
Performance of
Multiprocessor

Interconnection Networks
Laxmi N. Bhuyan, University of Southwestern Louisiana

Qing Yang, University of Rhode Island

Dharma P. Agrawal, North Carolina State University

w ith device characterist ics
approaching physical limits,
parallel or distributed process-

ing has been widely advocated as a promis-
ing approach for building high per-
formance computing systems. The con-
tinued impetus in research in these areas
arises from two factors: (a) the technolog-
ical development in the areaof VLSI chips
and (b) the observation that significant
exploitable software parallelism is inher-
ent in many scientific and engineering
applications.

To exploit this parallelism efficiently, a
parallel/distributed system must be
designed to considerably reduce the com-
munication overhead between the proces-
sors. The communication architecture of
the system might support one application
well but might prove inefficient for others.

Therefore, we need to take a general
approach, independent of the application,
while designing the communication system
or the interconnection network (IN) of a
general-purpose parallel/distributed sys-
tem. The IN must be efficient, reliable,
and cost effective. A complete intercon-
nection, such as a crossbar, might be cost
prohibitive, but a shared-bus interconnec-
tion might be inefficient and unreliable.
Thus, present research is directed to
designing INS whose cost and performance
lie somewhere between the two extremes.

Multiprocessor
designers need

analytical techniques
to evaluate network
performance. This
article presents a
tutorial on these

evaluation tools to
guide designers

through the design
process.

Ongoing research in the area of paral-
lel and distributed processing suggests a
number of promising INS. Because of the
high cost involved in hardware implemen-
tation or software simulation of these INS,
performance evaluation of these networks
needs t o be carried out through analytical

techniques so that we can make a choice
between various alternatives. A mathe-
matical model makes it possible t o study
the efficiency of the IN in terms of various
design parameters used as inputs to a
model. Therefore, the intent of this arti-
cle is t o provide a tutorial on the subject of
performance evaluation of multiprocessor
interconnection networks to guide system
designers in their design process.

A classification of parallel/distributed
systems. We can divide general-purpose
parallel/distributed computer systems into
two categories : multiprocessors and
multicomputers. The main difference
between them lies in the level at which
interactions between the processors occur.

A multiprocessor must permit all
processors to directly share the main mem-
ory. All the processors address a common
main memory space. In a multicomputer,
however, each processor has its own mem-
ory space, and sharing between the proces-
sors occurs a t a higher level as with a
complete file or data set. A processor can-
not directly access another processor’s
local memory.

Multiprocessors can be further divided
as tightlycoupled and loosely coupled. In
a tightly coupled system, the main mem-
ory is situated at a central location so that
the access time from any processor t o the

February 1989 001 8-9l62/89/02oO-oO25S0l .WO I989 IEEE 25

Multiprocessors Multicomputers

(Examples: Ring, Star, A Tree, and Hypercube)

Tightly coupled Loosely coupled

(Examples: C.mmp, (Examples: Cm*,

Multimax, and Alliant) Butterfly, and RP3)

Figure 1. A classification of parallel/distributed systems.

S h a r e d bus

Figure 2. A single shared bus structure.

0
0 I

I 1 Switch

f I

Figure 3. A crossbar interconnection network.

memory is the same. In addition to this
central memory (also called main memory,
shared memory, global memory, etc.),
each processor might consist of some local
memory or cache. The C.mmp of Car-
negie Mellon University, the Multimax of
Encore Computer, the FX of Alliant, and
the Balance series of Sequent Corp. are
examples of such tightly coupled mul-
tiprocessors.

In a loosely coupled system, the main
memory is partitioned and attached to the
processors, although the processors share
the same memory address space. A proces-
sor can directly address a remote memory,
but the access time is much higher com-
pared to a local memory access. As a
result, partitioning and allocation of pro-
gram segments and data play a crucial role
in the overall performance of an applica-
tion program. The Cm*of CMU, the But-
terfly machine of BBN Laboratories, and
the RP3 of IBM are examples of such
architectures.

As mentioned previously, the memory
in a multicomputer is not shared. The
interaction between the processors relies
on message passing between the source
and destination processors (nodes). The
message passes over a link that directly
connects two nodes and might have to pass
through several such nodes in a store-and-
forward manner before it reaches its des-
tination. Therefore, each interaction
involves a lot of communication overhead,
and only those applications that need less
interprocessor communication are well
suited to multicomputers.

The multicomputers are usually based
on topologies such as ring, tree, star,
hypercube, etc. Hypercube machines such
as Intel's iPSC are commercially available.
Based on the description above, a classi-
fication of parallel/distributed computers
appears in Figure 1. The classification does
not include array and pipelined computers
and local area networks. This is because
array or pipelined computers are part of
parallel processing but not distributed pro-
cessing and, similarly, LANs are part of
distributed processing but not parallel pro-
cessing.

