
Hierarchical Interconnects for On-chip Clustering

Aneesh Aggarwal
ECE Department

University of Maryland
College Park, MD 20742

aneesh@eng.umd.edu

Manoj Franklin
ECE Department and UMIACS

University of Maryland
College Park, MD 20742

manoj@eng.umd.edu

Abstract

In the sub-micron technology era, wire delays are be-
coming much more important than gate delays, making it
particularly attractive to go for clustered designs. A com-
mon form of clustering adopted in processors is to replace
the centralized instruction scheduler with multiple smaller
schedulers that work in parallel within a single chip. Stud-
ies have found that existing interconnects connecting on-
chip clusters, as well as proposed instruction distribution
algorithms, are not scalable. The objective of this paper is
to investigate alternate interconnects (we investigate hier-
archical interconnects) that provide scalable performance
with increase in on-chip clusters. We also investigate dis-
tribution algorithms that are best suited for these intercon-
nects. Experimental results of these new interconnects with
appropriate distribution techniques show that they more
scalable than the existing techniques. achieve an IPC that is
around 15-20% more than the most scalable existing config-
uration, and is also within 2% of that achieved by a hypo-
thetical ideal processor having a 1-cycle latency crossbar
interconnect, irrespective of the number of clusters; con-
firming their utility and applicability In this paper, we also
discuss the many other design advantages that are obtained
by the use of hierarchical interconnects.

1 Introduction

A major implication of going for sub-micron technology
is that wire delays become more important than gate delays
[14]. This effect will be predominant in global wires be-
cause their length depends on the die size, which is steadily
increasing. A natural way to deal with the wire delay prob-
lem is to use the concept of clustering; build the proces-
sor as a collection of independent clusters, such that there
are only a few global wires with very little communication
through them. Fast localized communication can be done
using short wires. Clustered processors typically execute

groups of instructions independently (using decentralized
hardware resources).

In the recent past, several decentralization proposals and
evaluations have appeared in the literature [1] [2] [3] [4] [8]
[9] [11] [12]. Commercial implementations are available
in MIPS R10000 [13] and Alpha 21264 [7]. With contin-
ued increases in the number of on-chip transistors, we can
integrate more on-chip clusters can be integrated, so as to
exploit more parallelism. Some of the studies in the liter-
ature [1] specifically addressed this issue of performance
scalability of distribution algorithms on existing intercon-
nects for large number of on-chip clusters. These studies
found that existing configurations are not scalable, as the
number of clusters is increased.

In this paper, we investigate scalable on-chip cluster in-
terconnects. In particular we investigate two different hier-
archical interconnects. Although many interconnects have
been studied in the context of multi-chip parallel proces-
sors [5], interconnects for on-chip clustering have not been
studied in detail. The important issues while designing the
two types of interconnects (on-chip and off-chip) are very
different

�
. The hierarchical interconnects divide the clus-

ters into groups. The clusters within a group are inter-
nally connected using crossbars. The groups, on the other
hand, are connected together using either a single ring in-
terconnect or a multiple rings interconnect. We also pro-
pose instruction distribution algorithms that take advantage
of these hierarchical interconnects.

The rest of this paper is organized as follows. Section
2 highlights the important issues for performance scaling.

�
Off-chip interconnects are used when different processors/chips need

to communicate with each other. The communication latencies of off-chip
interconnects are very high as compared to the clock speed of the proces-
sor, and minor variations in latency do not have much of an impact. Hence,
their primary objectives are fault-tolerance, consistency of data, etc. On-
chip interconnects, on the other hand, are used within a single processor,
where communication is frequent and communication latencies are almost
equal to the processor speed, and even a small variation in the latency af-
fects the overall performance significantly. These reasons make communi-
cation latency one of the most important factors in determining the on-chip
interconnects.

In Section 3, we investigate hierarchical interconnection
topologies and suitable distribution algorithms. Section 4
presents the experimental methodology and evaluation of
these new schemes. Section 5 discusses other advantages
obtained from hierarchical interconnects. Finally, Section 6
concludes the paper with the major findings.

