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w ith device characterist ics 
approaching physical limits, 
parallel or distributed process- 

ing has been widely advocated as a promis- 
ing approach for building high per- 
formance computing systems. The con- 
tinued impetus in research in these areas 
arises from two factors: (a) the technolog- 
ical development in the areaof VLSI chips 
and (b) the observation that significant 
exploitable software parallelism is inher- 
ent in many scientific and engineering 
applications. 

To exploit this parallelism efficiently, a 
parallel/distributed system must be 
designed to considerably reduce the com- 
munication overhead between the proces- 
sors. The communication architecture of 
the system might support one  application 
well but might prove inefficient for others. 

Therefore, we need to take a general 
approach, independent of the application, 
while designing the communication system 
or the interconnection network (IN) of a 
general-purpose parallel/distributed sys- 
tem. The IN  must be efficient, reliable, 
and  cost effective. A complete intercon- 
nection, such as a crossbar, might be cost 
prohibitive, but a shared-bus interconnec- 
tion might be inefficient and  unreliable. 
Thus,  present research is directed to 
designing INS whose cost and performance 
lie somewhere between the two extremes. 

Multiprocessor 
designers need 

analytical techniques 
to evaluate network 
performance. This 
article presents a 
tutorial on these 

evaluation tools to 
guide designers 

through the design 
process. 

Ongoing research in the area of paral- 
lel and distributed processing suggests a 
number of promising INS. Because of  the 
high cost involved in hardware implemen- 
tation or software simulation of  these INS, 
performance evaluation of these networks 
needs t o  be carried out  through analytical 

techniques so that we can make a choice 
between various alternatives. A mathe- 
matical model makes it possible t o  study 
the efficiency of the IN in terms of various 
design parameters used as inputs to a 
model. Therefore, the intent of  this arti- 
cle is t o  provide a tutorial on the subject of 
performance evaluation of multiprocessor 
interconnection networks to guide system 
designers in their design process. 

A classification of parallel/distributed 
systems. We can divide general-purpose 
parallel/distributed computer systems into 
two categories : multiprocessors and 
multicomputers. The main difference 
between them lies in the level at  which 
interactions between the processors occur. 

A multiprocessor must permit all 
processors to directly share the main mem- 
ory. All the processors address a common 
main memory space. In a multicomputer, 
however, each processor has its own mem- 
ory space, and sharing between the proces- 
sors occurs a t  a higher level as with a 
complete file or data set. A processor can- 
not directly access another processor’s 
local memory. 

Multiprocessors can be further divided 
as tightlycoupled and  loosely coupled. In 
a tightly coupled system, the main mem- 
ory is situated at  a central location so that 
the access time from any processor t o  the 
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Multiprocessors Multicomputers 

(Examples: Ring, Star, A Tree, and Hypercube) 

Tightly coupled Loosely coupled 

(Examples: C.mmp, (Examples: Cm*, 

Multimax, and Alliant) Butterfly, and RP3) 

Figure 1. A classification of parallel/distributed systems. 
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Figure 2. A single shared bus structure. 
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Figure 3. A crossbar interconnection network. 

memory is the same. In addition to  this 
central memory (also called main memory, 
shared memory, global memory, etc.), 
each processor might consist of some local 
memory or cache. The C.mmp of Car- 
negie Mellon University, the Multimax of 
Encore Computer, the FX of Alliant, and 
the Balance series of Sequent Corp. are 
examples of such tightly coupled mul- 
tiprocessors. 

In a loosely coupled system, the main 
memory is partitioned and attached to the 
processors, although the processors share 
the same memory address space. A proces- 
sor can directly address a remote memory, 
but the access time is much higher com- 
pared to  a local memory access. As a 
result, partitioning and allocation of pro- 
gram segments and data play a crucial role 
in the overall performance of an  applica- 
tion program. The Cm*of  CMU,  the But- 
terfly machine of BBN Laboratories, and 
the RP3  of IBM are examples of such 
architectures. 

As mentioned previously, the memory 
in a multicomputer is not shared. The 
interaction between the processors relies 
on message passing between the source 
and destination processors (nodes). The 
message passes over a link that directly 
connects two nodes and might have to pass 
through several such nodes in a store-and- 
forward manner before it reaches its des- 
tination. Therefore, each interaction 
involves a lot of communication overhead, 
and only those applications that need less 
interprocessor communication are well 
suited to  multicomputers. 

The multicomputers are usually based 
on topologies such as ring, tree, star, 
hypercube, etc. Hypercube machines such 
as Intel's iPSC are commercially available. 
Based on  the description above, a classi- 
fication of parallel/distributed computers 
appears in Figure 1. The classification does 
not include array and pipelined computers 
and local area networks. This is because 
array or pipelined computers are part of 
parallel processing but not distributed pro- 
cessing and, similarly, LANs are part of 
distributed processing but not parallel pro- 
cessing. 

Essentially, our classification is valid for 
multiple instruction stream, multiple data 
stream computers. This article will concen- 
trate solely on multiprocessor INS. A dis- 
cuss ion  o f  t he  p e r f o r m a n c e  o f  
multicomputer interconnection networks 
can be found in Reed and Grunwald. '  

Multiprocessor IN topologies. A multi- 
processor organization is defined in terms 
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design of its IN. A shared-bus interconnec- 
tion, shobn in Figure 2 ,  is the least com- 
plex a n d  most  popu la r  a m o n g  
manufacturers. The Multimax and Alliant 

shared bus does not allow more than one 
transfer bemeen the processors and mem- 
ories at a time. A large number o f  proces- 
Fors means a long uait for the bus. 