Essentially, our classification is valid for
multiple instruction stream, multiple data
stream computers. This article will concen-
trate solely on multiprocessor INS. A dis-
cuss ion o f t he p e r f o r m a n c e o f
multicomputer interconnection networks
can be found in Reed and Grunwald. '

Multiprocessor IN topologies. A multi-
processor organization is defined in terms

26 COMPUTER

design of its IN. A shared-bus interconnec-
tion, shobn in Figure 2 , is the least com-
plex a n d most popu la r a m o n g
manufacturers. The Multimax and Alliant

shared bus does not allow more than one
transfer bemeen the processors and mem-
ories at a time. A large number o f proces-
Fors means a long uait for the bus.

O n the other hand, a crossbar, as used
in C .mmp and depicted in Figure 3, sup-
ports all possible distinct connections
between the processors and memories
simultaneously. Unfortunately, the cost of
such a network is O (N M) for connecting
Ninputs and Moutputs. For a system with
hundreds of processors and memories, the
cost of such an IN is prohibitibely high

In terms. of cost and performance, mul-
tistage interconnection netuorks (MINs)
and multiple-bus networks achiebe a
reasonable balance between those of a
shared bus and crossbar. MINs and
multiple-bus networks are depicted in
Figures 4 and 5 , respectively, and will be
described in later sections. Then, u e wi l l
investigate the performance of these net-
works. A shared bus IS essentially a special
type of multiple-bus IN with the number
of buses equal t o one.

A A
are examples of such multiprocessors. The B B

(a) Control bit of A-0 Control bit of A-1

(b) Inputs Outpts

Classification of INS
Figure 4. Operation of a 2 x 2 switch in 4a, and an 8 x 8 omega network in 4b.

An IN is a complex connection of
switches and links that permits da ta com-
munication between the processors and

lent networks can have different opera-
t ional characteristics giving rise to
different system behaviors. These opera-
tional characteristics also necessitate
different methodologies t o be used in IN
performance evaluation.

B1
B 2

Fib

Timing philosophy. Timing philosophy
is one of the most important attributes
characterizing a communication system.
Basically, there are two types of possible
timing schemes in a system: synchronous
and asynchronous.

Synchronous control techniques are
well understood and widely used in com-
puter system designs. They are character-
ized by the existence of a central, global
clock that broadcasts clock signals t o all
devices in a system so that the entire sys-
tem operates in a lock-step fashion. Figure 5. A multiple-bus multiprocessor system.

February 1989 21

Multiprocessor INS

i
P dc kc‘ t-swi tc hed

.f
Circuit-switched

PSC i PSD i l PAC PAD C f C C f h c L D C C

Figure 6. A classification of multiprocessor interconnection networks.

Asynchronous techniques, on the other
hand, operate without a global clock. The
communications among operational units
in the system are performed by means of
interlock hand shaking. As a result, they
havt, good expandability and modularity,
but are difficult to design.

Switching methodology. There are basi-
cally two major switching methodologies:
packet switching and circuit switching. In
packet switching, a message is broken into
small packets transmitted through the net-
work in a “store-and-forward” mode.
Thus, a packet experiences a random delay
at each switching point, depending on the
traffic in the network along its path to the
destination.

Conversely, circuit switching actually
establishes a physical path between a
source and a destination. A time delay is
needed when the path is being established.
Once the path is completed, it is held for
the entire data transmission. In general,
circuit switching is much more suitable for
long messages, and packet switching is
more efficient for short messages.

Control strategy. Control strategy
mainly concerns the way control signals
direct the dataflow generated in a network.
In a centralized control scheme, all the
control signals come from a single source.
Obviously, the central controller creates a
system bottleneck and directly affects the
performance and reliability of the entire
system. The design of this central con-

troller must be very complex to retain good
system performance. These drawbacks
can be avoided through the use of dis-
tributed control strategies in which a small
controller is associated with each compo-
nent of the system. In multiprocessor
applications, control of crossbar networks
is usually centralized and control of MINs
is usually decentralized. Multiple-bus IN
control can be either centralired or decen-
tralized.

Based on the operational characteristics
above, INS can be classified into eight
different categories for a giLen topology.
The detailed classification scheme is
shown in Figure 6. For example, PSC
means a packet-switched, synchronous,
centrally controlled IN. Together with the
topology, these three operational charac-
teristics define an IN. We will examine the
performance models of the IN, based on
t his cl ass i fica t ion scheni e .