2 On-Chip Clustering

In this paper, a single-chip clustered processor is a col-
lection of several clusters, as shown in Figure 1. Each clus-
ter has a dynamic scheduler (DS), and several functional
units (FUs). Instructions from multiple clusters are issued
independently of each other, subject only to the availability
of operand values. An interconnection network (ICN) con-
nects the clusters together for supporting inter-cluster com-
munication. In order to fetch a large number of instructions
every cycle, the fetch mechanism predicts multiple branch
outcomes at a time, and fetches a trace of instructions con-
sisting of multiple basic blocks. Executed instructions are
committed from the clusters in program order.

FU

FU

FU

FU

FU

FU

FU

FU

DS − Dynamic Scheduler

ICN − Interconnection Network
FU − Functional Unit

On−chip Off−chip

Dcaches
Fetch and

Decode Unit

Cluster 0

Cluster 1

Cluster 2

Cluster 3

ICN

DS

DS

DS

DS

Data Memory
System

Figure 1. A Generic Single-Chip 4-Cluster Pro-
cessor

2.1 Criteria for Performance

For good performance of clustered processors, two im-
portant criteria need to be considered: minimization of
inter-cluster communication, and maximization of load bal-
ancing among the clusters. The former criterion attempts
to reduce the number of cycles that instructions wait for
operands, and the latter attempts to reduce the time instruc-
tions wait for an issue slot or functional unit. These two cri-
teria are somewhat conflicting in nature. Good performance
is obtained only when both criteria are satisfied. Mini-
mum inter-cluster communication can be achieved only if
data-dependent instructions are placed in the same cluster.
To achieve maximum load balancing, along with minimum
communication, data-independent instructions are placed in

different clusters. In general, as the number of on-chip
clusters is scaled up, the relative importance of inter-cluster
communication becomes more and more important [1].

2.2 Existing On-chip Interconnects

A major factor affecting inter-cluster communication la-
tency is the type of interconnect (proposed interconnects are
bus, crossbar, and ring (uni-directional and bi-directional))
used to connect the clusters. The bus is a simple, fully con-
nected network that permits only one data transfer at any
time, providing a bandwidth of only O(1); a poor choice for
large number of clusters.

Crossbar Interconnect Ring Interconnect

(a) (b)

ICN
ICN

8−Cluster Layout4−Cluster Layout 4−Cluster Layout 8−Cluster Layout

Figure 2. Single-Chip 4-Cluster and 8-Cluster
Layouts having Minimum Worst-case Inter-
Cluster Communication Delay: (a) Crossbar
Interconnect; (b) Bi-directional Ring

A crossbar interconnect provides full connectivity from
every cluster to every other cluster (O(

�
) bandwidth, where

N is the number of clusters). With crossbar, the communi-
cation latency is the same irrespective of the clusters partic-
ipating in the communication. So, as the number of clus-
ters increases, the physical distance between the clusters
increase, leading to an increase in the latency for all inter-
cluster communication. Figure 2a shows this effect.

With a ring-type interconnect, the clusters are connected
as a circular loop. The ring can be easily laid out with O(

�
)

space using only short wires. A ring is ideal if most of
the inter-cluster communication can be localized to neigh-
boring clusters, but is a poor choice if a lot of communi-
cation happens across physically distant clusters. Again,
as the number of clusters increase, even though the com-
munication latency between neighboring clusters remains
unchanged, the latency for communication between distant
clusters increases. As shown in Figure 2b, the maximum la-
tency increases from 2 cycles to 4 cycles, when the number
of clusters is increased from 4 to 8.

3 Hierarchical Interconnects and Distribu-
tion Algorithms

From the studies done in [1], one of the major reasons for
the lack of scalability is the increase in inter-cluster com-
munication delays with increase in the number of clusters;

2

communication delays cannot be decreased arbitrarily. It
was also shown in [1] that a crossbar interconnect is gener-
ally better for few clusters, whereas a ring interconnect for
larger number of clusters. This is because, for ring inter-
connects, efforts can be made to localize communication to
between neighboring clusters. But, distant cluster commu-
nication still hurts the scalability of the ring interconnects.
To take advantage of both types of interconnects (ring and
crossbar), we investigate hierarchical interconnects for on-
chip clustering.