O n  the other hand, a crossbar, as used 
in C .mmp and depicted in Figure 3, sup- 
ports all possible distinct connections 
between the processors and  memories 
simultaneously. Unfortunately, the cost of 
such a network is O ( N M )  for connecting 
Ninputs and Moutputs.  For a system with 
hundreds of processors and memories, the 
cost of such an  IN is prohibitibely high 

In terms. of cost and performance, mul- 
tistage interconnection netuorks (MINs) 
and multiple-bus networks achiebe a 
reasonable balance between those of a 
shared bus and crossbar. MINs and 
multiple-bus networks are depicted in 
Figures 4 and 5 ,  respectively, and will be 
described in later sections. Then, u e  wi l l  
investigate the performance of these net- 
works. A shared bus IS essentially a special 
type of multiple-bus IN with the number 
of buses equal t o  one.  

A A 
are examples of such multiprocessors. The B B 

(a) Control bit of A-0 Control bit of A-1 

(b) Inputs Outpts 

Classification of INS 
Figure 4. Operation of a 2 x 2 switch in 4a, and an 8 x 8 omega network in 4b. 

An IN is a complex connection of 
switches and links that permits da ta  com- 
munication between the processors and 

lent networks can have different opera- 
t ional characteristics giving rise to 
different system behaviors. These opera- 
tional characteristics also necessitate 
different methodologies t o  be used in IN 
performance evaluation. 

B1 
B 2  

Fib 

Timing philosophy. Timing philosophy 
is one of the most important attributes 
characterizing a communication system. 
Basically, there are two types of possible 
timing schemes in a system: synchronous 
and asynchronous. 

Synchronous control techniques are 
well understood and  widely used in com- 
puter system designs. They are character- 
ized by the existence of a central, global 
clock that broadcasts clock signals t o  all 
devices in a system so that the entire sys- 
tem operates in a lock-step fashion. Figure 5. A multiple-bus multiprocessor system. 
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Figure 6. A classification of multiprocessor interconnection networks. 

Asynchronous techniques, on the other 
hand, operate without a global clock. The 
communications among operational units 
in the system are performed by means of 
interlock hand shaking. As a result, they 
havt, good expandability and modularity, 
but are difficult to  design. 

Switching methodology. There are basi- 
cally two major switching methodologies: 
packet switching and circuit switching. In 
packet switching, a message is broken into 
small packets transmitted through the net- 
work in a “store-and-forward” mode. 
Thus, a packet experiences a random delay 
at each switching point, depending on the 
traffic in the network along its path to the 
destination. 

Conversely, circuit switching actually 
establishes a physical path between a 
source and a destination. A time delay is 
needed when the path is being established. 
Once the path is completed, it  is held for 
the entire data transmission. In general, 
circuit switching is much more suitable for 
long messages, and packet switching is 
more efficient for short messages. 

Control strategy. Control strategy 
mainly concerns the way control signals 
direct the dataflow generated in a network. 
In a centralized control scheme, all the 
control signals come from a single source. 
Obviously, the central controller creates a 
system bottleneck and directly affects the 
performance and reliability of the entire 
system. The design of this central con- 

troller must be very complex to retain good 
system performance. These drawbacks 
can be avoided through the use of dis- 
tributed control strategies in which a small 
controller is associated with each compo- 
nent of  the system. In multiprocessor 
applications, control of crossbar networks 
is usually centralized and control of MINs 
is usually decentralized. Multiple-bus IN 
control can be either centralired or decen- 
tralized. 

Based on the operational characteristics 
above, INS can be classified into eight 
different categories for a giLen topology. 
The detailed classification scheme is 
shown in Figure 6. For example, PSC 
means a packet-switched, synchronous, 
centrally controlled IN. Together with the 
topology, these three operational charac- 
teristics define an IN. We will examine the 
performance models of the IN, based on 
t his cl ass i fica t ion scheni e . 

Basic terminologies for 
performance evaluation 

Before n e  describe performance ana- 
lyses of different INS, we need to define 
several t e rms .  Many performance 
parameters are applicable for INS. Mem- 
ory bandwidrh (BU’) is the most common 
performance parameter used in analyzing 
a synchronous IN in a multiprocessor. I t  
is defined as the mean number of active 
memory modules in a transfer cycle of the 
IN. In this case, the term “active” means 
a processor is successfully performing 

memory operation (either read or write) in 
that memory module. BWalsc takes into 
account the memory access conflicts 
caused by the random nature of the 
processors’ requests. 

Another parameter often used in syn- 
chronous analysis, probability of accep- 
tance (P,,,),  is defined as the ratio of  
expected bandwidth to  the expected num- 
ber of requests generated per cycle. 

In asynchronous opera t ion ,  the 
throughput ( T h r )  of a network is defined 
as the average number of packets delivered 
by the network in unit time. In a multipro- 
cessor IN, throughput is the mean number 
of memory access completions per unit 
time. 

Processor utilization (PI , )  is also used 
as a performance measure and is defined 
as the expected value of the percentage of 
time a processor is active. A processor is 
said to be active when i t  is doing internal 
computation without accessing the global 
memory. Processing power is a simple 
extension of PI , ,  which is the sum of 
processor utilizations over the number of 
processors. 