Basic terminologies for
performance evaluation

Before n e describe performance ana-
lyses of different INS, we need to define
several t e rms . Many performance
parameters are applicable for INS. Mem-
ory bandwidrh (BU’) is the most common
performance parameter used in analyzing
a synchronous IN in a multiprocessor. I t
is defined as the mean number of active
memory modules in a transfer cycle of the
IN. In this case, the term “active” means
a processor is successfully performing

memory operation (either read or write) in
that memory module. BWalsc takes into
account the memory access conflicts
caused by the random nature of the
processors’ requests.

Another parameter often used in syn-
chronous analysis, probability of accep-
tance (P,,,), is defined as the ratio of
expected bandwidth to the expected num-
ber of requests generated per cycle.

In asynchronous opera t ion , the
throughput (T h r) of a network is defined
as the average number of packets delivered
by the network in unit time. In a multipro-
cessor IN, throughput is the mean number
of memory access completions per unit
time.

Processor utilization (PI ,) is also used
as a performance measure and is defined
as the expected value of the percentage of
time a processor is active. A processor is
said to be active when i t is doing internal
computation without accessing the global
memory. Processing power is a simple
extension of PI , , which is the sum of
processor utilizations over the number of
processors.

Other performance parameters can be
easily related to the parameters above by
applying Little’s Law.’ Moreover, P ,, ,
BU‘, and Thr can also be related as

BW p = -
‘ I NAT

Thr p = -
‘ I A

28 COMPUTER

where N i s the number of processors, Tis
the time taken for a memory read or write
operation, and A is the memory request
rate.

Analytical modeling is a cost effective
technique used to study the performance
of a computer system. However, any real
system is too complex to be modeled
exactly.

To make an analytical model tractable,
certain approximation assumptions are
necessary. Most of the IN analyses assume
identical processors and a uniform refer-
ence model. The URM implies that, when
a processor makes a memory request to the
global memory, the request will be directed
to any one of Mmemory modules with the
same probability 1/M. That is, the desti-
nation address of a memory request is uni-
formly distributed among M memory
modules. This assumption provides us
with the symmetric property, significantly
simplifying the modeling.

If the memory system is M-way inter-
leaved, this assumption also represents the
program behavior reasonably accurately.
When the main memory is not interleaved,
there is a locality of reference and a favor-
ite memory assumption3 is more accurate.

The request rate of a processor identi-
fies how often a processor accesses global
memory. This indirectly reflects the aver-
age execution time of an instruction.

In synchronous systems, therequest rate
can be specified by a probability that a
processor generates a memory request at
the beginning of a cycle. In asynchronous
systems, on the other hand, a memory
request could be generated at any instant
in time since there is no global clock. How-
ever, an exponential thinking time for a
processor is commonly assumed, which
means that the duration between the com-
pletion of a request and generation of the
next request to the global memory is an
exponentially distributed random
variable.

The request independence assumption
(also called Strecker’s approximation4) in
a synchronous system analysis states that
a memory request generated in a cycle is
independent of the requests of the previ-
ous cycles. In reality, this is not true
because a request that was rejected in the
previous cycle will be resubmitted in the
current cycle. However, as we shall see,
this assumption simplifies the analysis to
a great extent while keeping the results
reasonably accurate.

Performance of
crossbar
interconnection
networks

A crossbar interconnection network is
an array of individually operated contact
pairs in which there is one pair for each
input-output combination, as shown in
Figure 3. A crossbar network with N
inputs and Moutputs is referred to as an
N x M crossbar. As long as there is no
memory interference among a set of mem-
ory requests generated by the processors
(that is, no two or more processors request
the same memory module), all connections
can be established at the same time. Thus,
all memory accesses can proceed simul-
taneously.

But this capability comes at a high
switching cost, which is (O(NM)).
Although the crossbar network can pro-
vide all simultaneous connections, mem-
ory bandwidth is much less than its actual
capacity. This reduction is due to the mem-
ory interference caused by the random
nature of the memory requests in a multi-
processor environment. Therefore, the
performance analysis of a crossbar net-
work becomes the analysis of memory
interference.

The literature’ contains a number of
memory interference models for central-
ized, synchronous, and circuit-switched
crossbar systems. In most of these models,
system operations are approximated by
stochastic processes as follows: At the
beginning of the system cycle, a processor
selects a memory module at random and
makes a request to access that module with
some probability p. If more than one
request is made to the same memory mod-
ule, the memory controller will choose one
at random, and the rejected processors will
retry in the next cycle. The behavior of the
processors is considered independent and
statistically identical, as is the behavior of
the memory modules.

Bhandarkar4 studied the memory inter-
ference problem in detail in which several
discrete Markov chain models were devel-
oped. In these models, a memory module
is characterized by its cycle time t,, which
consists of an access time t o , followed by
a rewrite time t , . Processor behavior is
modeled as an ordered sequence, consist-
ing of a memory request followed by a cer-
tain amount of execution time t , . The
processing time t, is measured from the
time data were obtained from the previous

request to the time the next request is
issued to the memory.

