
A Reconfigurable Generic Dual-Core Architecture
Thomas Kottke1

EADS Deutschland GmbH
D-88090 Immenstaad

Email: thomas.kottke@eads.com

Andreas Steininger
Vienna University of Technology
A-1040 Wien, Treitlstrasse 1-3

Email: steininger@ecs.tuwien.ac.at

Abstract— In this paper we propose a generic frame for the
implementation of a dual-core processor with two modes of
operation. One is the safety mode that allows to run the two cores
in lock step in a classical master/checker fashion. A clock delay
of 1.5 clock cycles between master and checker establishes the
temporal redundancy to minimize the potential for common mode
faults. The second operation mode allows a parallel execution of
different instruction streams on the two cores in a multiprocessor
fashion. The possibility to dynamically switch between the two
modes allows for an efficient utilization of the duplicated core.

We propose an implementation of such a generic frame
that can be applied in conjunction with virtually any standard
processor core. Also we perform a systematic failure analysis for
the safety mode and the mode switching procedure. Experimental
fault injection confirms that our reconfigurable architecture
indeed provides the same fail safe properties as the classical
master/checker architecture.

I. INTRODUCTION

In future automobiles more and more complex
microprocessor-based control systems will be implemented
for safety-critical applications such as antilocking brake
systems, electronic stability program or x-by-wire systems.
To meet the high safety requirements of future applications
– as demanded in the European standard EN 61508, for
instance – in spite of the increasing rate of transient errors
[1], [2] that is predicted to result from reduced voltage levels
and shrinking feature size [3], the microprocessors have to be
equipped with powerful mechanisms for error detection and
error handling. While it is relatively easy to protect memory
or communication interfaces by means of coding techniques,
e.g., the core is more difficult to protect (see [4], [5], [6], [7],
[8], [9] for example). One attractive generic solution in this
context is a dual-core (master/checker, e.g. in [10]), because
it is quite easy to implement with standard cores and – as
shown in [11] – exhibits a very high error detection coverage.

At the same time there is an increasing demand for com-
puting power. While this demand is usually satisfied by ever
increasing clock rates in office applications, clock frequency
is constrained in automotive applications, and hence archi-
tectural solutions are sought to improve performance while
keeping clock rates moderate. In this context multiprocessor
architectures are an attractive solution.

In a highly competitive market like the automotive the most
demanding requirement for microprocessors is low cost, and

1This work was performed while the author was with Robert Bosch GmbH,
Germany.

unfortunately both, master/checker architectures and multipro-
cessor architectures tend to make the system expensive. There
is, however, a potential for an elegant combination of these two
approaches: Control systems usually not only perform safety
critical tasks such as the algorithm to control safety-relevant
sensors and actuators, but also uncritical calculations dedicated
to comfort functions, for instance. This led to the essential
idea of switching resources between safety and performance,
which was derived in an internal research of Bosch [12] and
led us to consider a reconfigurable dual-core system that is
capable of handling both demands – safety and high computing
power – while making efficient use of the duplicated core.
For the safety-critical tasks the system is configured as a
master/checker, while the non-critical tasks are computed in
a multiprocessor fashion. For this approach to be reasonable,
(a) the switching between the modes must be possible with
low overhead, and (b) the additional logic for mode switching
must not compromise fault tolerance in the master/checker
operation. Especially issue (b) will be a main focus of our
paper.

To satisfy the demand for low cost and high efficiency it
is further necessary that the performance of the processor is
tightly matched with the application requirements. Therefore a
wide range of processors with different performance must be
considered. It is, however, very expensive to adapt an existing
concept and repeat the safety verification for every single core
used. With this motivation we propose a generic framework
here that treats the processor cores as black boxes with some
general assumptions on their input/output behavior. Our aim
is to verify the properties of this generic architecture such that
our results are valid independent of the actual type of processor
core that is embedded into our frame. We do not consider
diversity of cores or software, since we target hardware faults
that occur during operation, rather than design and software
faults that can be eliminated through extensive testing.

There is a lot of literature investigating the use of the
master/checker approach for safety relevant applications [13],
[14] and the potential of the multiprocessor approach for
improving performance [15], [16]. None of these, however,
considered reconfiguration to facilitate switching between the
two modes. Switching between different fault-tolerant modes
in software at the operating system level was proposed in [17].

This paper starts with an introduction to the proposed re-
configurable dual-core system in chapter II. Its implementation
will be outlined in chapter III, while chapter IV is concerned

Proceedings of the 2006 International Conference on Dependable Systems and Networks (DSN’06)
0-7695-2607-1/06 $20.00 © 2006 IEEE

with a theoretical fault analysis of the system. Subsequently
the setup of the fault injection experiments will be sketched
in chapter V and the experimental results be presented and
discussed chapter VI. Finally, chapter VII concludes the paper.

II. OPERATION OF THE SPLIT CORE FRAME

In order to meet the high efficiency demands our proposed
reconfigurable dual-core system allows to switch between two
modes: For safety critical applications the safety mode can
be chosen, in which the system is configured in the classical
master/checker fashion. To make our approach acceptable
we have to prove that it indeed provides the same fail safe
capabilities as a conventional master/checker system. In the
performance mode we operate our architecture like a dual
processor system. Our aim here is to attain the computing
power of a two-processor system.

The switching between the two modes occurs under soft-
ware control. We have reserved a special instruction – in the
following referred to as the mode switching instruction – for
triggering the alternation between the two modes. This mode
switching instruction is recognized by a core-external mode
switch unit, while it is transparently handled as a no operation
instruction within the core.

A. Safety Mode

In this mode core 1, the master, is directly controlling the
peripherals such as memory or actuators. Core 2, the checker,
receives the same instruction stream as core 1 and is hence
performing the same operations (usually in lock-step). The
checker’s outputs, however, are not connected to peripheral
components, but are used for checking the correctness of
the respective master outputs. This output-based comparison
scheme has proven to exhibit a very good detection cover-
age for core-internal errors. The inputs (control signals and
instruction stream) that are used by both cores in common,
however, are not covered by this comparison, therefore their
protection deserves special attention. The same is true for
the outputs after comparison. To harden the system against
common mode failures induced for example over the power
supply or by electromagnetic interference the two cores are
operated with a temporal displacement of 1.5 clock cycles as
suggested in [24]. Consequently the master’s outputs have to
be delayed by 1.5 clock cycles before they can be compared
with the checker’s outputs.