3.1 Hierarchical Interconnects

The basic idea behind hierarchical interconnects is that
a small number of physically close clusters are intercon-
nected using a low-latency crossbar, and the distant clusters
are connected using a ring. When using such an intercon-
nect along with an appropriate instruction distribution al-
gorithm, most of the inter-cluster communication happens
within the low-latency crossbars only. High communication
latency may be incurred occasionally when communicat-
ing between distant clusters. The next subsection discusses
these interconnects and the best distribution algorithms for
these interconnects. We investigate two hierarchical inter-
connects : a single ring of crossbars and multiple rings of
crossbars interconnect.

3.1.1 Single Ring of Crossbars

Figure 3 shows the layout of a ring of crossbars intercon-
nect for 8 clusters and 12 clusters; 4 clusters form a group.
The groups are connected by a single bi-directional ring.
Any value that is to be communicated within a group is
communicated using the crossbar interconnect, and incurs a
communication latency of 1 cycle. Communication across
groups uses the ring structure; the latency is 2 cycles for
neighboring groups and an additional cycle for each hop.
For example, in Figure 3, for 12 clusters, the communica-
tion of a value from a cluster in group 1 to another cluster in
group 1 requires 1 cycle, but communication from a cluster
in group 1 to a cluster in group 2 or 3 requires 2 cycles.

3.1.2 Multiple Rings of Crossbars

The layout for a multiple rings of crossbars interconnect is
shown in Figure 4 � , where the groups are inter-connected
using multiple bi-directional rings. Each of the 4 clusters
within the 4-cluster group is connected to a corresponding
cluster in its two neighboring cluster groups. For example,
the bottom left cluster of group 2 is connected to the bottom
left clusters of groups 1 and 3. The communication latency
within the group is 1 cycle, whereas, the communication
latency across the 4-cluster groups depends on the clusters�

Wires drawn in the figure are much longer than needed to improve the
readability of the figure.

Cluster

Crossbar

RingGroup 1

Group 2

Group 2

Group 3

Group 1

Figure 3. Layout of a Ring of Crossbars In-
terconnect for a 8-Cluster Processor and a
12-Cluster Processor

participating in the communication. If the communicating
clusters are connected together, then the latency is 1 cycle;
otherwise, a cycle gets added to latency for an additional
hop across the 4-cluster group. For example, the commu-
nication between the bottom left cluster of groups 1 and 2
requires 1 cycle, whereas between the bottom left cluster of
group 1 and the bottom right cluster of group 2 requires 2
cycles.

Cluster

Crossbar

Rings
Group 1

Group 1

Group 2 Group 3

Group 2

Figure 4. Layout of Multiple Rings of Cross-
bars Interconnect for 8 Clusters and 12 Clus-
ters

3.2 Instruction Distribution

In this subsection, we discuss the instruction distribution
algorithms for the hierarchical interconnects. Even though
we investigated several algorithms, we present only the best
performing ones in this section.
Ring of Crossbars : The results reported in [1] show that
with 4 clusters, the best performance is generally obtained
with the ldst slice algorithm (cf. Appendix), with the cross-
bar interconnect, whereas, first-fit algorithm (cf. Appendix)
is generally the best with the ring interconnect connecting
large number of clusters. Using this information, we inves-
tigated the following instruction distribution approach.

While distributing the instructions among the clusters,

3

optimize the distribution within a single cluster group using
ldst slice algorithm, then consider the next group of clus-
ters, and so on. Thus, the distribution algorithm used to
distribute traces across cluster groups, is first-fit. The 2-
level distribution approach thus attempts to get the benefits
of two different algorithms, in the situation where each per-
forms the best. During our experimental evaluation too, we
found this hierarchical instruction distribution algorithm to
be performing better than all other algorithms.
Rings of Crossbars : For the rings of crossbars intercon-
nect, we use the ldst slice algorithm (explained in the ap-
pendix). We also performed experiments using the 2-level
distribution algorithm discussed in the previous paragraph
along with other distribution algorithms. The reason that
ldst slice performs better than the 2-level for the multiple
rings of crossbars interconnect is the presence of additional
connectivity between cluster groups. This means that most
of the communication is restricted to 1 cycle latency. The 2-
level algorithm avoids communication within a chunk of in-
structions, while paying some communication costs across
the chunks. Ldst slice on the other hand, tries to avoid any
form of communication. If it is not able to achieve that,
most of the times, it pays a communication cost of 1 cycle
(most of the communication is restricted to 1 cycle in this
interconnect), Hence performs better than 2-level.