In real systems, the processor can start
execution when the memory is in its rewrite
cycle. So, when t , . = t,, the situation
would be equivalent to the case where the
processor generates a memory request at
the beginning of each memory cycle. In
this study, an exact model for the case
t , = t , and with URM was presented.
However, the model becomes very
unwieldy for a large number of processors
and memory modules.

The complexity of the memory interfer-
ence model is simplified if one assumes
that a blocked processor discards the
request and generates a new independent
request at the start of the next cycle
(request independence assumption). For a
system with Nprocessors and M memory
modules, if a processor generates a request
with probability p in a cycle directed to
each memory with equal probability
(URM), then the memory bandwidth is
given by Strecker4 as

(1)
P
M

BW = M(l-(1- -Y)

A simple explanation of this formula is as
follows: SinceplMis the probability that
a processor requests a particular memory
module, [l - (p /M)INis the probability
that none of the Nprocessors requests the
memory module in a particular cycle. Sub-
tracting this term from 1 gives the proba-
bility that at least one request to this
memory is issued. Multiplying by Myields
the expected number of distinct memory
modules being requested in a cycle and
hence the bandwidth. The maximum per-
centage of error with this approximation
is limited to 8 percent for M / N > 0.75.4
As a result, this simple formula, Equation
1, is widely used for predicting the perfor-
mance of crossbar networks. The accuracy
can be further increased by a “rate adjust-
ment” technique6 where the input request
rate is adjusted upward to take into
account the resubmission of rejected
requests. Yen6 provides a comparison of
various memory interference models for
synchronous crossbars.

The model described above assumes a
URM. However, as mentioned previously,
the distribution of memory requests in real
systems depends on program behavior,
and such distributions are not necessarily
uniform. Bhuyan3 has examined this
nonuniform reference problem by
introducing the concept of favorite mem-
ory of a processor. The memory module
requested most often by a processor is

February 1989 29

Processors

A
Memory modules

Figure 7. A queueing model for asynchronous crossbar multiprocessors.

called the favorite memory of the proces-
sor. Let tn represent the probability with
which a processor addreses its favorite
memory given that the processor generates
a request in a cycle. Then, the memory
bandwidth for an N x N crossbar-based
multiprocessor is given by

1-m B W =
N [l-(l-pm) (l-P---)~'-'l (2)

N- 1

Solutions for favorite memory cases are
also provided for M 5 N a n d M 2 N.? By
substituting m = 1/M, the analysis
reduces to that of URM (Equation 1).

In the descriptions above, we have con-
sidered only circuit-switched and syn-
chronous systems. The analysis of
asynchronous circuit-switched systems can
be done by assuming a random period of
processor thinking time and memory
access time. The processors are then
modeled by a set of delay servers and mem-
ory modules by a set of first-come, first-
serve (FCFS) queues, as shown in Figure
7 . This figure depicts a well-known closed
queueing network in performance evalu-

Table 1. Summary of crossbar analyses.

ation, and efficient algorithms to solve this
network exist.'

Because the crossbar network is a single-
staged network (that is, every input and
output is connected by a single switching
element), packet switching makes no
difference from circuit switching from a
performance point of view. Similarly, two
control strategies result in the same system
behavior. Thus, we need not consider
them separately. Table 1 summarizes the
different analytical techniques of the
crossbar system and their accuracy, work-
load representations, performance met-
rics, and computational costs.

Analyses of multistage
interconnection
networks

As stated previously, the cost of a cross-
bar network is too high to be practical for
building large multiprocessor systems. As
an alternative to the crossbar network,
multistage interconnection networks

(MINs) have assumed importance in
recent times. The main advantage of these
networks is their cost-effectiveness. They
allow a rich subset of one to one and simul-
taneous mappings of processors to mem-
ory modules, while reducing the hardware
cost to O(N1ogN) in contrast to O(N2)
for crossbar networks.

An N x N MIN connects N processors
to N memories. For N a power of two, it
employs log,N stages of 2 x 2 switches
with N/2 switches per stage. Each switch
has two inputs and two outputs. The con-
nection between an input and an output is
established depending on a control bit c
provided by the input. When c = 0, the
input is connected to the upper output, and
when c = 1, it is connected to the lower
output, as shown in Figure 4a.

An omega network538, shown in Figure
4b, is characterized by a perfect shuffle
interconnection preceding every stage of
switches. The requesting processor gener-
ates a tag that is the binary representation
of the destination. The connection of a
switch at the ith stage is then accomplished
by the i th bit of this binary tag counted
from the most significant bit.