Other performance parameters can be 
easily related to  the parameters above by 
applying Little’s Law.’ Moreover, P ,, , 
BU‘, and Thr can also be related as 

BW p = -  
‘ I  NAT 

Thr p = -  
‘ I  A 
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where N i s  the number of processors, Tis 
the time taken for a memory read or write 
operation, and A is the memory request 
rate. 

Analytical modeling is a cost effective 
technique used to study the performance 
of a computer system. However, any real 
system is too complex to  be modeled 
exactly. 

To  make an analytical model tractable, 
certain approximation assumptions are 
necessary. Most of the IN analyses assume 
identical processors and a uniform refer- 
ence model. The URM implies that, when 
a processor makes a memory request to the 
global memory, the request will be directed 
to any one of Mmemory modules with the 
same probability 1/M. That is, the desti- 
nation address of a memory request is uni- 
formly distributed among M memory 
modules. This assumption provides us 
with the symmetric property, significantly 
simplifying the modeling. 

If the memory system is M-way inter- 
leaved, this assumption also represents the 
program behavior reasonably accurately. 
When the main memory is not interleaved, 
there is a locality of reference and a favor- 
ite memory assumption3 is more accurate. 

The request rate of a processor identi- 
fies how often a processor accesses global 
memory. This indirectly reflects the aver- 
age execution time of an instruction. 

In synchronous systems, therequest rate 
can be specified by a probability that a 
processor generates a memory request at 
the beginning of a cycle. In asynchronous 
systems, on the other hand, a memory 
request could be generated at any instant 
in time since there is no global clock. How- 
ever, an exponential thinking time for a 
processor is commonly assumed, which 
means that the duration between the com- 
pletion of a request and generation of the 
next request to the global memory is an 
exponentially distributed random 
variable. 

The request independence assumption 
(also called Strecker’s approximation4) in 
a synchronous system analysis states that 
a memory request generated in a cycle is 
independent of the requests of the previ- 
ous cycles. In reality, this is not true 
because a request that was rejected in the 
previous cycle will be resubmitted in the 
current cycle. However, as we shall see, 
this assumption simplifies the analysis to  
a great extent while keeping the results 
reasonably accurate. 

Performance of 
crossbar 
interconnection 
networks 

A crossbar interconnection network is 
an array of individually operated contact 
pairs in which there is one pair for each 
input-output combination, as shown in 
Figure 3. A crossbar network with N 
inputs and Moutputs  is referred to as an 
N x M crossbar. As long as there is no 
memory interference among a set of mem- 
ory requests generated by the processors 
(that is, no two or more processors request 
the same memory module), all connections 
can be established at the same time. Thus, 
all memory accesses can proceed simul- 
taneously. 

But this capability comes at a high 
switching cost, which is (O(NM)). 
Although the crossbar network can pro- 
vide all simultaneous connections, mem- 
ory bandwidth is much less than its actual 
capacity. This reduction is due to the mem- 
ory interference caused by the random 
nature of the memory requests in a multi- 
processor environment. Therefore, the 
performance analysis of a crossbar net- 
work becomes the analysis of memory 
interference. 

The literature’ contains a number of 
memory interference models for central- 
ized, synchronous, and circuit-switched 
crossbar systems. In most of these models, 
system operations are approximated by 
stochastic processes as follows: At the 
beginning of the system cycle, a processor 
selects a memory module at random and 
makes a request to access that module with 
some probability p. If more than one 
request is made to the same memory mod- 
ule, the memory controller will choose one 
at random, and the rejected processors will 
retry in the next cycle. The behavior of the 
processors is considered independent and 
statistically identical, as is the behavior of 
the memory modules. 

Bhandarkar4 studied the memory inter- 
ference problem in detail in which several 
discrete Markov chain models were devel- 
oped. In these models, a memory module 
is characterized by its cycle time t,, which 
consists of an access time t o ,  followed by 
a rewrite time t , .  Processor behavior is 
modeled as an ordered sequence, consist- 
ing of a memory request followed by a cer- 
tain amount of execution time t , .  The 
processing time t, is measured from the 
time data were obtained from the previous 

request to  the time the next request is 
issued to the memory. 

In real systems, the processor can start 
execution when the memory is in its rewrite 
cycle. So, when t , .  = t,, the situation 
would be equivalent to  the case where the 
processor generates a memory request at 
the beginning of each memory cycle. In 
this study, an exact model for the case 
t ,  = t ,  and with URM was presented. 
However, the model becomes very 
unwieldy for a large number of processors 
and memory modules. 

The complexity of the memory interfer- 
ence model is simplified if one assumes 
that a blocked processor discards the 
request and generates a new independent 
request at the start of the next cycle 
(request independence assumption). For a 
system with Nprocessors and M memory 
modules, if a processor generates a request 
with probability p in a cycle directed to 
each memory with equal probability 
(URM), then the memory bandwidth is 
given by Strecker4 as 

(1) 
P 
M 

BW = M(l-(1- -Y) 

A simple explanation of this formula is as 
follows: SinceplMis the probability that 
a processor requests a particular memory 
module, [ l  - (p /M)INis  the probability 
that none of the Nprocessors requests the 
memory module in a particular cycle. Sub- 
tracting this term from 1 gives the proba- 
bility that at least one request to  this 
memory is issued. Multiplying by Myields 
the expected number of distinct memory 
modules being requested in a cycle and 
hence the bandwidth. The maximum per- 
centage of error with this approximation 
is limited to 8 percent for M / N  > 0.75.4 
As a result, this simple formula, Equation 
1,  is widely used for predicting the perfor- 
mance of crossbar networks. The accuracy 
can be further increased by a “rate adjust- 
ment” technique6 where the input request 
rate is adjusted upward to take into 
account the resubmission of rejected 
requests. Yen6 provides a comparison of 
various memory interference models for 
synchronous crossbars. 