4 Experimental Results

In order to verify the potential of the hierarchical inter-
connect along with the appropriate distribution algorithms,
we conducted a set of experiments. The results were com-
pared with the most scalable configuration among the ex-
isting configurations, and a possible hypothetical ideal pro-
cessor. We first discuss the experimental setup for our ex-
periments and then give the results.

4.1 Experimental Setup

Our experimental setup consists of an execution-driven
simulator based on the MIPS-I ISA. The simulator does
cycle-by-cycle simulation, including execution along mis-
predicted paths. The hardware features and default param-
eters are given in Table 1. In addition, an 8-way, 128 Kbyte
trace cache [10], with 1 cycle access time, and a block size
of 16 instructions, is used.

The programs are compiled for a MIPS R3000-Ultrix
platform with a MIPS C (Version 3.0) compiler using
the optimization flags distributed in the SPEC benchmark
makefiles. While reporting the results, the execution time is
expressed in terms of instructions per cycle (IPC) without
NOPs. We also measure the instruction stalls due to inter-
cluster register traffic and due to load imbalance, so as to
get more insight.

4.2 Performance Results

The results (IPC) obtained with the hierarchical configu-
rations (cf. Section 3) are presented in Figure 5. In figure 5,
we compare the results obtained with hierarchical intercon-
nects against the first-fit algorithm on a bi-directional ring
(has the best scalability). We also simulate a hypothetical
clustered processor with an ideal 1-cycle crossbar. This hy-
pothetical ideal processor uses the ldst slice algorithm for
instruction distribution, and is included to model one of the
best possible scenarios with a clustered processor. In Figure
5, each benchmark has 2 sets of 4 bars each; for 8-clustered
and 12-clustered processors. Each bar in the graph gives the
improvement in IPC over the 4-clustered crossbar processor
using ldst slice algorithm along the Y-axis. A crossbar inter-
connect using ldst slice is used as the base case because of
its best performance among all the 4-cluster configurations
[1].

compress95 gcc go li m88ksim vortex average

0

10

20

30

40

50

60

70

-5

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 IP
C

first-fit
Single Ring of Crossbars
Multiple Rings of Crossbars
ldst w/ 1-cycle crossbar

8 12

clusters

8 12 8 12

8 12

8 12

8 12

8 12

Figure 5. Percentage IPC Increase for 8 clus-
ters and 12 clusters, comparing Hierarchical
Interconnect configurations with other con-
figurations

From the results, it can be seen that the most scalable
of the existing configurations for clustered processors (first-
fit on a bi-directional ring interconnect) is not scalable. In
fact for compress95 and go, the performance of first-
fit decreases on going from 8 clusters to 12 clusters. The
negative bars in the graph indicate that the performance with
a 8-cluster/12-cluster processor using the first-fit algorithm
on a ring is worse than a 4-cluster processor using the ldst
slice algorithm on a crossbar. This is seen for benchmarks
gcc and li. Also, the increase in IPC for this configuration
on going from 4 clusters to 8 clusters is only around 5%, on
an average, and around 12%, on an average, on going from
4 to 12 clusters.

The hierarchical approach, on the other hand, provides
better scalability. For 8 clusters, there is a 0-16% increase
in IPC over first-fit algorithm, when using the single ring
of crossbar interconnect with hierarchical instruction distri-
bution algorithm (cf. Section 3). For 12 clusters, the in-

4

Default Values for Processor Parameters Default Values for Cluster Parameters
Parameter Value Parameter Value

Fetch/Commit Size 16 instructions (1 trace) Cluster window size 16 instructions
Control flow predictor 2-level trace, 1024 entry Functional unit latencies 1 cycle Int; 10 cycle Mul/Div

L1 - I-cache 2 cycle, 4-way, 16KB Cluster issue width 2 instructions/cycle
L1 - D-cache 2 cycle, 4-way, 64KB Ring inter-cluster delay 1 cycle

L2 - Unified cache 10 cycle latency, Infinite, Crossbar inter-cluster delay ���	��
 �
����������������

�
�

cycles

Table 1. Default Parameters for the Experimental Evaluation

crease in IPC is between 8-15%. The corresponding values
for the multiple rings of crossbars interconnect are 2-18%
for 8 clusters and 2-22% for 12 clusters. Multiple rings
of crossbars performs better than the single ring of cross-
bars by around 4%, except for m88ksim. This peculiar
behavior of m88ksim is not because of the interconnect,
but because of the distribution algorithm used. Because of
m88ksim’s high prediction accuracy, the instruction win-
dows of all the clusters are almost full. This means that the
next trace to be distributed gets spread when all the clusters
are considered while distribution (as is the case for multiple
rings of crossbars interconnect and the hypothetical ideal
processor). This spreading does not affect the single ring of
crossbars interconnect since the spreading takes place only
within the small group of clusters, which are anyway con-
nected by a 1-cycle crossbar. Note that the increase in per-
formance is due to low latency communication and not due
to increase in bandwidth when the connectivity is increased.
From the graphs, it can also be seen that the performance
of our hierarchical approaches is very close to the perfor-
mance of the hypothetical ideal 1-cycle crossbar processor;
for a 12 cluster processor, the difference is only about 2%,
with a maximum of about 5%.

4.3 Analysis

Next, we analyze the results through the stereoscope of
inter-cluster communication and load balancing. The anal-
ysis is done for one of the hierarchical approaches (single
ring of crossbars with 2-level instruction distribution), along
with a monolithic bi-directional ring using first-fit algorithm
and the ideal hypothetical 1-cycle crossbar using the ldst
slice algorithm. Figure 6 presents statistics on the average
number of instructions stalled in a cycle due to inter-cluster
communication (cf. left part of figure) and due to load im-
balance (cf. right part of figure). For the average number
of instructions stalled due to inter-cluster communication,
the instructions waiting for operands already produced in
another cluster, but still in transit, were counted. For the av-
erage number of instructions stalled due to load imbalance,
those instructions are counted that are ready to execute but
are waiting for an issue slot. These instructions are counted
only in the event of a free issue slot available in another
cluster.

The format of this figure is as follows. For each bench-
mark, there is a set of 3 bars for each cluster configuration:
representing the 3 cases— first-fit, hierarchical approach
(single ring of crossbars), and ldst with 1-cycle crossbar.
As the number of clusters is increased, the average num-
ber of instructions stalled due to load imbalance and inter-
cluster communication increase. This explains the tapering
performance results obtained as the number of clusters is
increased. First-fit almost always has slightly fewer number
of instructions stalled due to inter-cluster communication,
but suffers from a lot of load imbalance as compared to hier-
archical approach and ldst with 1-cycle crossbar, and hence
performs the worst among the three. On the other hand, the
average number of instructions stalled due to inter-cluster
communication and load imbalance are almost the same for
hierarchical approach and ldst with 1-cycle crossbar, with
the hierarchical approach having slightly more stalled in-
structions. This leads to the slightly worse performance of
the hierarchical approach as compared to ldst with 1-cycle
crossbar.

5 Advantages of the Hierarchical Approach

The hierarchical approach also has many other advan-
tages when the design issues of a processor are considered.
In this section, we discuss some of the advantages of the
hierarchical approach.

5.1 Resource Distribution

A clustered processor still has many centralized re-
sources such as the branch prediction tables, data caches,
etc. The access latency of these centralized resources in-
creases with increase in on-chip clusters (increased dis-
tances). The advantage of the hierarchical approach lies
in the distribution of these centralized resources among the
clusters. With an hierarchical interconnect, each cluster
group can share a centralized resource within itself. For
a non-hierarchical approach, on the other hand, each cluster
gets a separate resource during resource distribution. This
could lead to over-distribution of resources, leading to per-
formance impacts. For example, if a separate data cache
is attached to each cluster in a 12-cluster ring interconnect
processor, worst case cache access latency increases by 6