B. Performance Mode

In performance mode the two cores execute different in-
struction streams in parallel and each core can control the
peripherals. In order to provide efficient access to the (syn-
chronous) memories and peripherals, both cores have to oper-
ate with the same clock polarity now. Therefore the temporal
displacement of the checker clock is disabled in performance
mode. Simultaneous requests from both cores to the same
memory area have to be explicitly resolved by special units
(instruction RAM control unit, data RAM control unit). To
prevent the instruction memory from becoming a performance

bottleneck each core is provided with an individual instruction
cache. A block size of 4 instruction words allows an efficient
burst access yielding low mutual deceleration of the cores.
Since in automotive applications only about every tenth in-
struction is an access to data memory, we did not implement
a data cache. Should the proportion of data memory accesses
increase in future applications a data cache can easily be
supplemented.

C. Switching between the modes

In performance mode the cores are operating independently
from each other on different instruction streams. In safety
mode they execute the same instruction stream and are as-
sumed to behave identically. This requires that their internal
state is identical, in particular register and cache contents
must be the same on both cores. So obviously some kind
of data synchronization must be performed before switching
from performance mode to safety mode. The responsibility for
synchronizing the register contents can quite easily be moved
to the operating system. Establishing consistency between the
caches, however, requires dedicated hardware support. Should
one core encounter a cache miss while the other has a hit for
the same instruction access, the temporal behavior of the two
cores would diverge causing a comparator mismatch and hence
a false error indication. The simplest remedy here would be
a complete cache flush at every transition from performance
mode to safety mode. This would, however, unnecessarily
degrade cache utilization and hence waste performance. As
an improved strategy we have implemented a list of flags
indicating the validity of every cache line in safety mode.
The flag is set valid if the associated cache line is loaded in
safety mode. Should the cache line be reloaded in performance
mode by any of the two cores, the flag is reset to invalid.
Using this information in safety mode we can easily judge
whether a given cache line is consistent in both cores. Further
improvements to the caching strategy are possible, of course,
but not within the scope of this paper.

With these provisions the performance penalty for switching
between the modes is very low (in the following we will
show that switching indeed occurs very fast). As a result, in
safety mode the performance of our reconfigurable dual-core
system meets that of a single core. In performance mode the
actual performance depends on cache hit rate and frequency of
data memory accesses. We are currently trying to assess the
respective performance figures in a systematic manner. This
paper, however, will focus on the fail-safe properties of the
proposed reconfigurable architecture.

III. IMPLEMENTATION OF THE SPLIT CORE FRAME

The proposed framework is based on the assumption of a
Harvard architecture for the processor cores used. Knowing
that most processors practically used in automotive applica-
tions exhibit a Harvard architecture this is a reasonable re-
striction. The concrete processor we use to test our framework
and to demonstrate its functionality is called SPEAR [18],
[19]. This processor was selected, because it provides all

Proceedings of the 2006 International Conference on Dependable Systems and Networks (DSN’06)
0-7695-2607-1/06 $20.00 © 2006 IEEE

� � � � � � � � � 	 �

 � �

 	 � � � 	 �

� � � � � � � � � 	 �

� � � �

� � � � �

� � � 	
 �

� � � � �

� � �
 � � � � 	

� � � 	
 �

� � � �

 � �

 	 � � � 	 �

� � � � �

� � � � �

� 	 � �

� � � � � �

� � � � � �

� 	 � � �

� � � � � �

 	 � � � �

� � � � � � � � � 	 �

� � � � � � �
� � � � � � � � � 	 �

� � � �

� � � � � � �

� � � �

	 � �

� � � �

� �
� � �

� � � �

� � � � � �
� � � � � � � � �

 	 � � � �

� � � � � � � � � 	 �
� � � �

� � � � � � �

� � � �

	 � �

� � � �

� �� � �
� � � �

� � � � � � � � � � � � � � �

� 	 � �

� � � � � �

� 	 � �

� � � � � �

� � � � � � �

� � � � � � � � � � � � �

� � � � � � � � � 	 � �

� � � � � �

� � � � � � � �

� � � � � � � � � � �

� � � �

� � � � � � � � � � �

� � � � �

� � � � � � � � � � �

� � � � � � � � � 	 �

� � � � � � �

� 	 � �

� � � � � �

� � � � � �

Fig. 1. Block diagram of the proposed reconfigurable dual core architecture

features found with state of the art processors. It is a RISC
processor with Harvard architecture, has memory mapped
IO and is able to meet the temporal demands of real-time
systems. Although today automotive processors normally have
32 bit bus width, we considered the 16 bit architecture of
SPEAR satisfactory for our study of the specific implementa-
tion problems of the reconfigurable dual-core systems. While
this choice does not change the fault tolerance properties we
intended to investigate, the resulting reduction in hardware
complexity allowed us to implement the system in an FPGA
and furthermore yielded shorter simulation time for the fault
injection experiments. Figure 1 shows the implementation of
the reconfigurable dual-core system.

The components of the frame are shown as transparent
boxes while the embedded standard components (processor
cores and memories) are shaded grey. Notice that we do not
duplicate the expensive memory components but employ non-
redundant ”safe memories” as proposed in [20] instead. The
main components of the reconfigurable dual-core frame are the
mode switch detect units, the mode-switch unit and the control
units for instruction RAM and data RAM. In the following we
will briefly sketch the functionality of these units.

A. Instruction RAM control unit (ICU):

The ICU handles all accesses of the two cores to their com-
mon instruction memory. In safety mode core 1 exclusively
supplies the instruction address (in case of a cache miss).

In response the ICU not only fetches the requested single
instruction, but automatically performs a burst access that
loads the complete 4 word cache block from the instruction
RAM. This block is directly passed through to the cache of
core 1, while core 2’s cache is provided the same block with
a delay of 1.5 clock cycles.

