
Design and Implementation of A Compiler Framework for Helper Threading on
Multi-Core Processors

Yonghong Song Spiros Kalogeropulos Partha Tirumalai
Scalable Systems Group
Sun Microsystems, Inc.

�yonghong.song, spiros.kalogeropulos, partha.tirumalai�@sun.com

Abstract

Helper threading is a technique that utilizes a second
core or logical processor in a multi-threaded system to
improve the performance of the main thread. A helper
thread executes in parallel with the main thread that it at-
tempts to accelerate. In this paper, the helper thread merely
prefetches data into a shared cache and does not incur any
other programmer visible effects. Helper thread prefetching
has been proposed as a viable solution in various scenar-
ios where it is difficult to prefetch efficiently within the main
thread itself. This paper presents our helper threading expe-
rience on SUN’s second dual-core SPARC microprocessor,
the UltraSPARC IV+. The two cores on this processor share
an on-chip L2 and an off-chip L3 cache. We present a com-
piler framework to automatically construct helper threads
and evaluate our scheme on the UltraSPARC IV+ processor.
Our preliminary results using helper threads on the SPEC
CPU2000 suite show gains of up to 22% on programs that
suffer substantial L2 cache misses while at the same time
incurring negligible losses on programs that do not suffer
L2 cache misses.

1. Introduction

With the widening gap between processor and memory
speeds, prefetching has been increasingly important to im-
prove application performance [16, 18, 25, 26]. Currently,
prefetching is most effective for memory access streams
where future memory addresses can be easily predicted us-
ing loop index values [7, 18, 19]. For such access streams,
software prefetch instructions are inserted into the program
to bring data into cache before the use. Such a prefetch-
ing scheme in which the prefetches are interleaved with the
main computation is also called interleaved prefetching.

Although it is quite successful for many cases [7, 19],
interleaved prefetching tends to be less effective for two

kinds of codes. First, for codes with complex array sub-
scripts, memory access strides are often loop variant, even
predictable, at compile time. Prefetching in such codes
tends to incur excessive overhead as significant computation
is required to compute future addresses. The complexity
and overhead increase if the subscript evaluation involves
loads that themselves must be prefetched and made specu-
lative. One such example is an indexed array access [7]. If
the prefetched data is already in the cache, such large over-
heads can cause a significant slowdown. To avoid risking
large penalties, modern production compilers often ignore
such cases by default, or prefetch data speculatively, one or
two cache lines ahead.

The second class of difficult codes involve pointer-
chasing. In these codes, at least one memory access is
needed to get the memory address in the next loop iter-
ation. Interleaved prefetching is not able to handle such
cases. Several techniques have been proposed to attack
pointer-chasing. Luk and Mowry proposes several com-
piler algorithms for recursive data structures [14, 15]. Their
approaches, however, do not solve prefetching for general
pointer-chasing codes. The jump-pointer approach [21] re-
quires whole program analysis which may not be possible
at compile time. Cahoon and McKinley try to detect the
regularity of the memory stream at compile time for Java
applications [3]. Adl-Tabatabai et al. develop a runtime
scheme in a JIT Java compiler, using hardware counters to
identify delinquent loads and memory address profiles to
identify regularity of memory access streams [1]. Such in-
formation is later used by the runtime system for prefetch
instruction insertion. Wu tries to detect the regularity of the
memory stream with value profiling [28]. The success of his
algorithm depends on how closely the training and actual in-
puts match each other as well as on how many predictable
memory streams exist in the program.

Chip multi-threading (CMT) architectures with shared
caches present new opportunities for prefetching. With
CMT, another core or logical processor may be used to
prefetch data needed by the main thread. Helper thread-

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

Mei Yang
Highlight

Mei Yang
Highlight

ing is a technique which can perform such prefetching in
software. A helper thread, which is created at runtime, exe-
cutes in parallel with the main thread, and does not have any
programmer visible side effects. In our context, the helper
thread attempts to prefetch data accessed by the main thread
into the shared cache. Since it does not do any computa-
tion or stores other than the computation necessary to form
prefetchable addresses and maintain approximate (often ex-
act) control flow, the helper thread will typically execute
faster than the main thread and act as an effective prefetcher
to the main thread.

Prefetching with helper threading naturally handles the
cases where interleaved prefetching is ineffective. In codes
involving complex array subscripts, prefetching overhead is
offloaded to the helper thread. For pointer-chasing codes,
helper threading tries to speculatively load or prefetch what
could be actually cache missing. Helper threading, how-
ever, is not free. Launching the helper thread and synchro-
nization between the main thread and the helper thread incur
overhead. Such overhead must be minimized by the com-
piler as well as the runtime system.

In this paper, we make the following contributions:

� Detailed algorithms for helper threading region selec-
tion and code generation are presented. Our scheme is
also implemented in a production compiler code base.

� We evaluate our scheme on real hardware, using an Ul-
traSPARC(TM) IV+ processor based system and the
SPEC CPU2000 benchmark suite [22]. The Ultra-
SPARC IV+ processor has two on-chip cores and a
shared on-chip L2 cache. We compare helper thread-
ing performance to the best up-to-date serial perfor-
mance, and show that our helper threading improves
performance by up to 22% for programs that suffer L2
cache misses while at the same time causing minimal
degradation on most programs that don’t suffer signif-
icant L2 cache misses.

The rest of paper is organized as follows. In Section 2, we
describe the architecture of the UltraSPARC IV+ proces-
sor. In Section 3, we describe compiler support for helper
threading. In Section 4, we discuss the runtime support
needed for helper threading. We evaluate our implemen-
tation in Section 5, compare to previous work in Section 6,
and draw a conclusion in Section 7.