5

li gocomp gcc vor m88 li go compgcc vor m88 li go compgcc vor m88

4 clusters 8 clusters 12 clusters

0

1

2

3

4

5

Ins
tru

cti
on

s s
tal

led
 pe

r c
yc

le

first-fit
hierarchical approach
ldst w/ 1-cycle crossbar

Instructions stalled due to Inter-Cluster Communication

li gocomp gcc vor m88 li go compgcc vor m88 li go compgcc vor m88

4 clusters 8 clusters 12 clusters

0

1

2

3

4

5

Ins
tru

ctio
ns

 st
alle

d p
er

cyc
le

first-fit
hierarchical approach
ldst w/ 1-cycle crossbar

Instructions stalled due to Load Imbalance

Figure 6. Average Number of Instructions Stalled per Cycle due to Inter-Cluster Communication and
due to Load Imbalance

cycles. For a 12-cluster hierarchical interconnect with a
separate cache for each 4-cluster group, access of any re-
mote cache would require only 1 extra cycle. The distribu-
tion of the cache for a 8-cluster hierarchical single ring of
crossbars interconnect is shown in Figure 7.

In this section, we focus on performance impact of data
cache distribution. All the experiments in the previous sec-
tions were performed using a centralized cache with a con-
stant access latency. Here, we distribute the cache among
the different clusters for the single ring of crossbars config-
uration, and measure its performance against a centralized
cache having higher access latency. The results for the mul-
tiple rings of crossbars are expected to be very similar.

Cache 1 Cache 2

Cache

Centralized Cache Distributed Cache

Figure 7. Increase in IPC for a distributed
cache as compared to a centralized cache
with increased access latency

For a centralized cache, the cache access latency is 3 cy-
cles for 8 clusters, and 4 cycles for 12 clusters. For the
distributed cache system, each 4-cluster group has a cen-
tralized cache, which is called the local cache, with a 2-
cycle access latency. The accesses to the cache local to other
groups (remote cache) requires an additional cycle. The dis-
tribution of the cache is a set-based distribution, where each
distributed cache structure has the same number of sets of

cache lines, and the adjacent addresses in a cache line map
to the same cache. Note that no changes were made to the
2-level instruction distribution algorithm. One possible al-
gorithm could be to take the cache distribution into consid-
eration: assign loads to clusters local to the cache having
the address. We found that doing this scattered the depen-
dent instructions leading to a somewhat worse performance
as compared to the original algorithm.

compgcc go li m88 vor avg. compgcc go li m88 vor avg.

8 clusters 12 clusters

0

2

4

6

8

10

12

14

16

18

20

Pe
rce

nta
ge

 In
cre

as
e i

n I
PC

Figure 8. Increase in IPC for a distributed
cache as compared to a centralized cache
with increased access latency

Figure 8 gives the IPC results. As can be seen in the
figure, a distributed cache is performing on an average 5%
better than a centralized cache for 8 clusters, and on an aver-
age 12-13% better for 12 clusters. The maximum improve-
ment is obtained for li: 7% for 8 clusters and 18.5% for
12 clusters. For a centralized cache, all the cache accesses
incur the increased access latency, whereas for a distributed
cache, only the accesses to the remote cache incur the high
latency, hence the improvement.

5.2 Ease of Instruction Distribution

In all of the instruction distribution schemes discussed
in the paper, instruction distribution is done using hardware

6

logic and lies in the critical path of program execution. In
case of a non-hierarchical approach, this logic needs to con-
sider the state of all the clusters while distributing the in-
structions. However, in hierarchical instruction distribution,
only a small number of clusters are considered during distri-
bution. This simplifies the hardware in the distribution logic
(hardware complexity is proportional to the number of clus-
ters considered for distribution) and makes the distribution
fast.

We performed experiments comparing a single ring of
crossbars hierarchical interconnect using the 2-level hierar-
chical distribution algorithm (cf. Section 3) with the hypo-
thetical ideal processor using the ldst slice algorithm. The
time taken for instruction distribution for the hypothetical
processor is increased by 1 cycle when going from 4 clus-
ters to 8 clusters and by 2 cycles when going from 4 clusters
to 12 clusters. For the hierarchical distribution, no change
is made to the time taken for distribution, as the number of
clusters input to the algorithm does not change. Figure 9
gives the results of the experiments.

compgcc go li m88 vor avg. compgcc go li m88 vor avg.