The connection between input 3 and
output 5 (1012) is shown by a bold line in
Figure 4b. This self-routing property of a
MIN avoids the need for a central con-
troller, making it very suitable for
multiprocessors. Thus, the performance
discussions presented in this section will
concentrate solely on the decentralized
control scheme.

Many significant MINs, such as Ban-
yan, generalized cube, base line, etc.,'
have been proposed. However, most of
these networks are similar except for the
interconnection between the adjacent
stages.

The switch size in an MIN need not be
restricted to 2 x 2. In fact, the Butterfly
parallel processor connects Ninputs to N

Synchronous crossbar Asynchronous crossbar

Analqsis technique Discrete Marcok chain' Probabilistic with Queueing network?
independence assumption7 4

Workload representation Request rate Probabilits of request Think time

Performance parameters BWor P , BWor P , p,, or PI,

Accuracy Exact Good Exact

Low (closed form formula) Moderate Computational cost Very high

30 COMPUTER

outputs using 4 x 4 crossbar switches and
logfistages with N/4 switches per stage.
A delta network can connect M = a"
inputs to N = b" outputs through n stages
of a x b crossbar switches.' The general-
ized shuffle network (GSN) is capable of
connecting any M = tn I *mz * . . . , * tn,
i n p u t s t o N = n l * n , * *n,outputs
through r stages of switches.' The ith
stage employs m, x n, crossbar switches
and is preceded by a generalized shuffle
interconnection that is essentially a super-
set of the omega and delta interconnec-
tions. This is the most generalized version
of an MIN that allows different input and
output sizes, and all the other networks
can be obtained by choosing the m,s and
n,s, appropriately. For example, when
m, = a, n, =b for all i s , i t is a delta net-
work; m, = n, = 2 for all is gives an omega
network; r = 1 gives a crossbar; and
M = M * l and N = l * N provides a
shared-bus connection.

The advantages of MINs were widely
recognized by researchers, and a lot of
research projects started at universities and
industries. Examples of university projects
include TRAC (the Texas Reconfigurable
Array Computer) at the University of
Texas at Austin, Pasm (partitionable sin-
gle instruction, multiple data [SIMD],
multiple instruction, multiple data
[MIMD]) at Purdue University, Ultra-
Computer at New York University, and
Cedar at the University of Illinois at
Urbana-Champaign. RP3 is a notable
industry project at IBM, and Butterfly is
a successfully marketed product by BBN
Laboratories.

As these projects were starting, a serious
drawback of the MINs surfaced. There is
only one path from an input to an output.
I t was necessary to incorporate some fault-
tolerance into these networks so that at
least a single fault in a switch or a link
could be tolerated. This has given rise to
an abundance of research during the past
few years devoted to the design and evalu-
ation of fault-tolerant MINs. Adams"'
contains a survey and comparison of such
fault-tolerant networks. The evaluation
techniques for basic MINs are explained
below, but can be extended to fault-
tolerant MINs.

Patel' suggested a probabilistic
approach to analyze the delta network
based on U R M and the request indepen-
dence assumption. Assume a delta net-
work of size d x b " constructed from
a x b crossbar modules. Each stage of the
delta network is controlled by a distinct
destination digit (in base b) for setting of

individual a x b switches. Since the desti-
nations are independent and uniformly
distributed, the requests at any a x b mod-
ules are independent and uniformly dis-
tributed over b different destihations. In
addition, the switches at a particular stage
behave similarly. Therefore, Equation 1
can be applied to any switching element in
the delta network.

The expected number of requests that
pass to the b outputs is obtained by setting
N = a and M = b in Equation 1 . Dividing
this number by b gives us the probability
of request on any of the b output lines of
an a x b switch as a function of its input
probability. Since the output of a stage is
the input of the next stage, one can recur-
sively evaluate the output probability of
any stage starting at stage I . If p , is the
probability that there is a request at the
output of a switch at stage 1 , then

for 1 5 i 5 n. In particular, the output
probability of the final stage determines
the bandwidth of a delta network, that is,
B W = p,b". This analytical technique has
been widely used to evaluate various
MINs.

Bhuyan3 extended the analysis to
favorite-memory cases. For N x N net-
works, with N = a", the processors are
defined to be connected to their favorite
memories when all the switches are straight
connected, that is, input i of a switch is
connected to theoutput iof theswitch. In
an omega network memory, M M ,
becomes the favorite memory of processor
P,. Let 4 , ~ I be the probability that there
is a favorite request to the input at stage i.
In an N x N (N = a") delta network,

About six other equations are needed to
determine 4,- I at stage i3 and, finally,
BW = N p n . The analyses above'.' are
valid for synchronous packet-switched
MINs provided that (a) packets are gener-
ated only at the beginning of the network
cycle and (b) switches do not have buffers
(are unbuffered) so that packets are ran-
domly chosen in case of conflicts and
unsuccessful packets are lost.