2. Architecture Description

Our helper threading implementation targets the Ultra-
SPARC IV+ microprocessor [6]. This chip has two 4-issue
in-order superscalar cores each of which implements the
functionality in a significantly enhanced UltraSPARC III
design [11]. Each core has its own first level instruction and

Figure 1. Block diagram of UltraSPARC IV+
processor.

data caches, both 64KB. Each core also has its own instruc-
tion and data TLB’s. The cores share an on-chip 2MB level
2 unified cache which has low latency and adequate band-
width to support smooth dual core operation. Also shared is
a large 32MB off-chip dirty victim level 3 cache. The level 2
and level 3 caches can be configured to be in split or shared
mode. In split mode, each core can allocate only in half the
cache. However, each core can read all of the cache. In
shared mode, each core can allocate in all of the cache. Un-
less otherwise mentioned, the expermental data presented in
this paper are all with the caches in shared mode. Figure 1
shows a simple block diagram of the UltraSPARC IV+ pro-
cessor.

The UltraSPARC IV+ processor implements the 64-bit
SPARC V9 ISA [27] with extensions. With respect to our
helper threading study, the implementation of the software
prefetch extensions is important. Nine flavors of software
prefetch are supported. These include the four flavors in
SPARC V9: read once, read many, write once, and write
many. These four variants can be either weak or strong.
Weak prefetches are dropped if a TLB miss occurs dur-
ing prefetch address translation. On the other hand, strong
prefetches will generate a TLB trap and the prefetch will
be processed (after the trap). An instruction prefetch is also
provided for prefetching instructions. A control bit in the
processor further controls the behavior of weak prefetches.
When the 8-entry prefetch queue is full, either they can be
dropped or they can stall the processor until a queue slot is
available.

In our study, we allow the main thread to use all prefetch
variants. Program analysis and compiler options determine
the variants used for prefetchable accesses. Unless other-
wise mentioned, the helper thread uses only strong prefetch
variants. If prefetches were dropped on a TLB miss, the
benefit of helper threading would be lost or vastly dimin-
ished. Our systems also had the prefetch control setting to
disallow dropping of weak prefetches if the prefetch queue

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

Mei Yang
Highlight

/* The overall algorithm */
build loop tree hierarchy.
perform reuse and prefetch analysis.
/* Assuming root loop is the root of the loop tree. */
call prefetching using helper thread driver (root loop).

(a)

procedure prefetching using helper thread driver (Loop *loop)
if (is helper thread candidate (loop)

and is profitable to use helper thread (loop)) then
helper thread code gen (loop)

else
for (each immediate inner loop of loop, inner loop) do

prefetching using helper thread driver (inner loop)
end for

end if
end procedure

(b)

Figure 2. The overall algorithm.

is full.

3. Compiler Support for Helper Threading

3.1. Overview

Our helper threading work focuses on loops. The com-
piler tries to analyze the program and identify the loop re-
gions which are candidates for helper threading using the
following criteria:

� The loop contains memory accesses which potentially
could incur cache misses.

� The prefetches generated by the helper thread will
trigger cache misses sufficiently early before the
prefetched data are used by the main thread.

� It is profitable to use a helper thread to generate
prefetches for the loop. The benefit from such
prefetching outweighs the cost of using a helper thread.

Figure 2 shows the overall algorithm. In Figure 2(a), a
loop hierarchy tree is first built for the whole program,
followed by reuse analysis and prefetch candidate iden-
tification [7] to introduce only necessary prefetches and
avoid issuing redundant ones. The function prefetch-
ing using helper thread driver is then called recursively to
identify candidates and generate codes for helper thread-
ing. In Figure 2(b), if a loop in the loop hierarchy is iden-
tified as a helper threading candidate and it is profitable to
use a helper thread, the loop will be transformed for helper
threading purpose. Otherwise, its immediate inner loops
will be examined further.

Due to the dynamic nature of operating system schedul-
ing, the following two issues need to be addressed in code
generation:

� Ensure the helper thread will do useful work.

� Avoid slowdown of the main thread.

The first issue is addressed by checking whether the main
thread has completed the execution of the loop before the
helper thread starts the execution of the corresponding loop,
and by the helper thread inquiring periodically whether the
main thread has completed the execution of the loop.

The second issue is addressed by avoiding synchroniza-
tion with the helper thread at the end of the main thread
for each particular helper threading loop, and by inserting
prefetch instructions in the main thread as in the interleaved
prefetching mode.

In the rest of this section, first, we present how loops are
selected to be helper threading candidates. Then, we present
our approach that determines if it is profitable to use a helper
thread for a loop. Finally, the code generation scheme for
helper threading is presented.

3.2. Selecting Candidate Loops

The benefits of using a helper thread for prefetching to
speed up the main thread come from the following:

� The helper thread has potentially less computation to
execute than the main thread. It could, therefore, exe-
cute certain loads earlier and bring their values to the
shared L2 cache.

� Certain loads, if their loaded values are not used to
compute a branch condition or an address used by an-
other load/store, can be transformed into prefetches
in the helper thread. Furthermore, stores can also
be transformed into prefetches. These prefetches can
bring data to the shared L2 cache, representing a po-
tentially significant execution time saving for the main
thread. The above load or store is called an effective
prefetch candidate, if its address computation depends
on at least another load in the same loop body or the
load/store is identified as a prefetch candidate by using
reuse analysis [7].

If the application is memory-bound, the first potential bene-
fit will be less because the loads in both the main thread and
the helper thread could be in the critical path for the appli-
cation. Our scheme selects candidate loops mainly based on
the second potential benefit. In the final code of the helper
thread, all effective prefetch candidates will be replaced by
strong prefetches to their corresponding addresses, in order
to realize the potential benefit for the main thread.