Since in performance mode both cores request instructions
independently, the ICU has to resolve simultaneous requests.
In general core 1 has priority over core 2. To avoid starvation,
however, core 2 is given priority when core 1 has already
accessed the instruction memory in the previous cycle.

B. Data RAM control unit (DCU):

The DCU handles accesses of the two cores to the pe-
ripherals and the data memory they share. In addition it
has to provide an individual identification bit for each core.
This information is crucial for identifying a core’s individual
role within the schedule in performance mode. This core
identification bit can be read by each core at a reserved
memory address. While this address is the same for both cores,
core 1 will read a 0 and core 2 a 1.

In safety mode all accesses to data memory and peripherals
are exclusively performed by core 1, while the requests from
core 2 are used for comparison only. Read data are fed to core
1 directly and to core 2 with the 1.5 clock cycle delay.

In performance mode the DCU has to prioritize simultane-
ous requests to data memory or peripherals from both cores.

Proceedings of the 2006 International Conference on Dependable Systems and Networks (DSN’06)
0-7695-2607-1/06 $20.00 © 2006 IEEE

Basically the same arbitration scheme is implemented as in
the ICU. In addition a semaphore mechanism is available for
locking the data memory (similar to the MESI-protocol): One
core can lock the data memory for exclusive use, while any
attempt by the other core to access the memory will be rejected
by the DCU until the memory is unlocked by the first core.
Locking and unlocking is performed by accessing the specific
memory location that is recognized by the DCU. The same
priority scheme applies as above.

We have moved this memory management function into the
DCU to relieve our standard cores from this requirement.

C. Mode switch detect unit:

The mode switch detect units are each snooping the in-
struction bus between the cache and the core. As soon as
they detect the mode switch instruction, they trigger the mode
switch unit. This functionality could easily be moved to the
cores’ instruction decoders. In our implementation, however,
we preferred the employment of external units, since one
of our initial aims was to use standard cores without any
modifications. A disadvantage of our implementation is that
the switch instruction becomes effective as soon as it is
fetched. Should a preceding jump change the program flow,
the switch instruction is still effective, although it is in the
branch delay slot and hence will be flushed from the core’s
pipeline. As a consequence the instructions at the branch target
will be executed in the wrong mode. This problem, however, is
easy to solve by standard compiler techniques like instruction
reordering.

D. Mode switch unit:

As already mentioned the mode switch is performed under
software control, while the mode switch unit provides the
necessary hardware support. The following code sequence
illustrates the switch procedure from safety mode to perfor-
mance mode:

LDL r1, 248
LDH r1, 255 (1)
MODE SWITCHING (2)
LDW r2,r1 (3)
BTEST r2, 1 (4)
JMPI CT (5)

In line (1) register r1 is loaded with the address of the
register location within the DCU that holds the core identifier
bit. Next (2) the mode switching instruction is executed. Since
the two cores are working in safety mode with a delay of 1.5
clock cycles, core 1’s mode switch detect unit is the first to
recognize the mode switching operation. In response it issues
a trigger (core1 signal) to the mode switch unit which in
turn halts core 1 by activating the signal wait1. 1.5 clock
cycles later core 2’s mode switch detect unit recognizes the
mode switch instruction. The mode switch unit now halts core
2 for half a cycle and aligns the clocks of the two cores in
phase. Next it changes the mode bit from safety mode to
performance mode and lets the two cores precede with their

operation – with now identical clocks. In the next step (3)
both cores load their core identifier bit from their respective
DCU. In line (4) this bit is checked and a conditional branch
is executed by core 2 in (5), because its identifier bit is 1.
Core 1 will not take the branch, since its core identifier bit
is 0. This finally causes the control flow of the two cores to
diverge as intended. The timing diagram for this procedure is
shown in Figure 2.

The right part of Figure 2 also shows the switch from
performance mode to safety mode, during which the individual
instruction flows of the two cores have to be merged. In the
example shown core 1 is the first to encounter a mode switch
instruction within its instruction stream. The mode switch
detect unit indicates this to the mode switch unit by activating
core1 signal. Like above the mode switch unit reacts by
halting core 1. In addition it activates the signal message2
now, thus triggering an interrupt at core 2. In response core
2 executes a routine to save its context and then jumps to
the mode switch instruction at which core 1 is still waiting
(the respective jump target is well known by the scheduler of
the operating system). Core 2 then also executes the switching
instruction upon which its mode switch detect unit also triggers
the mode-switch unit. At this point the mode switch unit halts
core 2 while letting core 1 start working again. It inverts the
clock for core 2 and lets core 2 start as well, but with the
desired delay of 1.5 clock cycles. After having initialized the
registers appropriately the two cores are finally synchronized
for the safety mode.

IV. THEORETICAL FAILURE ANALYSIS

In accordance with the chosen duplication and comparison
approach in safety mode the primary aim we want to achieve
is fail-safe behavior under the single-fault assumption. For this
purpose we must be able to prevent that erroneous data are
propagated to external components at any time. In particular
we want to prove that in safety mode our proposed reconfig-
urable frame performs as well as the traditional master/checker
architecture in this respect, or, in other words, that the addition
of the switching capability does not compromise the fail-
safe property. In this section we will therefore systematically
analyze our architecture for single points of failure. In this
analysis we will distinguish four different areas to protect:
the interfaces, the memories, the cores and the non-duplicated
components within the frame.

A. Memories

The duplication of memories would be advantageous for
performance mode as well as for safety mode. Considering,
however, that the memory usually is by far the largest – and
hence most expensive – part of the processor and is easy to
protect by means of coding, a duplication is a very costly
and inefficient solution. Therefore we have decided to use a
single data memory and a single instruction memory that are
both shared by the two cores. We have developed a special
”safe memory” that is equipped with sufficient error detection
and self-testing capabilities to tolerate any single fault. These

Proceedings of the 2006 International Conference on Dependable Systems and Networks (DSN’06)
0-7695-2607-1/06 $20.00 © 2006 IEEE

� 	
 � � � � � � � �

� � � � � � � �

� � � � �

� � � � �

� � � � � � � �

� � �

� � � � � � � 	 � �

� � � � � 	
 � �

� 	
 � � � � � � � �

� 	 � �� � � � �

Fig. 2. Timing diagram illustrating the mode switching

memories will not further be detailed here; the interested
reader is referred to [20].