The model described above assumes a 
URM. However, as mentioned previously, 
the distribution of memory requests in real 
systems depends on program behavior, 
and such distributions are not necessarily 
uniform. Bhuyan3 has examined this 
nonuniform reference problem by 
introducing the concept of favorite mem- 
ory of  a processor. The memory module 
requested most often by a processor is 
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Figure 7. A queueing model for asynchronous crossbar multiprocessors. 

called the favorite memory of the proces- 
sor. Let tn represent the probability with 
which a processor addreses  its favorite 
memory given that the processor generates 
a request in a cycle. Then, the memory 
bandwidth for an N x N crossbar-based 
multiprocessor is given by 

1-m B W =  
N [l-(l-pm) (l-P---)~'-'l (2) 

N- 1 

Solutions for favorite memory cases are 
also provided for M 5 N a n d  M 2 N.? By 
substituting m = 1/M, the analysis 
reduces to that of URM (Equation 1). 

In the descriptions above, we have con- 
sidered only circuit-switched and syn- 
chronous systems. The  analysis of 
asynchronous circuit-switched systems can 
be done by assuming a random period of 
processor thinking time and memory 
access time. The processors are then 
modeled by a set of delay servers and mem- 
ory modules by a set of first-come, first- 
serve (FCFS) queues, as shown in Figure 
7 .  This figure depicts a well-known closed 
queueing network in performance evalu- 

Table 1. Summary of crossbar analyses. 

ation, and efficient algorithms to solve this 
network exist.' 

Because the crossbar network is a single- 
staged network (that is, every input and 
output is connected by a single switching 
element), packet switching makes no 
difference from circuit switching from a 
performance point of view. Similarly, two 
control strategies result in the same system 
behavior. Thus,  we need not consider 
them separately. Table 1 summarizes the 
different analytical techniques of the 
crossbar system and their accuracy, work- 
load representations, performance met- 
rics, and computational costs. 

Analyses of multistage 
interconnection 
networks 

As stated previously, the cost of a cross- 
bar network is too high to  be practical for 
building large multiprocessor systems. As 
an  alternative to  the crossbar network, 
multistage interconnection networks 

(MINs) have assumed importance in 
recent times. The main advantage of these 
networks is their cost-effectiveness. They 
allow a rich subset of one to one and simul- 
taneous mappings of processors to  mem- 
ory modules, while reducing the hardware 
cost to  O(N1ogN) in contrast to  O(N2) 
for crossbar networks. 

An N x N MIN connects N processors 
to  N memories. For N a power of two, it 
employs log,N stages of 2 x 2 switches 
with N/2  switches per stage. Each switch 
has two inputs and two outputs. The con- 
nection between an input and an output is 
established depending on a control bit c 
provided by the input. When c = 0, the 
input is connected to  the upper output, and 
when c = 1, it is connected to  the lower 
output, as shown in Figure 4a. 

An omega network538, shown in Figure 
4b, is characterized by a perfect shuffle 
interconnection preceding every stage of 
switches. The requesting processor gener- 
ates a tag that is the binary representation 
of the destination. The connection of a 
switch at the ith stage is then accomplished 
by the i th  bit of this binary tag counted 
from the most significant bit. 

The connection between input 3 and 
output 5 (1012) is shown by a bold line in 
Figure 4b. This self-routing property of a 
MIN avoids the need for a central con- 
troller, making it very suitable for 
multiprocessors. Thus,  the performance 
discussions presented in this section will 
concentrate solely on the decentralized 
control scheme. 

Many significant MINs, such as Ban- 
yan, generalized cube, base line, etc.,' 
have been proposed. However, most of 
these networks are similar except for the 
interconnection between the adjacent 
stages. 

The switch size in an MIN need not be 
restricted to 2 x 2. In fact, the Butterfly 
parallel processor connects Ninputs  to  N 

Synchronous crossbar Asynchronous crossbar 

Analqsis technique Discrete Marcok chain' Probabilistic with Queueing network? 
independence assumption7 4 

Workload representation Request rate Probabilits of request Think time 

Performance parameters BWor P ,  BWor P ,  p,, or PI, 

Accuracy Exact Good Exact 

Low (closed form formula) Moderate Computational cost Very high 
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outputs using 4 x 4 crossbar switches and 
logfistages with N/4 switches per stage. 
A delta network can connect M =  a" 
inputs to N = b" outputs through n stages 
of a x  b crossbar switches.' The general- 
ized shuffle network (GSN) is capable of 
connecting any M = tn I *mz * . . . , * tn, 
i n p u t s t o N = n l * n ,  * . . . .  *n,outputs  
through r stages of switches.' The ith 
stage employs m, x n,  crossbar switches 
and is preceded by a generalized shuffle 
interconnection that is essentially a super- 
set of the omega and delta interconnec- 
tions. This is the most generalized version 
of an MIN that allows different input and 
output sizes, and all the other networks 
can be obtained by choosing the m,s and 
n,s, appropriately. For example, when 
m, = a, n, =b for all i s ,  i t  is a delta net- 
work; m, = n, = 2 for all is gives an omega 
network; r =  1 gives a crossbar; and 
M = M * l  and N =  l * N  provides a 
shared-bus connection. 