Our compiler encodes alias information derived from
pointer and array memory accesses in the data flow graph.
The data flow generated by such alias information may be

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

Mei Yang
Highlight

Mei Yang
Highlight

Mei Yang
Highlight

Mei Yang
Highlight

Mei Yang
Highlight

procedure is helper thread candidate (Loop *loop)
if (there exists any calls with side effects in the loop body)
then
return FALSE

end if
if (the loop is computation bound) then
return FALSE

end if
if (there exists no effective prefetch candidate) then
return FALSE

end if
for (all effective prefetch candidates and conditional branches)
do
if (if floating-point computation is required

directly or indirectly) then
return FALSE

end if
end for
return TRUE

end procedure

Figure 3. The algorithm to select helper
threading candidate loops.

conservative and limit helper threading scope if it is re-
quired to maintain precise control flow and address com-
putation in the helper thread. To overcome such limita-
tion, the helper thread periodically checks whether the cor-
responding loop in the main thread is completed or not. This
permits the compiler to ignore those conservative data flow
edges and their def-use chains, when determining effective
prefetch candidates and constructing final branch resolution
codes. Although this could result in certain incorrect fi-
nal prefetch addresses and incorrect control flow, such an
omission enables more loops, especially more outer loops,
as candidates in pointer-intensive programs. In particular,
outer loop candidates tend to greatly increase the poten-
tial benefit for helper threading without increasing the cost
much (see Section 3.3).

Figure 3 shows the algorithm to decide whether a loop is
a helper threading candidate. Loops which contain function
calls with side effects will not be considered as candidates.
Furthermore, computation bound loops, which means that
there is enough computation to hide memory latency, are
not considered as candidates. Such an exclusion prevents
cases with a heavy-weight main thread and a light-weight
helper thread, where the helper thread may run too far ahead
and overwrite useful data used in the main thread due to the
limited size of the shared L2 cache. Finally, a candidate
loop must have at least one effective prefetch candidate to
ensure helper threading is potentially beneficial, and its ef-
fective prefetch candidates and conditionals do not contain
floating-point computation to avoid potential exception.

3.3. Determining Profitability of Candidate Loops

The implementation of helper threading utilizes the ex-
isting automatic parallelization infrastructure which uses a
fork-join model [23]. The parallelizable loop will be out-

procedure is profitable to use helper thread (Loop *loop)
p overhead = startup cost + parameter passing cost
p benefit = 0
for (each effective prefetch candidate in the loop body) do

p benefit = p benefit + num of accesses � L2 miss penalty
� predicted L2 miss rate

end for
if (both p benefit and p overhead are known at compile time) then

if (p benefit� p overhead) then
return FALSE

else
return TRUE

end if
else

/* two-version loops will be generated. */
return TRUE

end if
end procedure

Figure 4. The algorithm to determine the prof-
itability of using a helper thread for candidate
loops.

lined and a runtime library is called to control dispatching
the threads, synchronization, etc. Parallelization involves
overhead in the runtime library and also parameter pass-
ing overhead due to outlining. The benefit of using a helper
thread comes from the potential cache hit in the main thread
for some memory accesses which could be cache misses in
a single-threaded run. The compiler analyzes the potential
benefit of using a helper thread versus parallelization over-
head to decide the profitability of using a helper thread for
a loop.

Figure 4 shows the algorithm to determine helper thread-
ing profitability for a candidate loop. The overhead of
parallelization is computed as the runtime library cost,
startup cost, and the cost of passing various shared and
first/last private variables [20], parameter passing cost.
The startup cost is a fixed empirical value and the param-
eter passing cost is the cost of passing the value for one
variable, which is also a fixed empirical value, multiplied
by the number of variables.

The computation of the helper threading benefit is fo-
cused on effective prefetch candidates. For each effec-
tive prefetch candidate, the potential saving, p benefit, is
computed as the total number of memory accesses in one
invocation of this loop, num of accesses, multiplied by
the L2 cache miss penalty, L2 miss penalty, multiplied
by the potential L2 cache miss rate for this memory ac-
cess, potential L2 miss rate. The L2 miss penalty is a fixed
value given for a specific architecture. In the absence
of cache profiling, our approach to determine the poten-
tial L2 miss rate value for an effective prefetch candidate
is based on the complexity of its address computation and
whether a prefetch is available in the main thread. The cur-
rent values of potential L2 miss rate are determined exper-
imentally for different address computation complexity lev-
els.

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

Mei Yang
Highlight

The computation of the number of accesses for an effec-
tive prefetch candidate (num of accesses) depends on the
availability of the profile feedback information. If the pro-
file feedback information is available, the num of accesses
is computed as the total number of memory accesses for an
effective prefetch candidate divided by the times the loop is
accessed, as the overhead is computed for each invocation
(not each iteration) of the loop If the profile data shows that
the loop is not accessed at all, the value for num of accesses
is set to �.

If the profile feedback information is not available, the
value of num of accesses is computed based on the com-
pile time information of loop trip counts and branch prob-
ability. If the actual trip count is not known at compile
time, our approach is to examine whether the trip count can
be computed symbolically through some loop invariants.
Otherwise, a trip count of 25 will be assumed [10]. For
conditional statements, equal probability for if taken/non-
taken targets or all case targets of a switch statement is as-
sumed. The total number of accesses, num of accesses, will
be computed based on trip counts and assigned branch prob-
ability information.

