writes at most 2mLT words to each of the oracle memories.
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Proof. We partition the time steps of the LogP algorithm Al into epochs, where
each epoch consists of g consecutive time steps. Note that each processor receives
at most one message during any epoch. We number the bits of each oracle memory,
ignoring word boundaries. We can simulate Al with an oracle algorithm Ao, where
epoch i in Al is represented in Ao by the oracle utilizing bits (i−1)(�log g	+1+w)+1
through i(�log g	+1+w)+1 in each oracle memory. The first �log g	+1 of the bits for
each epoch are used to inform processor j of whether or not a message arrives during
that epoch, and in the case of an arrival, the exact time step of the arrival during the
epoch. In the case of an arrival, the remaining w bits contain the message contents.
In Ao, the processors execute their algorithms for Al, ignoring steps where messages
are sent, and reading from the oracle memory at the start of every epoch. The total
number of bits read is P (�log g	+ 1+w)
T

g �. When w > log g, this is O(mLT log n),

and thus at most O(mLT ) words are required in each oracle memory.

We briefly point out why we require that the oracle give each processor the timing
information provided by the �log g	 + 1 additional bits used for each epoch. The
LogP model is an asynchronous model, and thus processors cannot use the timing
information to ensure the correctness of the algorithm. However, for the purpose
of running time analysis, it is assumed that each processor behaves synchronously.
Thus, in the optimal algorithm, it is possible that a processor is able to use the
timing information to achieve a better running time than an algorithm that does not
make inferences based on this information. Note that any algorithm that does not use
this timing information can be simulated in the oracle model using at most O(mLT )
words, even in the case where w ≤ g.

As in the ER PRAM(m) model, when mL grows as a fractional power of n, the
time required to sort n keys is asymptotically no less than the time required to route
all n keys through the network, even in the case where every processor knows all the
keys in advance. Let Ts(n) be the optimal sequential time required to sort the n keys.

Theorem 5.2. In the LogP model, sorting n distinct keys requires expected time

Ω

(
Ts(n)

P
+
n logmL

mL log n
+ L+ o+ g

)
,

provided that n > P 2, w > log g, and Ts(n) ≥ L. This bound holds even in the case
that every processor has access to every key at the start of the algorithm.

Proof. We first assume there exists an algorithm Al for the LogP model, where the
average over all inputs of the time to perform Al is at most n logmL

16mL logn , and we reach a
contradiction. By Lemma 5.1, such an algorithm Al implies the existence of an oracle
model algorithm where the average number of oracle words used is at most n logmL

8 log n ,
and the average of the maximum number of ROM queries by any processor is at most
n logmL

8mL logn . However, as we saw in Theorem 3.4, this leads to a contradiction of Lemma

3.3, and thus there does not exist such an algorithm Al for the ER PRAM(m). The
lower bound then follows from the fact that at least one transmission, which requires
time at least max(L, o, g), is required in any algorithm that sorts in time faster than
time Ts(n), and that the time to sort on P processors is no faster than the optimal
time to sort on one processor divided by P .

A recursive implementation of Columnsort similar to that presented in section 4
can be tuned to deliver the following asymptotic performance.

Theorem 5.3. In the LogP model, sorting n keys known to all processors can be
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completed in time

O

(
Ts

( n
P

)
+

n

mL
+ L+ o+ g

)
,

provided that P = O(nβ) for some constant β < 1 and that w ≤ log n.
The case where the input is distributed across the processors requires long keys

to be sent in their entirety, rather than sending just the original index of the key.
Otherwise, the algorithm, as well as the resulting bounds, are the same.

5.2. The BSP model. We now briefly describe analogous bounds for sorting
in the BSP model proposed by Valiant [33], [34]. The model consists of a set of
processors capable of transmitting point-to-point messages through a communication
network and facilities for performing barrier synchronization across any subset of the
processors. The three parameters of the model are P, the number of processors, L,
the minimum number of local computation steps between successive synchronization
operations, and g, the ratio between the throughput of local computation to the
throughput at which a processor may inject point-to-point messages into the network.
As in the LogP model, g enforces a limit on the communication throughput available
to each processor. We assume that each transmitted packet is at most w bits in size.

Computation in the BSP model proceeds in supersteps, wherein each processor
in parallel executes a task consisting of some number of local computation steps,
message transmissions, and message receipts, subject to the constraints imposed by
the parameter g. The superstep lasts for kL time steps, where k is the minimum
integer such that all processors have completed their tasks before time kL. As in the
LogP model, the total communication throughput in the BSP model is mB = 
 wP

g logn�
words per step of local computation, where each word consists of log n bits.

Theorem 5.4. In the BSP model, sorting n distinct keys requires time

Ω

(
Ts(n)

P
+
n logmB

mB log n
+ L+ o+ g

)

when n > P 2 and Ts(n) ≥ L.
Proof. Using the technique from Lemma 5.1, we see that the oracle model is also

capable of simulating any BSP algorithm. Thus, the existence of any algorithm that
sorts faster than n logmB

16mB logn again implies the existence of an algorithm that contradicts
Lemma 3.3.

Using recursive Columnsort, it is straightforward to show that in the BSP model,
sorting any n keys can be completed in time O(TS(

n
P )+

n
mB

+L+g+o), provided that

P = O(nβ) for some constant β < 1 and that w ≤ log n. This result for sorting in
the BSP model compares with the previous best randomized methods of Gerbessiotis
and Valiant [21] for the BSP model with the assumption that each packet that is
transmitted consists of exactly one key. Their algorithms run in time O(n logn

P +
gpε + gn

P + L), with high probability, for any positive constant ε < 1, and for P ≤
n1−δ, where δ is a small constant depending on ε. After the preliminary version of
this paper appeared in [2], work on this problem by Goodrich [24] tightened the
bounds for sorting on the BSP, giving deterministic algorithms which run in time
O(n logn

P +(L+ gn
P )(log n/ log(n/P ))) for all values of P, coupled with a matching lower

bound. Other recent work by Gerbessiotis and Siniolakis [20] gives a deterministic
algorithm for sorting on the BSP which runs in time (1 + o(1))(n logn

P +L) + O( gnP )
for P = n1−ε, 0 < ε < 1, and uses 1-optimal local computation.
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6. Conclusion. We have examined the problem of sorting on parallel models
with limited communication bandwidth. Our main results include upper and lower
bounds for sorting on exclusive- and queued-read variants of the PRAM(m) model
which are asymptotically optimal for many practical settings of the parameters and
are otherwise asymptotically tight to within at most a logarithmic factor. The form of
our bound is noteworthy in that it demonstrates that all efficient parallel algorithms
for sorting in this limited bandwidth model depend on large amounts of interprocessor
communication. The techniques used to develop the bounds also apply to the LogP
model and the BSP model, bridging models which consider the effect of limited band-
width on parallel computation. For all three models of computation considered, when
m = Ω(nβ), the time to sort and the time to transmit all the keys through the shared
memory (or the network) are asymptotically equivalent, even in the case where the
entire input is known to each of the processors. Furthermore, as long as n > p2, the
bounds do not depend on the parameter p, so that when attempting to improve the
performance of parallel sorting on machines with limited communication bandwidth,
increasing communication bandwidth is more likely to be beneficial than increasing
the number of processors. The lower bound, however, does not apply to the concurrent
read version of the PRAM(m) originally introduced by Mansour, Nisan, and Vishkin
in [30], and thus the asymptotic complexity of sorting in this model remains an open
question.
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