The advantages of MINs were widely 
recognized by researchers, and a lot of 
research projects started at universities and 
industries. Examples of university projects 
include TRAC (the Texas Reconfigurable 
Array Computer) at the University of 
Texas at Austin, Pasm (partitionable sin- 
gle instruction, multiple data [SIMD], 
multiple instruction, multiple data  
[MIMD]) at Purdue University, Ultra- 
Computer at New York University, and 
Cedar at the University of Illinois at 
Urbana-Champaign. RP3 is a notable 
industry project at IBM, and Butterfly is 
a successfully marketed product by BBN 
Laboratories. 

As these projects were starting, a serious 
drawback of the MINs surfaced. There is 
only one path from an input to an output. 
I t  was necessary to incorporate some fault- 
tolerance into these networks so that at 
least a single fault in a switch or a link 
could be tolerated. This has given rise to 
an abundance of research during the past 
few years devoted to the design and evalu- 
ation of fault-tolerant MINs. Adams"' 
contains a survey and comparison of such 
fault-tolerant networks. The evaluation 
techniques for basic MINs are explained 
below, but can be extended to fault- 
tolerant MINs.  

Patel' suggested a probabilistic 
approach to analyze the delta network 
based on U R M  and the request indepen- 
dence assumption. Assume a delta net- 
work of size d x b "  constructed from 
a x b crossbar modules. Each stage of the 
delta network is controlled by a distinct 
destination digit (in base b) for setting of 

individual a x  b switches. Since the desti- 
nations are independent and uniformly 
distributed, the requests at any a x  b mod- 
ules are independent and uniformly dis- 
tributed over b different destihations. In 
addition, the switches at a particular stage 
behave similarly. Therefore, Equation 1 
can be applied to any switching element in 
the delta network. 

The expected number of requests that 
pass to the b outputs is obtained by setting 
N = a and M = b in Equation 1 .  Dividing 
this number by b gives us the probability 
of request on any of the b output lines of 
an a x b switch as a function of its input 
probability. Since the output of a stage is 
the input of the next stage, one can recur- 
sively evaluate the output probability of 
any stage starting at stage I .  If p ,  is the 
probability that there is a request at the 
output of a switch at stage 1 ,  then 

for 1 5 i 5 n. In particular, the output 
probability of the final stage determines 
the bandwidth of a delta network, that is, 
B W = p,b". This analytical technique has 
been widely used to evaluate various 
MINs. 

Bhuyan3 extended the analysis to  
favorite-memory cases. For N x N net- 
works, with N = a", the processors are 
defined to be connected to their favorite 
memories when all the switches are straight 
connected, that is, input i of a switch is 
connected to theoutput iof  theswitch. In 
an omega network memory, M M ,  
becomes the favorite memory of processor 
P,. Let 4 ,  ~ I be the probability that there 
is a favorite request to the input at stage i. 
In an N x N ( N = a") delta network, 

About six other equations are needed to 
determine 4,- I at stage i3 and, finally, 
BW = N p n .  The analyses above'.' are 
valid for synchronous packet-switched 
MINs provided that (a) packets are gener- 
ated only at the beginning of the network 
cycle and (b) switches do not have buffers 
(are unbuffered) so that packets are ran- 
domly chosen in case of conflicts and 
unsuccessful packets are lost. 

The above analyses presented a recur- 
rence relation for the performance of 
unbuffered networks, but not a closed- 
form solution. Kruskal and Snir" 
obtained an asymptotic expression for the 
output request probability of a stage for an 

cess. cacn snarea resource, sucn as a DUS 

or a memory module, is considered a 
queueing service center. 

Because of circuit switching. the Droces- 
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pacrtet-swircnea snarea DUS Detween 
processors and memories. 

Yang studiedI5 packet-switched 
multiple-bus systems where analytical 

unbuffered delta network. Let p,,, denote 
the probability that there is a packet on any 
particular input at the mth stage of a 
square MIN composed of k x k switches. 
Through some algebraic manipulations, 
Kruskal and Snir" approximated the 
asymptotic formula for p , , ,  as 

2k 
( k - l ) m + k  

P,,, = ( 5 )  

P 

wherep is the probability of request gener- 
ation by a processor. From this expression, 
one can see that the probability that a mes- 
sage is not deleted is inversely proportional 
to the number of stages in the network. 
The solution for an unbuffered network 
by Kruskal and Snir has been shown to be 
a strict upper bound in the throughput of 
a delta network. For buffered networks, 
Kruskal and Snir assume an infinite buffer 
associated with each output of a switching 
element. I n  each cycle, a random number 
of packets join an output queue without 
any packet being lost. This random num- 
ber has a B,ernoulli distribution, since all 
incoming packets from the inputs of the 
switch have an equal probability (for 
URM) of going to that output. The aver- 
age transit time through the network can 
be derived by means of the M / C /  1 
queueing formula. ' 

Dias ancl Jump" have studied buffered 
delta networks by means of petri nets, 
which were introduced first as a useful 
graphical tool for the precise description 
of the system operations and as a model- 
ing technique that permits easy evaluation 
of the performance of small systems. 