The total benefit of using a helper thread for a loop,
p benefit, is the summation of the benefits of all effective
prefetch candidates. if p benefit is greater than p overhead
using compile time information, this loop will be a can-
didate for helper threading. Otherwise, if p benefit is no
greater than p overhead, this loop will not be a candidate.
Furthermore, if the compile time information produces in-
conclusive profitability result with symbolic trip count com-
putation, a two-versioned loop with a runtime condition for
profitability p benefit � p overhead will be generated. At
runtime, if the condition is true, the helper threading version
will be executed. Otherwise, the original serial version will
be executed.

3.4. Code Generation

Code generation for a candidate loop to use helper
threading involves three phases. In the first phase, code
like Figure 5(a) will be generated. The runtime library has
been modified to guarantee that if the loop � is parallelized
and two threads are available, the main thread will execute
the branch if “� �� �” is true, and the helper thread will
execute the other branch. The purpose is to minimize the
overhead for the main thread to avoid the main thread slow-
down. The helper thread may incur potential overhead to
warm up its L1 cache and the TLB. The else branch loop
in Figure 5(a) will be transformed to form a helper thread
loop.

In the second phase, a proper helper thread loop will be
generated through program slicing and variable renaming.
The helper thread loop is a sliced original loop containing

for (� � �� � �� �� � � �� �) �
if (� �� �) �
�The original loop�
�
else �
�The original loop�

� �

(a)

for (� � �� � �� �� � � �� �) �
if (� �� �) �
�The main thread loop�
�
else �
�Scalar renaming assignments�
�The helper thread loop with

scalar renaming�
� �

is mt done = FALSE.
#pragma omp parallel for
for (� � �� � �� �� � � � � �) �
if (� �� �) �
�The main thread loop�
is mt done = TRUE.
�
else �
if (is mt done �� FALSE) �
�Scalar renaming assignments�
/* checking is mt done every certain

number of loop iterations
periodically. */
�The helper thread loop with

scalar renaming�
� � �

(b) (c)

Figure 5. Transforming the original loop to a
DOALL loop.

only the original control flow and necessary statements to
compute conditionals and the effective prefetch candidate
addresses. All effective prefetch candidates are replaced by
strong prefetches to their corresponding addresses. In the
helper thread, all loads will become non-faulting loads to
avoid exceptions, and all stores will be either removed or
turned to strong prefetches.

All upward-exposed or downward-exposed assigned
variables in the helper thread loop will be renamed and copy
statements of original variables to their corresponding tem-
porary variables are placed right before the helper thread
loop. In our scheme, all scalar variables are scoped as pri-
vate variables including first private, or both first and last
private (see Section 3.5), so that these temporary variables
will get correct values at runtime. Figure 5(b) shows the
code after program slicing and variable renaming.

In practice, it is possible that the helper thread could run
behind the main thread. If this happens, the helper thread
should finish early to avoid doing useless work. In the
last phase, the following code is inserted to ensure that the
helper thread is terminated when it runs behind the main
thread.

� Code to indicate that the main thread loop has com-
pleted execution immediately after the main thread
loop.

� Code to check whether the main thread loop has com-
pleted execution before executing the helper thread
loop.

� Code to check whether the main thread has completed
execution every certain number of loop iterations in
the helper thread loop and all its inner loops. This can
be done by adding checking at every loop back edge,

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

procedure helper thread code gen (Loop *loop)
/* step 1: generated unsliced helper thread loop */
make a copy of the original loop and generate code
like Figure 5(a).

/* step 2: program slicing and variable renaming for
the helper thread loop. */

for (each effective prefetch candidate in
the helper thread loop) do

mark all statements for its address computation, directly
or indirectly, as undeletable.

turn this load or store to a strong prefetch, and mark it
as undeletable.

end for
for (every branch in the loop body) do
mark all statements for branch condition computation,
directly or indirectly, as undeletable.

mark this branch as undeletable.
end for
delete all the unmarked deletable statements.
for (every upward-exposed or downward-exposed variable �

in at least one assignment in the helper thread loop) do
create a temporary variable tv and an assignment tv � �

right before the helper thread loop.
rename all appearances of � with tv in the
helper thread loop body.

end for
/* The code like Figure 5(b) is generated. */

/* step 3: insert checking code to prevent the helper thread
from running behind the main thread. */

add an assignment right after the main thread loop to
indicate it has completed execution.

add a check whether the main thread loop has completed execution
or not before executing the helper thread loop.

add code at every back edge of the helper thread loop and
its inner loops to check whether the main thread has
completed execution or not.

make the loop � in Figure 5(c) as DOALL loop and perform
variable scoping as in Section 3.5.

end procedure

Figure 6. The algorithm to transform a soft-
ware helper threading loop candidate to a
DOALL loop.

which will be illustrated later in detail through an ex-
ample.

If any checking reveals that the loop in the main thread has
completed execution, the helper thread will stop its work
immediately. Figure 5(c) shows the transformed code. The
loop � in Figure 5(c) is marked as a DOALL loop and will be
later parallelized with the existing automatic parallelization
framework.

3.5. Variable Scoping

For the parallel loop t in Figure 5(c), the compiler scopes
the variables based on the following rules:

� All arrays and address-taken scalars are shared.

� All non-address-taken scalars (including structure
members) are private.

� All private scalars upward-exposed to the beginning of
loop t are first private.

� All private scalars downward-exposed to the end of
loop t are both last private and first private. The pur-
pose is to copy out correct value in case that the scalar
assignment statement does not execute at runtime.

For any downward exposed variables, the runtime library
and outlining code generation have been modified to copy
out the downward exposed variables in the main thread
since all the original computation is done in the main thread.
Figure 6 shows the compiler algorithm to transform a helper
threading loop candidate to a DOALL loop.