The above analyses presented a recur-
rence relation for the performance of
unbuffered networks, but not a closed-
form solution. Kruskal and Snir"
obtained an asymptotic expression for the
output request probability of a stage for an

cess. cacn snarea resource, sucn as a DUS

or a memory module, is considered a
queueing service center.

Because of circuit switching. the Droces-

February 1989

pacrtet-swircnea snarea DUS Detween
processors and memories.

Yang studiedI5 packet-switched
multiple-bus systems where analytical

unbuffered delta network. Let p,,, denote
the probability that there is a packet on any
particular input at the mth stage of a
square MIN composed of k x k switches.
Through some algebraic manipulations,
Kruskal and Snir" approximated the
asymptotic formula for p , , , as

2k
(k - l) m + k

P,,, = (5)

P

wherep is the probability of request gener-
ation by a processor. From this expression,
one can see that the probability that a mes-
sage is not deleted is inversely proportional
to the number of stages in the network.
The solution for an unbuffered network
by Kruskal and Snir has been shown to be
a strict upper bound in the throughput of
a delta network. For buffered networks,
Kruskal and Snir assume an infinite buffer
associated with each output of a switching
element. I n each cycle, a random number
of packets join an output queue without
any packet being lost. This random num-
ber has a B,ernoulli distribution, since all
incoming packets from the inputs of the
switch have an equal probability (for
URM) of going to that output. The aver-
age transit time through the network can
be derived by means of the M / C / 1
queueing formula. '

Dias ancl Jump" have studied buffered
delta networks by means of petri nets,
which were introduced first as a useful
graphical tool for the precise description
of the system operations and as a model-
ing technique that permits easy evaluation
of the performance of small systems.

These graph models have recently
become very popular for the representa-
tion of distributed computing systems
because of their ability to clearly describe
concurrency, conflicts, and synchroniza-
tion of tasks. However, the complexity of
petri nets increases exponentially with the
increase in system size. With this model-
ing technique, 14 distinguishable states of
a (2 x 2) switch exist with a single buffer
between stages." The state transition
tables and the probabilities in each state
are derived. The steady state throughput
and turnaround time (network delay) are
obtained by iterating through use of the
transition tables and probability equa-
tions. The results of analysis and simula-
tion indicate that buffering produces a
considerable improvement in the perfor-
mance of these networks.

All the analyses above pertain to syn-
chronous circuit-switched or packet-
switched environments. For large MINs,

31

rnrougn a DUS. I O tnis poinr, me pacKer
finishes one rotation through the network,
and the processor resumes its background
activity. The model can be solved using

Table 2. Summary of MINs analyses.

Synchronous Synchronous Synchronous Asynchronous
MIN without MIN with infinite MIN with finite MIN with finite
buffer buffers buffers buffers

Analysis technique Probabilistic with M/G/I queue Petri net 12 Multiple chain
independence with infinite
assumption3.~ buffers)'

Workload representation Request rate

Performance parameters BW or P,,

Request rate Processor
think time

MVAS

Processor
think time

Queueing delay Throughput or Throughput
or transit time turn-around or response

time time

Accuracy Good Fair Good Good

Computation cost Low for recurrence Closed form High
solutions formula

Moderate

controlling the network operation from a
central global clock is difficult. Hence,
asynchronous designs should be consid-
ered for large multiprocessor systems.

The second disadvantage with the above
analyses is that they do not incorporate the
waiting time of a processor for completion
of the memory access, but assume continu-
ous Poisson arrival at the input side.

The third disadvantage is the assump-
tion of uniform or favorite memory
access. Memory reference patterns are
highly program dependent and could be
arbitrary.

To overcome these drawbacks, we have
recently developed5 a closed queueing net-
work model and mean value analysis
(MVA)' for the MINs under asyn-
chronous packet-switched operation.
Modeling asynchronous circuit-switched
MINs seems very difficult because of the
simultaneous possession of switches and
links by unsuccessful requests. Table 2 lists
the different analyses of MlNs described
in this section.

Performance analyses
of multiple-bus systems

Most commercial systems containing
more than one processor employ a single
shared bus as shown in Figure 2. This
interconnection scheme is well known as
being inexpensive and easy to implement.
But when the system size is large, a single
bus becomes a severe system bottleneck.

A natural extension is to employ several

buses instead of a single one to increase the
bandwidth and fault tolerance at moder-
ate cost. Recently, the multiple-bus inter-
connection scheme has drawn
considerable attention from many com-
puter scientists and engineers. In an
N x M x B multiple-bus multiprocessor
system, all the Nprocessors and Mmem-
ory modules are connected to all the B
buses.