8 clusters 12 clusters

-5

0

5

10

15

20

25

30

35

40

Pe
rce

nta
ge

 In
cre

as
e i

n I
PC

Figure 9. Increase in IPC for hierarchical
instruction distribution on a single ring of
crossbars as compared to the 1-cycle latency
crossbar hypothetical ideal processor with in-
creased time taken for instruction distribution

In Figure 9, the Y-axis gives the percentage of the in-
crease in IPC for the hierarchical approach over the hypo-
thetical ideal processor taking more cycles for instruction
distribution. Earlier, we saw in Figure 5 that the hypotheti-
cal processor on an average performed 2-3% better than the
single ring of crossbars interconnect. In Figure 9, it can
seen that the hierarchical approach performs better (on an
average 7% for 8 clusters and 20% for 12 clusters) than the
hypothetical processor with increased distribution time.

An exception is the performance of m88ksim for 8 clus-
ters; the hypothetical processor still performs better than
the hierarchical approach. The reason again is the same as
that explained in Section 4.2. Because of the high branch
prediction accuracy of m88ksim, the clusters are almost

full and the new instructions to be distributed get scattered.
But if another cycle is taken for instruction distribution,
more space becomes available (some instructions commit)
for distribution, giving better distribution. For 12 clusters,
however, the overhead of increased instruction distribution
time out weighs the benefits obtained due to better instruc-
tion placement.

Similarly, for static instruction distribution [6] [12], the
software (used for instruction distribution) for the hierar-
chical approach is expected to be much simpler than for a
non-hierarchical approach (e.g a simpler compiler).

5.3 Adaptability to Multithreaded Environments

Another advantage of hierarchical approach is while run-
ning multi-threaded applications. In the hierarchical ap-
proach, there is a distinct demarcation between groups of
clusters (with each group having its own local resources),
a single thread or multiple threads could be assigned to a
single group of clusters. Whereas, for non-hierarchical ap-
proach, the demarcation exists at cluster level. If a single
thread or multiple threads are assigned to one cluster, then
clusters go waste when there are not enough threads. To
avoid the wastage of clusters, some complex method of as-
signing threads to clusters needs to be designed. For ex-
ample, consider the case of a 8-cluster processor connected
by a non-hierarchical interconnect. If there are just 2 or 3
threads to be executed, the 8 clusters need to be assigned
to these threads (maybe using some complex method). But,
for a hierarchical approach, there are only 2 groups , each
of 4 clusters. So, even for 2 threads, each thread can be as-
signed to one group. In such assignments, for hierarchical
interconnects, the communication between the clusters also
is very simple, being localized within the group, and is not
global as in the case of non-hierarchical interconnects.

6 Conclusions

In single-chip clustered processors, the common goal is
to decrease hardware complexity, increase clock rate, and
maintain high levels of parallelism by distributing the dy-
namic instruction stream among several on-chip clusters.
The small size of the cluster windows allows a higher clock
rate, while the combined issue rates of several clusters still
allow large amounts of parallelism to be exploited. In the
long run, as more transistors are integrated into a proces-
sor chip, the number of clusters will increase, necessitating
the development of scalable inter-cluster interconnects and
appropriate instruction distribution algorithms.

Most of the current interconnects for on-chip clustering
along with the existing algorithms for instruction distribu-
tion do not scale well. To improve the scalability of clus-
tered processors, we proposed two hierarchical intercon-
nects and investigated techniques of distributing the instruc-
tion stream to take advantage of these new interconnects.

7

Using this new distribution approach, we achieve perfor-
mance almost equal (around 2% less) to that obtained with
a hypothetical 1-cycle latency crossbar (for a large number
of clusters). These hierarchical interconnects achieve IPCs
around 15-20% better than the most scalable existing con-
figuration of clustered processors.

We also discussed some of the many other advantages
of hierarchical interconnects in the design issues of on-chip
clustered processors. In particular, we looked at its advan-
tages for distributing resources (considered data caches in
this paper) among the clusters, for achieving less complex
and fast instruction distribution hardware/software, and fi-
nally for its ease of adaptability to run multi-threaded ap-
plications. We found that distributing the data cache among
clusters connected with a hierarchical interconnect achieves
an improvement of 12-13% on an average over increased
access latency centralized cache. Also, simpler distribution
hardware (because of hierarchical interconnects) achieves
a relative performance improvement of almost 25% on an
average, over the hypothetical 1-cycle latency crossbar pro-
cessor.