3.6. Examples

Figure 7(a) shows an example, whose trip counts can-
not be computed at compile time. We also assume that
the compiler is not able to guarantee that � � ���� and
� � ���� access different memory locations at compile
time. If profile feedback data is available, the compiler will
compute the trip count and branch probabilities based on
profile data. Otherwise, the compiler chooses default val-
ues for unknown trip counts and branch probabilities as in
the Section 3.3. Figure 7(b) shows the two-version paral-
lelization transformation. The �� is the potential benefit for
helper threading and 	� is the parallelization overhead. Both
are compile-time constants. Therefore, at compile time, the
branch will be resolved. Figure 7(c) shows program slic-
ing and variable renaming. Note that the variable tmp p is
used to copy the original p value. Figure 7(d) shows the
added checking codes to end the helper thread earlier, if
the helper thread runs behind the main thread. The variable
tmp c is used to count the number of iterations in the helper
thread. The variable check c, which is a compile-time con-
stant, specifies the number of iterations to check whether the
main thread has finished or not. Note that all back edges in
the helper thread loop or its inner loops are checked. This is
necessary in case that the innermost loop is never or rarely
got executed.

4. Runtime Support for Helper Threading

In Figure 5(c), the compiler creates a parallel loop t
which will spawn the main thread and the helper thread
at runtime. Helper threading shares the same runtime as
automatic/explicit parallelization. For each helper thread-
ing loop, runtime creates one POSIX thread to represent
the helper thread. This POSIX thread will be reused as
the helper thread for subsequent helper threading loops.
Since synchronization may unnecessarily slow down the
main thread, if a helper thread runs behind, we do not want
them to be synchronized at the end of parallel for loop t (in
Figure 5(c)).

Currently, some data (like loop bounds, first private data
and shared data, etc.) are passed from the serial portion

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

while (p) �
if (p�data �� 0) �
q = p�data;
while (q) �
q�data = c;
q = q�next;

� �
p = p�next;
�

(a)

if (�� �� ��) �
while (p) �

q�data = c;
q = q�next;

� �
p = p�next;

� �
else �
while (p) �
if (p�data �� 0) �
q = p�data;
while (q) �
q�data = c;
q = q�next;

� �
p = p�next;

� �
(b)

if (�� �� ��) �
for (t = 0; t�� 1; t++) �
if (t == 0) �
while (p) �
if (p�data �� 0) �
q = p�data;
while (q) �
q�data = c;
q = q�next;

� �
p = p�next;

� �
else �
tmp p = p;
while (tmp p) �
if (tmp p�data �� 0) �
q = tmp p�data;
while (q) �
prefetch (&(q�data));
q = q�next;

� �
tmp p = tmp p�next;

� � � �
else �
while (p) �
p�data = c;
p = p�next;

� �
(c)

if (�� �� ��) �
is mt done = FALSE;
#pragma omp parallel for
for (t = 0; t �� 1; t++) �
if (t == 0) �
while (p) �
if (p�data �� 0) �
q = p�data;
while (q) �
q�data = c;
q = q�next;

� �
p = p�next;
�
is mt done = TRUE;
�
else �
tmp p = p;
if (is mt done == FALSE) �
tmp c = 0;
while (tmp p) �
if (tmp p�data�� 0) �
q = tmp p�data;
while (q) �
prefetch (&(q�data));
q = q�next;
if (tmp c �� check c) �
if (is mt done == TRUE) �
goto next;

� �
tmp c = tmp c + 1;

� �
tmp p = tmp p�next;
if (tmp c �� check c) �
if (is mt done == TRUE) �
goto next;

� �
tmp c = tmp c + 1;

� �
next:

� � �
else �
while (p) �
p�data = c;
p = p�next;

� �
(d)

Figure 7. A code generation example.

procedure ht main thread no end sync
(void *data)

LOCK
if (prev main data == NULL) then
prev main data = data

else if (prev main data
�� prev helper data) then

free (prev main data)
prev main data = data

else
prev main data = data

end if
UNLOCK

end procedure

function ht helper thread no end sync
(void *data)

LOCK
if (prev helper data �� NULL) then
free (prev helper data)

end if
if (prev main data �� data) then
prev helper data = NULL
should continue = FALSE

else
prev helper data = data
should continue = TRUE

end if
UNLOCK
return should continue

end function
(a) (b)

Figure 8. Action taken by the main thread and
the helper thread to free shared parallel data.

of the main thread to the runtime library, and then to the
outlined routine, which will be executed by both the main
thread and the helper thread. Such data, which we call
shared parallel data, will be allocated on the heap through
malloc routine. The runtime system must find a way to free
such space to avoid potential our-of-memory issues.

The main thread will access every piece of shared par-
allel data. However, the helper thread may not, since ei-
ther it may be suspended, or it runs far behind so skipping
some helper threading loops. Also, for every piece of shared
data, the main thread will access it first before the helper
thread accesses it, since the main thread activates the helper
thread.

Figures 8(a) and (b) show the action taken by the main
thread and the helper thread, respectively, to free shared
parallel data. The function parameter is the address of the
shared parallel data for the current helper threading loop.
The functions are called at the beginning of the main thread
and the helper thread inside the runtime library, respec-
tively, before delivering control to the outlined routine. The
global variables prev main data and prev helper data are
used to record the previously accessed shared parallel data
by the main thread and the helper thread, respectively, both
of which have an initial NULL value. If the future accessed
shared parallel data by the helper thread are not the one cur-
rently accessed by the main thread, the helper thread should
not continue the stale helper threading loop, which is indi-
cated by the return value should continue. Since both func-
tions access the shared data, to avoid race condition, the
same LOCK/UNLOCK pair is placed in the beginning and
the end of both functions.