Unlike a crossbar or multistage net-
work, the multiple-bus configuration
offers high reliability, availability, and
easy incremental system growth. Higher
reliability is obvious because, in case of a
bus failure, (B - 1) distinct paths still exist
between a processor and a memory. How-
ever, when the number of buses is less than
the number of memory modules or the
number of processors, bus contention can
arise. As a result, the performance analy-
sis of a multiple-bus system involves
modeling the effects of bus conflicts and
memory interference.

Many researchers have studied the per-
formance of synchronous, circuit-
switched, and centrally contro!led
multiple-bus multiprocessor systems
through analysis and The
memory bandwidth of the system
increases with an increase in the number of
buses. But, for all practical purposes, a
few buses might be sufficient.

In a synchronous system, all the events
occur at the beginning of a system cycle.
Therefore, the system can be modeled by
means of a discrete Markov process.
Bhuyan has developed a combinatorial
and probabilistic approach to derive an

equation for the BWof such multiple-bus
multiprocessor system^.^.'^ His analysis is
based on the URM and request indepen-
dence assumptions.

With these assumptions in mind for a
given set of memory requests, knowing the
number of ways in which the requests are
distributed among the memory modules is
easy. In addition, one can determine the
number of ways by which the given
requests are addressed to Mmemory mod-
ules such that x memory modules are
requested and M - x of them are idle.

For each value of x, Bhuyan defines a
state. The BW can be computed by
multiplying the probability of being in a
state with the number of busy memory
modules in that state. If the number of
buses in a system is less than the number
of memory modules, the number of busy
memory modules in a cycle would be upper
bounded by the number of buses. The
bandwidth for an N X M x B system is
given by

B W = M { l-(I-fi)N}

where, x ! is the factorial x, ty =
rnin(y,M),p is the probability of request
of a processor, (:) is the binomial coeffi-
cient, and S(y,x) is the Stirling number of
the second kind defined as

32 COMPUTER

Processors
n

A

Memories

Bus system queue
I I -1

Figure 8. A queueing network model for asynchronous multiple-bus systems.

X
x! S&X) = (-1) (X-i)V

r=O (9
The numerical results obtained from this
equation are quite close to simulation
results. MudgeI3 contains a detailed
review and comparison of various analyses
on synchronous circuit-switched multiple-
bus systems.

In asynchronous systems, memory
request generation and memory access
completion can occur a t any point in time
since there is no synchronization by a
clock. Therefore, the system can be
modeled with a continuous stochastic pro-
cess. Each shared resource, such as a bus
or a memory module, is considered a
queueing service center.

Because of circuit switching, the proces-
sor that issues a memory request holds a
system bus while accessing the main mem-
ory. Thus, two system resources, bus and
memory, are simultaneously held by a
memory operation. This simultaneous
resource possession phenomenon makes
the analysis nontrivial.

One study‘‘ uses the flow equivalence
technique to approximately solve the
queueing network. The bus and memory
subsystem, called aggregate, is replaced by
a single flow equivalent service center
(FESC).’ The model has been compared
with simulation results, and the agreement
is quite good over a wide range of bus
load. l 4

All the studies above consider only cen-
t ra l ly c o n t r o l l e d , c i rcu i t - swi tched

multiple-bus systems. In circuit switching,
a device will occupy the bus for the entire
duration of data communication once the
device is granted use of a bus.

For instance, a processor in a read oper-
ation will occupy the bus during the time
it is sending a request, performing a mem-
ory operation, and receiving the requested
data. The result will be the waste of a sig-
nificant fraction of bus bandwidth because
of a mismatch between the speeds of the
processing unit, the bus, and the memory
unit.

All these facts serve to demonstrate the
attractiveness of the packet-switching
approach. Encore’s Multimax is an exam-
ple of a multiprocessor employing a
packet-switched shared bus between
processors and memories.

Yang s tudied” packet-switched
multiple-bus systems where analytical
models were developed for both syn-
chronous and asynchronous timings. In
the synchronous case, both centralized and
decentralized controlled schemes a re
treated equally, since all the events in the
system occur a t the beginning of a cycle
regardless of the control strategies used. A
discrete probabilistic approach is applied
t o analyze such systems.

The model has been based on a decom-
position technique that considers simple
analysis of a set of single-server queues.
The consequence of the analysis is an
equation consisting of one unknown var-
iable, P, , , processor utilization; it can be
solved by using a standard numerical
method.

For an asynchronous case, the queueing

network is shown in Figure 8. Processors
in the system are modeled as delay servers,
and memory modules are modeled as
FCFS servers. The bus system is modeled
as an FESC’ representing B buses with a
single (centralized) queue.