These graph models have recently 
become very popular for the representa- 
tion of distributed computing systems 
because of their ability to clearly describe 
concurrency, conflicts, and synchroniza- 
tion of tasks. However, the complexity of 
petri nets increases exponentially with the 
increase in system size. With this model- 
ing technique, 14 distinguishable states of 
a (2 x 2) switch exist with a single buffer 
between stages." The state transition 
tables and the probabilities in each state 
are derived. The steady state throughput 
and turnaround time (network delay) are 
obtained by iterating through use of the 
transition tables and probability equa- 
tions. The results of analysis and simula- 
tion indicate that buffering produces a 
considerable improvement in the perfor- 
mance of these networks. 

All the analyses above pertain to syn- 
chronous circuit-switched or packet- 
switched environments. For large MINs, 
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Table 2. Summary of MINs analyses. 

Synchronous Synchronous Synchronous Asynchronous 
MIN without MIN with infinite MIN with finite MIN with finite 
buffer buffers buffers buffers 

Analysis technique Probabilistic with M/G/I queue Petri net 12 Multiple chain 
independence with infinite 
assumption3.~ buffers)' 

Workload representation Request rate 

Performance parameters BW or P,, 

Request rate Processor 
think time 

MVAS 

Processor 
think time 

Queueing delay Throughput or Throughput 
or transit time turn-around or response 

time time 

Accuracy Good Fair Good Good 

Computation cost Low for recurrence Closed form High 
solutions formula 

Moderate 

controlling the network operation from a 
central global clock is difficult. Hence, 
asynchronous designs should be consid- 
ered for large multiprocessor systems. 

The second disadvantage with the above 
analyses is that they do not incorporate the 
waiting time of a processor for completion 
of the memory access, but assume continu- 
ous Poisson arrival at the input side. 

The third disadvantage is the assump- 
tion of uniform or favorite memory 
access. Memory reference patterns are 
highly program dependent and could be 
arbitrary. 

To overcome these drawbacks, we have 
recently developed5 a closed queueing net- 
work model and mean value analysis 
(MVA)' for the MINs under asyn- 
chronous packet-switched operation. 
Modeling asynchronous circuit-switched 
MINs seems very difficult because of the 
simultaneous possession of switches and 
links by unsuccessful requests. Table 2 lists 
the different analyses of MlNs described 
in this section. 

Performance analyses 
of multiple-bus systems 

Most commercial systems containing 
more than one processor employ a single 
shared bus as shown in Figure 2. This 
interconnection scheme is well known as 
being inexpensive and easy to implement. 
But when the system size is large, a single 
bus becomes a severe system bottleneck. 

A natural extension is to employ several 

buses instead of a single one to increase the 
bandwidth and fault tolerance at moder- 
ate cost. Recently, the multiple-bus inter- 
connection scheme has drawn 
considerable attention from many com- 
puter scientists and engineers. In an 
N x M x  B multiple-bus multiprocessor 
system, all the Nprocessors and Mmem- 
ory modules are connected to all the B 
buses. 

Unlike a crossbar or multistage net- 
work, the multiple-bus configuration 
offers high reliability, availability, and 
easy incremental system growth. Higher 
reliability is obvious because, in case of a 
bus failure, ( B  - 1) distinct paths still exist 
between a processor and a memory. How- 
ever, when the number of buses is less than 
the number of memory modules or the 
number of processors, bus contention can 
arise. As a result, the performance analy- 
sis of a multiple-bus system involves 
modeling the effects of bus conflicts and 
memory interference. 

Many researchers have studied the per- 
formance of  synchronous, circuit- 
switched, and  centrally contro!led 
multiple-bus multiprocessor systems 
through analysis and The 
memory bandwidth of the system 
increases with an increase in the number of 
buses. But, for all practical purposes, a 
few buses might be sufficient. 

In a synchronous system, all the events 
occur at the beginning of a system cycle. 
Therefore, the system can be modeled by 
means of a discrete Markov process. 
Bhuyan has developed a combinatorial 
and probabilistic approach to derive an 

equation for the BWof such multiple-bus 
multiprocessor  system^.^.'^ His analysis is 
based on the URM and request indepen- 
dence assumptions. 

With these assumptions in mind for a 
given set of memory requests, knowing the 
number of ways in which the requests are 
distributed among the memory modules is 
easy. In addition, one can determine the 
number of ways by which the given 
requests are addressed to Mmemory mod- 
ules such that x memory modules are 
requested and M - x of  them are idle. 

For each value of x, Bhuyan defines a 
state. The BW can be computed by 
multiplying the probability of being in a 
state with the number of busy memory 
modules in that state. If the number of 
buses in a system is less than the number 
of memory modules, the number of busy 
memory modules in a cycle would be upper 
bounded by the number of buses. The 
bandwidth for an N X M x B system is 
given by 

B W = M {  l-(I-fi)N} 

where, x !  is the factorial x, ty = 
rnin(y,M),p is the probability of request 
of a processor, (:) is the binomial coeffi- 
cient, and S(y,x) is the Stirling number of 
the second kind defined as 
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Figure 8. A queueing network model for asynchronous multiple-bus systems. 

X 
x! S&X) = (-1) (X-i)V 

r=O (9 
The numerical results obtained from this 
equation are quite close to simulation 
results. MudgeI3 contains a detailed 
review and comparison of various analyses 
on  synchronous circuit-switched multiple- 
bus systems. 