5. Experimental Results

In this section, we present experimental results with
helper threading on the SPEC CPU2000 suite [22]. Our ex-
periments were done on the UltraSPARC IV+ processor as

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

described in Section 2. All the techniques described in Sec-
tions 3 and 4 have been implemented in a prototype based
on SUN’s production compiler. We compare our helper
threading performance with the best serial performance ob-
tained using the peak compiler flags in SUN’s SPEC sub-
mission [22]. Currently, our runtime system does not au-
tomatically detect and bind the main thread and the helper
thread to the same chip. We do this manually using the en-
vironment variable SUNW MP PROCBIND [24].

Table 1 shows the distribution of loops in each program
including the number of loops accepted and rejected for
helper threading. The “total” is the number of loops exam-
ined by the procedure in Figure 3. Note that if an outer loop
is considered a candidate and profitable, its inner loops are
not counted in the “total”. The “bad shape” column shows
the number of loops rejected because of multiple loop exits
or unknown control flow. Note that to outline a loop, we
need a single-entry single-exit region. The “calls” column
shows the number of loops rejected because they contains
calls with side effects. The “bad comp” column shows the
number of loops rejected because the execution of address
computation or branch resolution codes may raise an ex-
ception. The “no save” column shows the number of loops
rejected because the compiler was not able to find any ef-
fective prefetch candidate. The “other opt” column shows
the number of loops rejected because the compiler deter-
mines that outlining it would hurt some other optimiza-
tion 1. The “overrun” column shows the number of loops
rejected because the compiler determines that the helper
thread may run too far ahead of the main thread and over-
write the shared cache. The “no benefit” column shows the
number of loops rejected because the compiler considers
them not profitable for helper threading as discussed in Sec-
tion 3.3. The “2 ver” column shows the number of loops for
which two versions with a runtime check are generated as
described in Section 3.3. The “1 ver” column shows the
number of loops for which two version code is not gen-
erated. The “%load stalls” column shows the percentage
of execution time spent stalled for L2 load cache misses
(when helper threading is not used). This is measured us-
ing processor performance counters. Note that this counter
does not include store stall time which could also be re-
duced by helper thread prefetching. Note that in Table 1,
the only two-versioned loops are in swim. This is because
the peak SPEC submission, to which we compare our work,
used profile feedback for all benchmarks except swim.

Figure 9 shows the speedup achieved with helper thread-
ing (HT). The “GM” shows the geometric mean speedup of
all CPU2000fp or CPU2000int benchmarks, respectively.
Three benchmarks, equake, lucas, and mcf, achieve
a speedup of over 1.1, with a maximum speedup of 1.22

1Currently, this is added to avoid certain regressions. This is an area
we will continue to improve.

Figure 9. Comparison between helper thread-
ing vs. serial performance.

for mcf. fma3d suffers L2 cache misses significantly (Ta-
ble 1), while our helper threading does not improve perfor-
mance much. We have work to do in the future in both inter-
leaved prefetching and helper threading for this benchmark.
Art and parser run slower with helper threading than
without it. This is because memory accesses in the regions
selected for helper threading for these two benchmarks are
mostly cache resident and the overhead of helper threading
becomes significantly greater than the corresponding gain.
We have focused on helper threading without cache miss
profiling information, in order to increase its acceptance and
ease of use. However, we do plan to study and utilize cache
miss profiling to avoid such regressions.

To further understand the performance difference, we
measured the number of L2 cache misses using perfor-
mance counters. Figure 10 shows the reduction in L2 cache
misses due to helper threading for the main thread. For all
benchmarks, helper threading is able to either maintain or
reduce the number of L2 cache misses. For equake, L2
cache misses are reduced by over 94%. For crafty and
twolf, there is a large reduction in L2 cache misses but it
does not translate into performance gain because these pro-
grams have a very low L2 cache miss rate to begin with (see
Table 1). For gzip, although L2 cache misses are reduced
by 25%, performance with helper threading rather degrades
by 2%. This is due to compiler phase ordering problems
and is an area we are trying to improve currently.

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

Table 1. Distribution of loops for helper threading.

benchmarks total bad shape calls bad comp no save other opt overrun no benefit 2 ver 1 ver %load stalls
wupwise 197 0 55 4 4 0 0 132 0 2 0.1%
swim 77 0 19 0 3 0 0 55 55 0 0.8%
mgrid 54 1 19 0 2 0 0 28 0 4 6.8%
applu 85 8 12 0 1 0 0 64 0 0 4.3%
mesa 1452 57 25 8 6 0 0 1354 0 2 2.0%

galgel 452 9 38 5 19 0 0 369 0 12 0.8%
art 85 3 10 13 6 0 0 52 0 1 0.3%

equake 85 0 14 3 39 0 0 27 0 2 9.3%
facerec 236 1 38 1 8 3 0 184 0 1 1.4%
ammp 423 209 14 4 4 0 0 179 0 13 9.8%
lucas 83 9 10 0 1 0 0 52 0 11 4.3%
fma3d 5530 84 62 5 242 0 0 5128 0 9 17.8%

sixtrack 2358 127 130 15 125 0 0 1954 0 7 0.5%
apsi 389 10 57 7 1 0 0 309 0 5 3.0%
gzip 301 50 38 0 41 0 0 165 0 7 0.2%
vpr 623 175 157 2 24 0 0 250 0 15 5.1%
gcc 3449 1340 563 0 178 0 0 1352 0 16 4.0%
mcf 66 17 3 0 3 1 0 34 0 8 30.2%

crafty 416 76 164 0 18 0 1 155 0 2 0.08%
parser 791 310 193 0 85 0 0 195 0 8 3.1%
eon 572 73 33 7 0 0 0 459 0 0 0.0%

perlbmk 1195 426 128 0 22 0 0 619 0 0 2.1%
gap 2744 647 446 0 34 7 1 1603 0 6 8.0%

vortex 230 129 15 0 6 1 0 79 0 0 5.6%
bzip2 192 35 62 0 32 0 0 53 0 10 6.0%
twolf 1047 164 175 6 185 1 0 481 0 35 0.07%

Due to space limitations, we briefly summarize the re-
sults of some other interesting experiments we have done.