Acknowledgements

This work was supported by the U.S. National Sci-
ence Foundation (NSF) through a CAREER grant (MIP
9702569) and a regular grant (CCR 0073582).

References

[1] A. Aggarwal and M. Franklin, “An Empirical Study of the
Scalability Aspects of Instruction Distribution Algorithms
for Clustered Processors,” Proc. International Symp. on Per-
formance Analysis of Systems and Software (ISPASS ’01),
2001.

[2] A. Baniasadi and A. Moshovos, “Instruction Distribution
Heuristics for Quad-Cluster, Dynamically-Scheduled, Su-
perscalar Processors,” Proc. International Symp. on Microar-
chitecture (MICRO-33), 2000.

[3] R. Canal, J. M. Parcerisa and A. Gonzalez, “Dynamic Clus-
ter Assignment Mechanisms,” Proc. Int. Symp. on High-
Performance Computer Architecture (HPCA-6), 2000.

[4] R. Canal, J. M. Parcerisa and A. Gonzalez, “Dynamic Code
Partitioning for Clustered Architectures,” International Jour-
nal of Parallel Programming, 2000.

[5] K. Hwang, “Advanced Computer Architecture,” McGraw-
Hill, 1992.

[6] K. Kailas, K. Ebcioglu, and A. Agrawala, “CARS: A New
Code Generation Framework for Clustered ILP Processors,”
Proc. 7th International Symposium on High Performance
Computer Architecture (HPCA-7), pp.133-143, 2001.

[7] D. Leibholz and R. Razdan, “The Alpha 21264: A 500 MHz
Out-of-Order Execution Microprocessor,” Proc. Compcon,
pp. 28-36, 1997.

[8] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-
Effective Superscalar Processors,” Proc. 24th Annual Inter-
national Symposium on Computer Architecture, pp. 206-218,
1997.

[9] N. Rangananathan and M. Franklin, “An Empirical Study of
Decentralized ILP Execution Models,” Proc. International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-VIII), 1998.

[10] E. Rotenberg, S. Bennett, and J. E. Smith, “Trace Cache:
a Low Latency Approach to High Bandwidth Instruction
Fetching,” Proc. 29th International Symposium on Microar-
chitecture, 1996.

[11] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith, “Trace
Processors,” Proc. 30th International Symposium on Mi-
croarchitecture, 1997.

[12] S. S. Sastry, S. Palacharla, and J. E. Smith, “Exploiting Idle
Floating-Point Resources For Integer Execution,” Proc. Intl.
Conf. on Programming Lang. Design and Implementation,
1998.

[13] K. C. Yeager, “The MIPS R10000 Superscalar Microproces-
sor,” IEEE Micro, pp. 28-40, April 1996.

[14] The National Technology Roadmap for Semiconductors,
Semiconductor Industry Association, 1999.

Appendix A

Here, we briefly explain the already proposed instruction
distribution algorithms used in this paper.
First-Fit: In this method [2], instructions are assigned to
the same cluster until the cluster window fills up, and then
assigned to the next cluster, and so on. The side effect of this
scheme is to reduce inter-cluster communication. As regis-
ter results produced are more likely to be used very soon,
the dependent instructions either end up in the same cluster
or neighboring clusters, and is very suitable for ring inter-
connects. The algorithm suffers in case of a crossbar in-
terconnect, because independent instructions in a trace also
end up in the same cluster leaving less space for dependent
instructions.
Load-Store Slice (LdSt Slice): In this method, all the in-
structions on which loads or stores are dependent on are sent
to the same cluster to minimize the inter-cluster delays. A
static partitioning ldst slice scheme was proposed in [12]. A
dynamic version of this scheme was proposed in [3]. This
scheme aspires to reduce inter-cluster register communica-
tion (especially for loads and stores). It also gives some
importance to load balancing by assigning the remaining
instructions according to the load situation of the clusters.
One side effect of this scheme is that the value produced by
a load might be used by an instruction assigned to a far away
cluster. It is best for crossbar interconnects, since all the
communications have the same latencies, but not so good
for ring interconnects where dependent instructions might
end up in far away clusters.

8