In asynchronous systems, memory 
request generation and  memory access 
completion can occur a t  any point in time 
since there is no  synchronization by a 
clock. Therefore, the system can be 
modeled with a continuous stochastic pro- 
cess. Each shared resource, such as a bus 
or a memory module, is considered a 
queueing service center. 

Because of circuit switching, the proces- 
sor that issues a memory request holds a 
system bus while accessing the main mem- 
ory. Thus, two system resources, bus and 
memory, are simultaneously held by a 
memory operation. This simultaneous 
resource possession phenomenon makes 
the analysis nontrivial. 

One  study‘‘ uses the flow equivalence 
technique to approximately solve the 
queueing network. The  bus and memory 
subsystem, called aggregate, is replaced by 
a single flow equivalent service center 
(FESC).’ The  model has been compared 
with simulation results, and the agreement 
is quite good over a wide range of bus 
load. l 4  

All the studies above consider only cen- 
t ra l ly  c o n t r o l l e d ,  c i rcu i t - swi tched  

multiple-bus systems. In circuit switching, 
a device will occupy the bus for the entire 
duration of  data communication once the 
device is granted use of a bus. 

For instance, a processor in a read oper- 
ation will occupy the bus during the time 
it is sending a request, performing a mem- 
ory operation, and receiving the requested 
data.  The  result will be the waste of a sig- 
nificant fraction of bus bandwidth because 
of  a mismatch between the speeds of the 
processing unit, the bus, and  the memory 
unit. 

All these facts serve to demonstrate the 
attractiveness of the packet-switching 
approach. Encore’s Multimax is an  exam- 
ple of a multiprocessor employing a 
packet-switched shared bus between 
processors and memories. 

Yang s tudied”  packet-switched 
multiple-bus systems where analytical 
models were developed for both syn- 
chronous and  asynchronous timings. In 
the synchronous case, both centralized and 
decentralized controlled schemes a re  
treated equally, since all the events in the 
system occur a t  the beginning of a cycle 
regardless of the control strategies used. A 
discrete probabilistic approach is applied 
t o  analyze such systems. 

The  model has been based on  a decom- 
position technique that considers simple 
analysis of a set of single-server queues. 
The  consequence of the analysis is an  
equation consisting of one unknown var- 
iable, P, , ,  processor utilization; it can be 
solved by using a standard numerical 
method. 

For an  asynchronous case, the queueing 

network is shown in Figure 8. Processors 
in the system are modeled as delay servers, 
and  memory modules are modeled as 
FCFS servers. The  bus system is modeled 
as an  FESC’ representing B buses with a 
single (centralized) queue. 

The routing of a packet in the network 
can be described as follows: A request 
packet generated by a processor is first put 
in the central server queue, waiting for an  
available bus. After it gains access to a bus, 
the packet joins one of  the M memory 
queues. The memory module that finishes 
the service of  a request again puts the 
response packet in the central server 
queue. From there, the response packet 
gets back t o  the requesting processor 
through a bus. To this point, the packet 
finishes one rotation through the network, 
and the processor resumes its background 
activity. The model can be solved using 
any standard product-form algorithm, 
considering the bus system queue as a load- 
dependent server.’ 

In the case of a decentralized control, 
the actual implementation can be either 
token bus or daisy chain bus. Due t o  the 
lack of central controller, the analysis of 
decentralized packet-switching multiple- 
bus systems is very complicated. The 
FCFS service discipline is not valid for bus 
system queue in this case. The  service dis- 
cipline depends on  the position of  tokens 
with respect to the positions of  requesting 
devices. 

The  exact solution for such a system 
seems infeasible, but one method for 
approximating the behavior of the system 
is to use hierarchical modeling tech- 
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Table 3. Summary of multiple- bus analyses. 

I 

~ Workload representation Request rate Processor think Request rate Processor think 
time time 

1 Performance parameters BW or  P ,  Throughput PI, 
i or p,, 
I 

Fair Good Good Fair I 

I 1 Computation cost Low Moderate Low, but 
iteration 

Moderate I 

Table 4. Summary of hardware features of the three INS. 

Cro5Fbar MlNs Multiple-bus 

N o  switches N*M NlogN B*(N+M) 
or  connection5 

1 Lodd of buses N I B 

I NO of wire5 M N B 

! 

I ! 

i arbiters M I-of-N arbiten 1 
M I-of-N arbiter5 M o g N  I-of-2 I B-of-Mand 

Fault-tolerant 
~ and expansion 

Fair Poor, but fair with 
additional hardware 

Good 

niques." As in the previous case, the bus 
system is represented by FESC (Figure 8) 
with the service rate obtained by shorting 
out the processors and the memory mod- 
ules. The model is then solved by using the 
mean value analysis algorithm.' 

Numerical results obtained from the 
models have shown that packet switching 
reduces the communication bottlcneck of 
shared bus systems. '' Table 3 summarizes 
analyses of different categories of 
multiple-bus systems. 

Comparison and 
discussions 

As indicated in the previous sections, the 
three types of interconnection networks 
possess different hardware features and 
different system performances. In this sec- 
tion, we will look into these differences 

quantitatively. In particular, we will com- 
pare the hardware cost and system perfor- 
mance of the three interconnection 
networks. 