� It is always profitable to not synchronize at the end of
the parallel for in Figure 5(c). The performance differ-
ence with and without such synchronization is within
3% for all benchmarks except mcf, where the perfor-
mance difference is 16%.

� Interleaved prefetching in the main thread remains im-
portant even with helper threading. This is because the
helper thread only brings the data to the L2 cache and
software prefetching in the main thread often does a
better job of bringing data from the L2 cache to the
prefetch cache than hardware prefetching [7]. For ex-
ample, prefetching in the main thread can achieve a
speedup of 1.8 compared to no prefetching in the main
thread for swim.

� Though we have attempted helper threading without
cache miss profiling, we use conventional block count
profiling for all benchmarks except swim. Without
this information, the performance of mgrid, apsi
and gcc degraded by 23%, 22% and 8%, respectively,
This was due to excessive two-version code genera-
tion. In the future, we plan to study how to improve our
profitability test and judiciously generate two-version
code, for cases where no profile feedback information
is available.

� The gains described in Figure 9 are over very aggres-
sive SPEC peak options. We have also obtained the

gains due to helper threading with more typical com-
piler options and where interleaved prefetching is not
used. When helper threading is added to this sce-
nario, prefetching is done entirely by the helper thread.
Figure 11 shows the results, which clearly demon-
strate that the helper thread brings data successfully
into the shared L2 cache and significantly accelerat-
ing the main thread. The geometric mean improves
by a factor of 1.30X for CPU2000fp where several
benchmarks suffer large L2 cache miss penalties. Most
CPU2000int benchmarks do not suffer such penalties
and here our helper threading causes minimal degrada-
tion.

6. Related Work

Helper threading is not new. Kim et al. present
their helper threading experience on a hyperthreaded Pen-
tium(TM) processor [8]. They rely on cache miss profile
data for helper threading while we use regular edge profil-
ing or a two-version scheme if profiling data is not avail-
able. We have targeted a dual-core design where the helper
thread does not contend for pipeline resources with the main
thread. Our work does not use any special hardware support
for helper threading other than a shared L2 cache. We have
presented a detailed and systematic code generation scheme
for helper threading. Kim et al. present a source-to-source
transformation and simulation framework for helper thread-
ing [9, 10]. They use a preprocessor while we directly im-

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

Mei Yang
Highlight

Figure 10. Ratio of L2 cache misses for data
of the main thread between helper threading
vs. serial performance.

plement helper threading inside the compiler. They also re-
quire special hardware support.

A number of researchers have tried to construct helper
threads by post-processing binaries. Liao et al. use a bi-
nary rewriter to generate helper threads [12]. Collins et al.
use speculative pre-computation for prefetching [5]. Luk
describes the use of helper threading in the simultaneously
multithreaded machines [13]. Both [5] and [13] require spe-
cial hardware support. Brown et al. evaluate helper thread-
ing on chip multiprocessors through simulation and also
propose several architectural enhancement for better helper
threading on chip multiprocessors [2], while we conduct
our experiments on real hardware. There have also been at-
tempts to construct helper threads or dynamically perform
prefetching at runtime. Moshovos et al. tried this approach
by using a special hardware slicing processor [17].

Prefetching for linked-list data structures and general
prefetching in a single thread are also not new. Roth and
Sohi use jump pointers to compute prefetching targets [21].
Choi et al. show a prefetch engine to perform multi-chain
prefetching, a technique to exploit inter-chain memory par-
allelism [4]. Wu uses value profiling to predict the regu-
larity in irregular streams [28]. Mowry et al. show how
prefetching can help performance for regular predictable
memory streams in both a uniprocessor and a multiproces-
sor system [18, 19]. Tullsen and Eggers describe techniques

Figure 11. Speedup of helper threading
vs. serial performance without interleaved
prefetching.

for prefetching effectively in a multiprocessor system [25].

7. Conclusion

In this paper, we have presented a compiler framework
to perform helper threading. We have shown techniques for
selecting candidate loops, deciding whether candidate loops
are profitable, and generating code that is resilent to operat-
ing system scheduling. Our method operates without cache
miss profile data and without special hardware support. We
have implemented our framework in a production compiler
and evaluated it on a dual-core processor. In our experi-
ments using the SPEC CPU2000 benchmark suite, helper
threading improved performance for codes suffering large
L2 cache miss penalties without substantially degrading the
performance of the others. The maximum gain observed
was 22%.

The following aspects of helper threading merit further
study. Easy-to-use cache miss profile information could
lead to increased performance gains and reduced regres-
sions. Special hardware support for helper threading would
reduce overheads. Given the emergence of processors with
a large number of threads, the possibility of having more
than one helper thread for a main thread can be considered.
New heuristics might help improve prefetching in the helper
thread. For example, the indexed array access prefetching

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

Mei Yang
Highlight

Mei Yang
Highlight

technique [7] can be applied in the helper thread by default
because helper threads can afford to do more work in sup-
port of prefetching. Finally, improvements in the runtime
library, e.g. automatic processor binding, can make helper
threading more effective.

References

[1] A.-R. Adl-Tabatabai, R. L. Hudson, M. J. Serrano, and
S. Subramoney. Prefetch injection based on hardware moni-
toring and object metadata. In Proceedings of the ACM SIG-
PLAN 2004 Conference on Programming Language Design
and Implementation, pages 267–276, June 2004.