A substantial problem for the data memory is retaining the
integrity of safety relevant data while the core is operating
in performance mode. Since the cores are not protected
in performance mode, their operation is no more fail safe
and they might well perform erroneous accesses to external
components. While this behavior can in general be accepted
during non-critical calculations, provisions must be made to
prevent the pollution of safety relevant data. Such a service is
usually provided by a memory management unit (MMU) that
permits access to a sensitive memory area in supervisor mode
only. However, demanding that the cores must be equipped
with an MMU would severely limit the choice of applica-
ble cores, therefore we have decided to move the required
functionality to our safe memory. The memory simply uses a
dedicated core mode signal issued by the mode switch unit
to distinguish, whether the core is operating in performance
mode or in safety mode. Provided with this information the
memory can enforce a write protection for a specific area
during performance mode and hence effectively protect safety
relevant data from being erroneously overwritten. The same
solution can be applied for external peripherals holding safety
relevant data.

Obviously this solution relies on the integrity of the core
mode signal. Therefore this signal is protected by dual-rail
coding (see below). Furthermore we must ensure that there is
no erroneous mode change from performance to safety mode
and that no erroneous assignment of core mode as safety
mode is possible in performance mode (which would allow a
task in performance mode to disguise as one in safety mode).
These issues will be discussed later.

B. Cores

DCU and ICU are both equipped with internal comparators
that check the equality of the inputs from both cores in safety

mode (properly considering the 1.5 cycle delay of core 2). Just
like in the traditional master/checker architecture this approach
effectively detects all faults of a single core as soon as they
become effective at the output. Notice that in our approach
the caches – although not considered part of the processor
core but implemented separately within the frame – are also
included in this protection, since they are in the signal path
from processor core to ICU.

The comparators are not duplicated, therefore they have
been designed as totally self-checking components as proposed
in [21], [22]. If the comparison of the output signals is time-
critical, an approach for the comparator as shown in [23] can
be used. All signals on the output buses are compared: data-
lines, address-lines and the incoming and outgoing control
signals to and from the external modules. Obviously the
comparator output is meaningful in safety mode only.

For economic reasons both cores are located on the same
die. This causes the potential for common mode failures,
especially in response to faults on the (common) clock or the
(common) power supply. According to the results presented
in [24] time diversity is a very efficient means to defeat these
types of common mode failures. Therefore we are operating
core 2 with a delay of 1.5 clock cycles in safety mode. Still,
however, we have to take a closer look at the specific fault
types on clock and power supply lines:

Clock: Hypothesized failures of the clock signal are a totally
missing clock and a partially missing clock (i.e. for some
components). Failures in the clock generator resulting in pulse
omissions are not considered here, because they should be
solved in context with the clock generator concept. Transients
on the clock line are common mode failures and should hence
be covered by the time diversity.

As shown in [25] a missing clock signal or a severely “hung-
up” core is difficult to discover by an internal mechanism,
hence an external reference like a watchdog is necessary.
Consequently one of the two cores can be assigned the

Proceedings of the 2006 International Conference on Dependable Systems and Networks (DSN’06)
0-7695-2607-1/06 $20.00 © 2006 IEEE

responsibility to trigger the watchdog. This, however, does not
provide complete coverage of all partial clock failures unless
the watchdog is triggered by the core mode signal:

A generic structure of the global clock net that distributes
the clock among the components of our system is shown in
Figure 3. Imagine the case that the clock line is disrupted at
position (2). This will cause core 1 to continue working, while
all other components will stop. The data frozen in the delay
component and the data frozen in core 2 will probably be the
same, therefore the comparators will never activate their error
signal, even in case the master should produce an erroneous
output. If core 1 were assigned the task to toggle the watchdog,
both the watchdog and the comparator would fail to detect this
error.

�
�
 � � � �
 � � 	

� � � � � � 	 �

� 	
 � � � � 	
 � � �� � � � � 	 � �

� � 	 � � � � 	 �
 � �

!

"

� 	 � �

� � � � � �

� � �

�

�

 	
 � � � � � �

Fig. 3. Possible fault locations in the clock tree

A much better solution is to trigger the watchdog with
the core mode signal issued by the mode switch unit. As
explained above, a mode switch requires a trigger by both
cores. If the clock line is broken at position (1) core 1 will
stop working, which further inhibits any mode change. For
disruptions at positions (2), (4) or (5) core 2 will stop its
operation, which again blocks any further mode change. The
missing mode change will eventually allow the watchdog to
detect the error. The same is, of course, true for a totally
missing clock, provided that the watchdog is timed from a
source independent of the clock to be checked. Finally, a
disruption at position (3) will cause a malfunction of the delay
component, which will be detected by the comparator in safety
mode. To force the triggering of the watchdog when running
an application continuously in safety- or performance mode,
the programmer has to insert “dummy” mode switches. Since
these do not occur too frequently and are executed very fast,
their overhead will be negligible. In summary the proposed
strategy ensures that all partial clock failures are covered.

Power supply: Disruption in the power supply will either
result in a total stop of the system or – in case of spikes or
transient outages – in a temporary disruption of the operation
of one or more components. Again the time diversity ensures
that the disruption will cause different effects in the two cores.
Moreover, such types of failures tend to result in a program
flow disruption, such that the mode switch unit will very likely
not trigger the watchdog correctly. If only one component is

disrupted, the comparators will detect the failure in safety
mode. Low supply voltage of the comparators will also be
detected, because the dual-rail signals will not be able to
display a proper high logic level. In summary we can expect
all power supply failures to be detected in safety mode, while
failures are likely to occur in performance mode.