Table 4 lists selective hardware features 
of the three networks. As we already 
know, the number of switching elements 
used in an  N x M crossbar is N x M in 
contrast to Nlog  N o f  MINs.  The number 
of connections necessary in an  N x M x B 
multiple-bus system is proportional to 
R(N + M). Since each bus in the multiple- 
bus system needs to drive N + Mmodules, 
the bus load is proportional to N + M ,  
while the bus load of an MIN is one due to 
the one-to-one connection. 

All three of these networks require cer- 
tain types of arbiters to resolve the request 
conflicts. In a crossbar network, M N- 
users 1-server arbiters are necessary, each 
of which selects one  of up to N outstand- 
ing requests for a memory during a mem- 

ory cycle. The  MINs, on  the other hand, 
require two 2-user I-server arbiters for 
each switching element for ( N / 2 ) l o g z N  
switches. 

In a multiple-bus system, an M-users B- 
servers arbiter is needed to assign the B 
buses to the outstanding requests. Once a 
bus is granted to a memory, only one of the 
processors that requests the memory can 
proceed while the others, if any, are 
delayed. This choice is implemented by an  
N-users I-server arbiter. Thus, a multiple- 
bus system requires M + 1 arbiters, one 
arbiter of the M-users B-servers type and 
Marbi te rs  of  the N-users I-server type. 

Expandability and reliability are two 
other very important hardware features. 
In this context, a multiple-bus system 
shows its advantages over the other two 
because of  its reconfigurability and  
multiple-data paths between every proces- 
sor and memory. I t  can still operate in a 
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Figure 9. Probability of acceptance as a function of system size for synchronous circuit-switched systems. 

degraded mode after the failure of a sub- 
set of the buses. 

A lot of research has gone into the 
reconfigurable and fault-tolerant MINs. l o  

The fault-tolerance of a MIN can be real- 
ized by adding additional hardware such 
as extra stages or duplicated data paths. I t  
is easier to reconfigure a crossbar than an 
MIN. In case of a fault, a particular row 
or a column in Figure 3 can be removed 
and the network can operate in a degraded 
mode. 

Next, we’ll consider the performance of 
the three interconnection networks based 
on the analytical models described in the 
previous sections. Figure 9 shows the prob- 
ability of a memory request being 
accepted, PA = B W / p . N ,  as a function 
o f  system size for synchronous circuit- 
switched systems with p = 1 .O. 

Two curves, one for crossbar and one 
for MIN, are plotted according to Equa- 

tion 1 and Equation 3, respectively. The 
difference between the two curves 
increases as the system size grows. The 
probability of acceptance in the crossbar 
system remains constant when the system 
size becomes very large. However, in the 
case of MIN, P A  keeps decreasing as the 
system size increases. 

Figure 10 shows the memory bandwidth 
of 16 x 16 synchronous circuit-switched 
multiprocessor systems. The horizontal 
axis represents a processor’s probability of 
request. As we can see, the single bus per- 
forms worse since it gets saturated very 
quickly and the B W can never exceed 1. 
The BWincreases as the number of buses 
increases, as shown in the figure. 

Figure 11 shows the comparison of syn- 
chronous packet-switched networks. In 
this figure, processor utilizations are plot- 
ted against the probability of request for 
a 16 x 16multiprocessor. Processor cycle 

times, bus transfer delay, as well as the 
total ideal packet transfer time between an 
input and an output of an MIN are 
assumed to be fixed at the system cycle 
time. The memory access time is assumed 
to  take four system cycles (similar to 
Encore’s Multimax) for all three systems. 
During a memory access, the processor 
that issued the memory request remains 
idle until the memory access is finished. 

The memory request rate of a processor 
as seen by an interconnection network is 
adjusted6 in plotting the processor utiliza- 
tion in Figure I I .  The performance differ- 
ence between various networks is not as 
pronounced as in Figure 10. This is due to  
the packet-switched operation of the INS. 
Additionally, a multiple-bus-based multi- 
processor system with only four buses can 
achieve almost the same performance as 
that of the crossbar system while reducing 
the hardware cost significantly. 
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Figure 10. Memory bandwidth as a function of probability of request for 16 x 16 synchronous circuit-switched systems. 
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Figure 11. Processor utilization as a function of probability of request for 16 x 16 synchronous packet-switched systems. 
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11 the comparisons above apply 
to synchronous systems based on 
system cycle. We have intention- 

ally avoided comparing asynchronous sys- 
tems because their performance is so 
dependent on  the input parameters that 
choosing the wrong parameters might give 
rise to  the wrong conclusions. However, 
the analytical techniques that can be 
applied to evaluate those systems are given 
in this article. The information provided 
here is useful for predicting the approxi- 
mate performance of an IN structure 
before its design and implementation. Fur- 
ther references and a more detailed survey 
on the performance evaluation of multi- 
processor INS can be found in Bhuyan.’ 

It seems that enough research has 
already been done in evaluating INS in iso- 
lation. We strongly feel that more work is 
needed at  the system level that includes the 
IN as a major component. For example, 
evaluation of multiprocessor systems with 
prefetching, bulk data read or write, and 
solving cache coherence with INS shows 
promise for future research. 

Similarly, task (application) level 
modeling on multiprocessor architectures 
might produce some good insight into the 
trade-offs between computation versus 
c o m m u n i c a t i o n ,  low versus la rge  
granularity, static versus dynamic schedul- 
ing, etc. 

Finally, some actual measurements 
(traces) should be obtained on real mul- 
tiprocessors and applied to the analytical 
models as their input parameters. 0 
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