[2] J. Brown, H. Wang, G. Chrysos, P. Wang, and J. Shen.
Speculative precomputation on chip multiprocessors. In The
6th Workshop on Multithreaded Execution, Architecture and
Compilation, November 2002.

[3] B. Cahoon and K. McKinley. Data flow analysis for software
prefetching linked data structures in java. In Proceedings of
the 2001 International Conference on Parallel Architectures
and Compilation Techniques, 2001.

[4] S. Choi, N. Kohout, S. Pamnani, D. Kim, and D. Yeung.
A general framework for prefetch scheduling in linked data
structures and its application to multi-chain prefetching.
ACM Transactions on Computer Systems, 22(2):214–280,
May 2004.

[5] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y.-F. Lee,
D. Lavery, and J. Shen. Speculative precomputation: Long-
range prefetching of delinquent loads. In Proceedings of the
28th Annual International Symposium on Computer Archi-
tecture, pages 14–25, June 2001.

[6] D. Greenley. The ultrasparc iv+ processor. In Proceedings
of the Fall Processor Forum, San Jose, CA, October 2004.

[7] S. Kalogeropulos, M. Rajagopalan, V. Rao, Y. Song, and
P. Tirumalai. Processor aware anticipatory prefetching in
loops. In Proceedings of the 10th International Conference
on High-Performance Computer Architecture, pages 106–
117, February 2004.

[8] D. Kim, J. P. Shen, S. S. Liao, P. H. Wang, J. del Cuvillo,
X. Tian, X. Zou, H. Wang, D. Yeung, and M. Girkar. Phys-
ical experimentation with prefetching helper threads on in-
tel’s hyper-threaded processors. In Proceedings of the Inter-
national Symposium on Code Generation and Optimization,
pages 27–38, Palo Alto, CA, March 2004.

[9] D. Kim and D. Yeung. Design and evaluation of compiler
algorithms for pre-execution. In Proceedings of the 10th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 159–
170, San Jose, CA, 2002.

[10] D. Kim and D. Yeung. A study of source-level compiler al-
gorithms for automatic construction of pre-execution code.
ACM Transactions on Computer Systems, 22(3):326–379,
August 2004.

[11] G. Lauterbach. Ultrasparc iii - a scalable high clock rate
sparc processor. In Proceedings of the Microprocessor Fo-
rum, San Jose, CA, October 1997.

[12] S. S. Liao, P. Wang, H. Wang, G. Hoflehner, D. Lavery, and
H. Shen. Post-pass binary adaptation for software-based
speculative precomputation. In Proceedings of the ACM
SIGPLAN 2002 Conference on Programming Language De-
sign and Implementation, pages 117–128, Berlin, Germany,
June 2002.

[13] C.-K. Luk. Tolerating memory latency through software-
controlled pre-execution in simultaneous multithreading. In
Proceedings of the 28th Annual International Symposium on
Computer Architecture, pages 40–51, 2001.

[14] C.-K. Luk and T. Mowry. Compiler-based prefetching for
recursive data structures. In Proceedings of the 7th Interna-
tional Conference on Architecture Support for Programming
Languages and Operating Systems, October 1996.

[15] C.-K. Luk and T. Mowry. Automatic compiler-inserted
prefetching for pointer-based applications. IEEE Transac-
tions on Computers, 48(2):134–141, February 1999.

[16] C.-K. Luk and T. Mowry. Architectural and compiler sup-
port for effective instruction prefetching: A cooperative ap-
proash. ACM Transactions on Computer Systems, 19(1),
February 2001.

[17] A. Moshovos, D. N. Pnevmatikatos, and A. Baniasadi.
Slide-processors: An implementation of operation-based
prediction. In Proceedings of the International Conference
on Supercomputing, Sorrento, Italy, 2001.

[18] T. Mowry. Tolerating latency in multiprocessors through
compiler-inserted prefetching. ACM Transactions on Com-
puter Systems, February 1998.

[19] T. Mowry, M. S. Lam, and A. Gupta. Design and evaluation
of a compiler algorithm for prefetching. In Proceedings of
the 5th International Conference on Architecture Support for
Programming Languages and Operating Systems, October
1992.

[20] OpenMP ARB, OpenMP Specification Version 2.5.
http://www.openmp.org.

[21] A. Roth and G. Sohi. Jump-pointer prefetching for linked
data structures. In Proceedings of the 26th International
Symposium on Computer Architecture, May 1999.

[22] Standard Performance Evaluation Corporation, The SPEC
CPU2000 benchmark suite. http://www.specbench.org.

[23] Sun Microsystems, Inc., Sun Studio 9: Perfor-
mance Analyzer. http://docs.sun.com/source/817-
6696/AdvancedTopics.html.

[24] Sun Microsystems, Inc., Sun Studio 9: OpenMP
API User’s Guide. http://docs.sun.com/source/817-
6703/3 Compiling.html.

[25] D. M. Tullsen and S. J. Eggers. Effective cache prefetching
on bus-based multiprocessors. ACM Transactions on Com-
puter Systems, 13(1), February 1995.

[26] S. Vanderwiel. Data prefetch mechanisms. ACM Computing
Surveys, 32(2), June 2000.

[27] D. Weaver and E. T. Germond. The SPARC Architecture
Manual Version 9. PARC International, Inc., Prentice-Hall,
Englewood Cliffs, NJ.

[28] Y. Wu. Efficient discovery of regular stride patterns in irreg-
ular programs and its use in compiler prefetching. In Pro-
ceedings of the International Conference on Programming
Language Design and Implementation, June 2002.

Proceedings of the 14th International Conference on Parallel Architectures and Compilation Techniques (PACT’05)

1089-795X/05 $20.00 © 2005 IEEE