The mode switch detect units are also duplicated . Unlike
the caches, however, their behavior is not checked by a
comparator. As will become clear later on, an erroneous
behavior of the mode switch detect units (i.e. false or missing
requests) can be detected by the mode switch unit.

C. Interfaces

Buses: The buses for the incoming and outgoing data and
instructions are quite easy to protect against single faults by
means of parity. In order to ensure that in the safety mode
at least one core is getting correct data – otherwise the bus
would constitute a single point of failure – the buses for the
incoming data are routed as shown in Figure 4.

� �
 � � �

� � � � � �

� 	 � � 	 � � � �

� � 	 � � 	 � � � �
� � � �

� � � �

� � � � � �

� �
 � � �

� � � � � �

Fig. 4. Routing of the buses for incoming data

The parity checkers are implemented totally self checking
and their output signal is coded as an alternating dual-rail
signal to make stuck-at-inactive behavior of the parity checker
detectable. A multiplexor routes the data to core 2 over a
1.5 clock cycles delay element in safety mode and feeds
the data directly to core 2 in performance mode. Under the
single-fault assumption this multiplexor need not be explicitly
secured, since its failure will lead to a comparator mismatch
in safety mode. (In performance mode a faulty multiplexer
might erroneously delay the data, which will decrease the
performance of core 2.)

The proposed implementation of the data path for outgoing
data is shown in Figure 5. Here it is important to generate the
parity for the outputs of both cores individually and include
it in the comparison. This way the two parity generators
are checking each other and hence do not require additional
protection. Any single fault on the data path beyond the
checker can safely be detected by a parity check at the des-
tination. Some types of single faults in the multiplexor might
cause multiple faults on the data bus (incorrect switching,
e.g.). Therefore the multiplexor implementation needs special
attention (for details see [26]).

Single-bit inputs: For the protection of single-bit input
signals like interrupts or reset dual-rail coding is employed.
After having passed through an input synchronization stage,

Proceedings of the 2006 International Conference on Dependable Systems and Networks (DSN’06)
0-7695-2607-1/06 $20.00 © 2006 IEEE

� � � � �

� � 	 � � � 	 � � � �

� � 	 � � � 	 � � � �

� 	 � � �

�
 � � 	 � � � �

� � � � � � �

� �
 � � �

� � �
 � � �

� �
 � � �

� � �
 � � �

Fig. 5. Routing of the buses for outgoing data

the non-inverted rail of such a signal is routed to core 1,
while the inverted rail goes to core 2. Care should be taken
to perform the re-inversion of the rail at core 2 only after the
delay unit, where the temporal redundancy already provides
protection. At this point common mode failures caused by
electromagnetic interference, for instance, would either result
in the two cores executing the interrupt or the reset at different
points in time (relative to their respective program flow) or
only one executing an interrupt or a reset at all. Both these
types of diverging control flow can be easily detected by the
comparators.

In performance mode the delay for the core 2 interrupt
is disabled. The reset signal for core 2 is always delayed,
since after a reset the reconfigurable dual-core system always
restarts in safety mode.

Single-bit outputs: All internal error detection mechanisms
have to indicate their error status by an alternating dual-rail
signal as shown in [27] and [28]. In case a mechanism detects
an error, its output goes to “00” or “11”, while the output
is “01” or “10” otherwise. This coding is also applied for
the core mode signal. It allows an evaluation by a dual-rail
comparator. In order to detect stuck-at faults on a single rail
early, the signal has to alternate with every check performed,
i.e. even if the status remains unchanged the other semantically
identical codeword is used. It is important to retain the dual-
rail encoding beyond the chip outputs, since otherwise the
output pins are unprotected.

D. Non-duplicated components

Mode switch unit: The mode switch unit must ensure that
the safety critical procedure of switching between the two
modes is executed correctly. For this purpose (1) its imple-
mentation must be appropriate for the single-fault assumption,
and (2) the mode switch procedure implemented within this
unit must be able to cope with (single) erroneous inputs. With
respect to (2) we have to further distinguish two cases: (a)
An erroneous request for a mode switch is issued by one
side, or (b) a scheduled mode switch request from one side
is erroneously suppressed by the other side. In both cases the
reason may be a single fault in one of the cores, the associated
mode switch detect unit or the software.

As already outlined in the previous section, a request from
both cores is required for a mode switch to be actually
executed. Therefore case (2a) ends up with the erroneous core
being blocked by its own request, while the fault-free core
continues working properly. In safety mode this situation will
lead to a comparator mismatch, while in performance mode the
erroneous core’s task(s) will simply not further be executed,
which degrades a non-critical service. In case (2b) the fault-
free core is unnecessarily blocked by the faulty core, but only
until the watchdog times out (remember that an actual mode
change is required to trigger the watchdog). Since errors in the
program flow of one core tend to cause inappropriate/missing
mode changes, the mode change mechanism has the potential
for detecting control flow errors.

Let us consider the implementation of the mode switch unit
now (case (1) from above). One main duty of the mode change
unit is to provide the appropriate clock for core 2 depending
on the current mode. In safety mode any failure in the
clock is detected by the comparators, because the well-defined
temporal relation between master and checker becomes upset.
The other main duty of the mode switch unit is to synchronize
the operation of the two cores upon a mode switch. Failure
of this service will again upset the intended temporal relation
in safety mode and hence be detected by the comparators.
Finally the mode switch unit has to generate the core mode
signal which has a critical functionality for memory access
and triggering the watchdog. As already mentioned this signal
is dual-rail coded (and also generated in a dual-rail fashion)
to protect it from single faults.

Instruction RAM control unit (ICU): The ICU imple-
ments the interface protection for the outgoing instruction
address bus and the incoming instruction bus as shown in
Figure 4 and Figure 5, respectively. Since parities are checked
in every mode, while a comparison of the instruction addresses
issued by the cores is performed in safety mode only, an error
signal is provided for each mode individually. The appropriate
signal (dual rail) is selected by the mode switch unit. In
addition the ICU is responsible for generating the address
sequence for the burst access. The state machine required for
this purpose is implemented for each core separately, such
that in safety mode the outputs of these state machines can
be compared. The priority handling feature for the memory
accesses is used in performance mode only, therefore this
functionality is uncritical.

Data RAM control unit (DCU): The DCU implements
the interface protection for the incoming data bus and the
outgoing data and address buses. Generation and handling of
the error signals are the same as in the ICU. In addition the
core identification bit is maintained by the DCU. Basically
this bit is used in performance mode only and therefore not
safety relevant. Since it is memory mapped, however, it is
secured by a parity like all other memory words to keep the
access regular. Like with the ICU the state machine for burst
access is duplicated, while the priority resolution for memory
accesses and the semaphore mechanism are not secured, since
they are used in performance mode only.

Proceedings of the 2006 International Conference on Dependable Systems and Networks (DSN’06)
0-7695-2607-1/06 $20.00 © 2006 IEEE

V. FAULT INJECTION EXPERIMENTS

In order to validate our theoretical fault analysis we have
carried out a series of fault injection experiments on the
proposed reconfigurable generic dual-core architecture. Our
aim was to figure out whether the architecture was indeed
able to detect all single faults in safety mode. In addition,
since we obviously cannot expect our system to reliably detect
faults while in performance mode, we wanted to study fault
propagation from performance mode to safety mode. Finally
the effect of faults that affect the switching between the modes
should be assessed.

For these experiments the dual-core consisting of two
SPEAR cores and the fault tolerant reconfigurable frame was
implemented in VHDL. As shown in Figure 6 two instances
of this reconfigurable dual-core architecture have been used in
the test environment, one as device under test and another as
golden device that operates in lock-step with the device under
test and serves as a fault-free reference.

� � � �

$ � � � 	
 �

� 	 � � �
 �

� � � 	
 �

� � � �

� � � � �

% �
 � � �

� � �

% �
 � � �

� � �

% �
 � � �

� � �

&

 	
 � � � � � � � � 	 � ' � � �

&

 	
 �

� � � � � � � ' � �

� � 	 � �

� 	
 � � � 	 � � (� �
 � �

&

 	

� � � � � � � � � 	 �
 � � � �

)
 � � 	 � � � �
 � ' � �

� � � � � � 	
 � *

(� �
 � � � � 	 � + � �
 � � �

(� �
 � � � � 	 � � � � �

� � � � � + � �
 � � �

� � � � � , � �

� � � � � (

� � � � � 	 �
 	 �

&

 	
 � � � � � �� � 	 � �

� 	
 � � � 	 � �

� � � 	 � � � � � � � � �

)
 � � 	 � � � �
 � ' � �

� � � � � � 	
 � *

(� �
 � � � � 	 � + � �
 � � �

(� �
 � � � � 	 � � � � �

� � � � � + � �
 � � �

� � � � � , � �

� � � � � (

� � � � � 	 �
 	 �

&

 	
 � � � � � �� � 	 � �

� 	
 � � � 	 � �

Fig. 6. Fault injection setup

The test environment has been synthesized to a net list in
EDIF format (electronic design interchange format). Fault in-
jectors were inserted into this net list at each logic gate input of
the device under test. The fault injector is capable of injecting
selected stuck-at-one and stuck-at-zero faults at runtime. From
this exhaustive list of faults each was activated exclusively
once per experiment. We consider the stuck-at fault model
sufficient for our purpose of coverage assessment, since our
concurrent error detection mechanisms are triggered with an
extremely short latency, and it makes no difference whether the
fault persists after detection – only the fault effectiveness will
turn out higher for permanent faults. Therefore the observed
coverage results can be reasonably projected to the bit flip or
transient fault model that are anticipated to dominate during
field operation.

To attain higher flexibility with respect to the workload we
decided to emulate the instruction RAM by the test controller
(a PC). Although golden device and device under test are

supplied with identical instruction streams, they can access
the instructions independently. This allows us to observe the
behavior of the device under test even if it deviates from that
of the golden device, and hence figure out whether an error is
detected and/or has an effect on the workload result later on;
e.g. during or after switching the mode.

In particular we needed to observe the following things
during the experiments :

1) Has the injected fault become effective? To address this
question we compare all signals issued by our device
under test to (virtual) external components like the
data memory or memory mapped peripherals with the
respective reference signals from the golden device. In
case of a comparator mismatch (indicated by the signal
mismatch) we can conclude that the device under test
has failed as a result of the injected fault.

2) Has the resulting error been properly detected in time,
that is within 2 clock cycles after the error became
effective? To address this question we can check wether
an error has been detected by a mechanism inside the
reconfigurable dual-core framework (signal internal
error) or is detectable by an external device that
employs a parity test on the buses (signal error
detectable).

3) In which operating mode is the system and is it still
working (and triggering the watchdog)? We can check
this by observing the core mode signal and the se-
quence of instruction addresses.

By monitoring all the above signals on a cycle-by-cycle
base we can assess the temporal relations, in particular we
can find out whether error detection occurred before an error
had an effect. In order to facilitate a more detailed analysis,
we have kept track of whether a fault has been inserted into
core 1, core 2 or the frame, and added this information to the
respective entry in the observation record.

VI. EXPERIMENTAL RESULTS

According to our aims stated above we have executed
two experiment series: In fault injection experiment (1) the
reconfigurable dual-core system was operated in safety mode
only. The selected fault was active all the time. Experiment
(2) was aimed at studying the mode switching and the fault
propagation from performance mode to safety mode. It started
out with a short instruction sequence in safety mode, then a
switch to performance mode was initiated with two different
applications being executed on the two cores, and finally
the workload switched back to safety mode, where the same
application was executed as in experiment (1). The fault was
activated after having spent a few clock cycles in performance
mode.

A. Experiment (1)

Altogether 139632 faults were injected into the reconfig-
urable dual-core system. 121200 of these faults could be
activated by the workload, in the sense that they either had

Proceedings of the 2006 International Conference on Dependable Systems and Networks (DSN’06)
0-7695-2607-1/06 $20.00 © 2006 IEEE

an effect (mismatch with the golden device) or were de-
tected/detectable. This is about 87 percent of all injected faults.
In the frame containing the safety critical single components
such as the parity checker and the buses 11502 faults were
injected. 4275 of these faults could not be activated, because
(a) a part of the logic is only used in performance mode and (b)
we could not simulate external components such as memory
with an address space of 16 bit. Although this means that
our experimental results do not cover the full address space
directly, we can reasonably assume that these faults would also
be detected, because the error detection mechanisms for the
involved logic gates are the same as those for the address area
that we did cover.

Table I shows the results of experiment (1).

TABLE I

RESULTS OF THE FAULT INJECTION EXPERIMENTS PERFORMED

EXCLUSIVELY IN SAFETY MODE

component master slave frame overall

detected without effect 1029 56962 5334 63325
detected before effect 5026 0 1324 6350

detected during or after effect 50956 0 569 51525
not detected without effect 7055 7102 4275 18432

not detected with effect 0 0 0 0

64066 64064 11502 139632

Faults in core 1 mostly became effective. The proportion
of errors in core 1 that were detected before their effect
propagated to the output, depended on the workload. Hence
these numbers would look different for a different workload.
Errors in core 2 never had an effect on the output. This is
no surprise because in safety mode the output of core 2 is
only connected to the comparators and not to the outgoing
buses. Another interesting observation was that the core mode
was correct all the time throughout the experiments. The
most important result, however, was the confirmation that
all activated failures were detected within a latency of at
most 1.5 clock cycles. So with an output delay of 2 clock
cycles (as proposed in [26], e.g.) complete error confinement
can be ensured. Hence the reconfigurable dual-core system
is, when running in safety mode, as safe as a conventional
master/checker system.

B. Experiment (2)

The results of the second experiment are shown in Table
II. Here also a total of 139632 faults were injected of which
121072 (like before about 87%) could be activated by the
workload. 63703 of these faults had an effect in performance
mode, but only 28662 were detected during operation in
performance mode. When the system switched back to safety
mode all of the residual faults were detected but for 458. A
closer analysis revealed that these 458 faults affected logic that
was not used in safety mode. This explains why they could
not be detected, and at the same time confirms that their non-
coverage is not a safety issue. All faults that had no effect
in the performance mode but turned out to have an effect in
safety mode were also detected.

Obviously the poor coverage in performance mode is due
to the lack of the comparison with the checker; errors were
only detected by the watchdog. In these cases the instruction
address of the reconfigurable dual-core system was not chang-
ing any more and without the watchdog the system would not
switch back to the safety mode as intended. This demonstrates
the central role of the watchdog for preventing our system from
being hung up in performance mode.

With reference to the aims of our experiments we can
conclude, that the proposed reconfigurable dual-core system
can detect any single fault – even in the non-duplicated dual-
core frame – when operating in the safety mode. Our exhaus-
tive experiments did not reveal any single point of failure.
Error detection coverage in performance mode, however, is as
poor as that of every non-duplicated system without specific
protection. Even though our experiments have shown that all
relevant faults are reliably detected upon switching to safety
mode, two important points have to be considered: (1) A
watchdog is necessary to enforce the switch to safety mode
in case the system gets hung up in performance mode. (2)
To avoid data pollution in external components it is necessary
to protect safety relevant external information. This may be
achieved through a write protection for critical memory areas
during performance mode.

VII. CONCLUSION

Considering the fact that not every task in an embedded
system is safety-critical we have proposed an architecture that
can either be configured in a fail safe master/checker fashion
for safety critical tasks (safety mode), or in a dual processor
fashion for enhanced performance (performance mode). In this
paper we have focused on the safety mode. We have shown
that with a careful implementation mainly based on the self-
checking principle and dual-rail coding complete coverage
of single faults can be obtained even for the non-duplicated
function units of the reconfigurable dual-core framework. Our
analysis has pointed out that in the proposed implementation
all single points of failure and all common-mode failures –
even at the input, output or error signals – can be eliminated
in the safety mode, if several layout rules are obeyed and if
the operation of the checker is delayed by 1.5 clock cycles.
We have further shown that in safety mode the system does
not produce wrong results even in case of error propagation
from performance mode. The only requirements for this are the
availability of some basic kind of memory protection and the
provision of a watchdog. Comprehensive experimental results
have confirmed our theoretical analysis: No coverage violation
has been observed in safety mode.

We have carefully minimized the assumptions on the pro-
cessor core and have consequently treated the core as a black
box. This makes our solution generic and allows its use
in conjunction with virtually any standard processor core.
The area overhead of the presented reconfigurable dual core
architecture relative to a standard master-checker solution [11]
is as low as 11% (using SPEAR cores in both cases).

Proceedings of the 2006 International Conference on Dependable Systems and Networks (DSN’06)
0-7695-2607-1/06 $20.00 © 2006 IEEE

TABLE II

RESULTS OF THE FAULT INJECTION EXPERIMENTS IN PERFORMANCE MODE

effect of the fault component
master slave frame overall

detected in performance mode detected without effect 0 0 1473 1473
detected before effect 0 0 1149 1149

detected during or after effect 0 0 423 423
not jumped to lock mode 17203 7713 701 25617

effect but not detected detected without effect 29475 4492 616 34583
in performance mode, detected before effect 0 0 0 0
then in safety mode detected during or after effect 0 0 0 0

not detected without effect 265 11 182 458
not detected with effect 0 0 0 0

no effect and not detected detected without effect 64 44066 3585 47715
in performance mode, in detected before effect 0 0 0 0
safety mode detected during or after effect 9542 0 112 9654

not detected without effect 7517 7782 3261 18560
not detected with effect 0 0 0 0

64066 64064 11502 139632

Future work will be directed towards investigating the
performance of the architecture in performance mode. Our
experiments have confirmed so far that the switching between
the modes can indeed be done very fast during runtime.
Further efforts will be devoted to developing a strategy for
fast recovery of the dual-core in safety mode.

REFERENCES

[1] R. Baumann, The Impact of Technology Scaling on Soft Error Rate
Performance and Limits to the Efficacy of Error Correction, Electron
Devices Meeting 2002. IEDM’02. Digest.International, pp. 329-332,
2002.

[2] G. Georgakos, Radiation Induced Soft Error Rate for SoC Designs,
Infineon Customer Information, Vers. 2.1, Febr. 2003.

[3] A. Allan, D. Edenfeld, W.H. Joyner, A.B. Kahng, M. Rodgers and
Y. Zorian, 2001 Technology Roadmap for Semiconductors, Computer, Vol.
35, no. 1, pp. 42-53, Jan. 2002.

[4] E. Boehl, T. Lindenkreuz and R. Stephan, The fail-stop controller AE11,
Proceedings of the International Test Conference, pp. 567-577, 1997.

[5] I.D. Elliott and I.L. Sayers, Implementation of a 32-bit RISC processor
incorporating hardware concurrent error detection and correction, IEE
Proceedings of Computers and Digital Techniques, Vol. 137, No. 1, pp.
88-102, 1990.

[6] R. Russell and I.D. Elliott, Design of highly reliable VLSI processors
incorporating concurrent error detection/correction, Euro ASIC, pp. 316-
321, 1991.

[7] M. Pflanz and H.T. Vierhaus, Online check and recovery techniques for
dependable embedded processors, Micro, IEEE, Vol. 21, No.5, pp. 24-40,
2001.

[8] J.H. Patel and L.Y. Fung, Concurrent Error Detection in ALUs by
Recomputing with Shifted Operands, IEEE Transaction on Computers,
Vol. C32, No. 7, pp. 589-595, 1982.

[9] J. Li and E.E. Swartzlander, Concurrent error detection in ALUs by
recomputing with rotated operands, Defect and Fault Tolerance in VLSI
Systems, Proceedings of the IEEE International Workshop on, pp. 109-
116, 1992.

[10] A. Steininger and C. Scherrer, Identifying Efficient Combinations of
Error Detection Mechanisms Based on Results of Fault Injection Ex-
periments,IEEE Transactions on Computers, Vol. 51, No.2, pp. 235-239,
2002.

[11] T. Kottke and A. Steininger, A Generic Dual Core Architecture, Pro-
ceedings of the IEEE Design and Diagnostics of Electronic Circuits and
Systems Workshop, pp. 159-166, 2004.

[12] R. Angerbauer, E. Boehl, Y.von Collani, B. Fehrenbacher, R. Gmehlich,
C. Graebitz, W. Harter, F. Hartwich, T. Kottke, J. Lutz, B. Mueller,
W. Pfeiffer and R. Weiberle, Bosch internal report.

[13] MC88100 32-Bit RISC Microprocessor Technical Summary, Document
MC88100/D, Mototola Inc. 1990.

[14] D.E. Lenoski, A highly integrated, fault-tolerant minicomputer: the
NonStop CLX, Compcon Spring 88, Thirty-Third IEEE Computer Society
International Conference, Digest of Papers, pp. 514-519, 1988.

[15] R. Kalla, B. Sinharoy and J.M. Tendler, IBM Power5 chip: a dual-core
multithread processor, Micro, IEEE, Vol. 24, No. 2, pp. 40-47, 2004.

[16] T. Takayanagi, J.L. Shin, J. Su, A.S. Leon, Deep-submicron design chal-
lenges for a dual-core 64b UltraSPARC microprocessor implementation,
International Conference on Integrated Circuit Design and Technology,
pp. 147-150, 2004.

[17] O. Gonzalez, H. Shrikumar, J.A. Stankovic and K. Ramamritham,
Adaptive fault tolerance and graceful degradation under dynamic hard
real-time scheduling, Proceedings of the 18th IEEE Real-Time Systems
Symposium, pp. 79-89, 1997.

[18] M. Delvai, SPEAR Handbook, Technical Report, Technische Universität
Wien, Institut für Technische Informatik, Vienna, Austria, 2002.

[19] M. Delvai, W. Huber, P. Puschner and A. Steininger, Processor Support
for Temporal Predictability - The SPEAR Design Example, Proceedings
of the 15th Euromicro Conference on Real-Time Systems, pp. 169-176,
2003.

[20] T. Kottke and A. Steininger, A Fail Silent Memory for Automotive
Applications, IEEE European Test Symposium, Infomal Digest of Papers,
pp. 253-258, 2004.

[21] S.R. Manthani and S.M. Reddy, On CMOS Totally Self-Checking Cir-
cuits, Proceedings of the International Test Conference, pp. 866-877,
1984.

[22] M. Abramovici, M.A. Breuer and A.D. Friedman, Digital Systems
Testing & Testable Design, Wiley-IEEE Press, 1994.

[23] S. Kundu, E.S. Sogomonyan, M. Goessel and S. Tarnick, Self-checking
comparator with one periodic output, IEEE Transactions on Computers,
Vol. 45, No. 3, pp. 379-380, 1996.

[24] N. Kanekawa, T. Meguro, K. Isono, Y. Shima, N. Miyazaki and
S. Yamaguchi, Fault Detection and Recovery Coverage Improvement by
Clock Synchronized Duplicated Systems with Optional Time Diversity,
IEEE Proceedings of FTCS, Vol. 28, pp. 196-200, 1998.

[25] A.M. Usas, A Totally Self-Checking Checker Design for the Detection of
Errors in Periodic Signals, IEEE Transactions on Computers, Vol. C-24,
No. 5, pp. 483-489, 1975.

[26] T. Kottke and A. Steininger, Dual Core Architecture with Error Con-
tainment, East-West Design & Test International Workshop, Proceedings
of, pp. 102-108, 2004.

[27] W.C. Carter and P.R. Schneider, Design of Dynamically Checked
Computers, Proc. IFIP‘68 World Computer Congress, Amsterdam, The
Netherlands, pp. 878-883, 1968.

[28] W.C. Carter, Hardware Fault Tolerance, Resilient Computer Systems
(edited by T. Anderson), Collins, London, pp. 11-63, 1985.

Proceedings of the 2006 International Conference on Dependable Systems and Networks (DSN’06)
0-7695-2607-1/06 $20.00 © 2006 IEEE