The routing of a packet in the network
can be described as follows: A request
packet generated by a processor is first put
in the central server queue, waiting for an
available bus. After it gains access to a bus,
the packet joins one of the M memory
queues. The memory module that finishes
the service of a request again puts the
response packet in the central server
queue. From there, the response packet
gets back t o the requesting processor
through a bus. To this point, the packet
finishes one rotation through the network,
and the processor resumes its background
activity. The model can be solved using
any standard product-form algorithm,
considering the bus system queue as a load-
dependent server.’

In the case of a decentralized control,
the actual implementation can be either
token bus or daisy chain bus. Due t o the
lack of central controller, the analysis of
decentralized packet-switching multiple-
bus systems is very complicated. The
FCFS service discipline is not valid for bus
system queue in this case. The service dis-
cipline depends on the position of tokens
with respect to the positions of requesting
devices.

The exact solution for such a system
seems infeasible, but one method for
approximating the behavior of the system
is to use hierarchical modeling tech-

February 1989 33

Table 3. Summary of multiple- bus analyses.

I

~ Workload representation Request rate Processor think Request rate Processor think
time time

1 Performance parameters BW or P , Throughput PI,
i or p,,
I

Fair Good Good Fair I

I 1 Computation cost Low Moderate Low, but
iteration

Moderate I

Table 4. Summary of hardware features of the three INS.

Cro5Fbar MlNs Multiple-bus

N o switches N*M NlogN B*(N+M)
or connection5

1 Lodd of buses N I B

I NO of wire5 M N B

!

I !

i arbiters M I-of-N arbiten 1
M I-of-N arbiter5 M o g N I-of-2 I B-of-Mand

Fault-tolerant
~ and expansion

Fair Poor, but fair with
additional hardware

Good

niques." As in the previous case, the bus
system is represented by FESC (Figure 8)
with the service rate obtained by shorting
out the processors and the memory mod-
ules. The model is then solved by using the
mean value analysis algorithm.'

Numerical results obtained from the
models have shown that packet switching
reduces the communication bottlcneck of
shared bus systems. '' Table 3 summarizes
analyses of different categories of
multiple-bus systems.

Comparison and
discussions

As indicated in the previous sections, the
three types of interconnection networks
possess different hardware features and
different system performances. In this sec-
tion, we will look into these differences

quantitatively. In particular, we will com-
pare the hardware cost and system perfor-
mance of the three interconnection
networks.

Table 4 lists selective hardware features
of the three networks. As we already
know, the number of switching elements
used in an N x M crossbar is N x M in
contrast to Nlog N o f MINs. The number
of connections necessary in an N x M x B
multiple-bus system is proportional to
R(N + M). Since each bus in the multiple-
bus system needs to drive N + Mmodules,
the bus load is proportional to N + M ,
while the bus load of an MIN is one due to
the one-to-one connection.

All three of these networks require cer-
tain types of arbiters to resolve the request
conflicts. In a crossbar network, M N-
users 1-server arbiters are necessary, each
of which selects one of up to N outstand-
ing requests for a memory during a mem-

ory cycle. The MINs, on the other hand,
require two 2-user I-server arbiters for
each switching element for (N / 2) l o g z N
switches.

In a multiple-bus system, an M-users B-
servers arbiter is needed to assign the B
buses to the outstanding requests. Once a
bus is granted to a memory, only one of the
processors that requests the memory can
proceed while the others, if any, are
delayed. This choice is implemented by an
N-users I-server arbiter. Thus, a multiple-
bus system requires M + 1 arbiters, one
arbiter of the M-users B-servers type and
Marbi te rs of the N-users I-server type.

Expandability and reliability are two
other very important hardware features.
In this context, a multiple-bus system
shows its advantages over the other two
because of its reconfigurability and
multiple-data paths between every proces-
sor and memory. I t can still operate in a

34 COMPUTER

Prob. of Acceptance (P A)

t

0.0

p - 1.0

I I I I b

Figure 9. Probability of acceptance as a function of system size for synchronous circuit-switched systems.

degraded mode after the failure of a sub-
set of the buses.

A lot of research has gone into the
reconfigurable and fault-tolerant MINs. l o

The fault-tolerance of a MIN can be real-
ized by adding additional hardware such
as extra stages or duplicated data paths. I t
is easier to reconfigure a crossbar than an
MIN. In case of a fault, a particular row
or a column in Figure 3 can be removed
and the network can operate in a degraded
mode.

Next, we’ll consider the performance of
the three interconnection networks based
on the analytical models described in the
previous sections. Figure 9 shows the prob-
ability of a memory request being
accepted, PA = B W / p . N , as a function
o f system size for synchronous circuit-
switched systems with p = 1 .O.

Two curves, one for crossbar and one
for MIN, are plotted according to Equa-

tion 1 and Equation 3, respectively. The
difference between the two curves
increases as the system size grows. The
probability of acceptance in the crossbar
system remains constant when the system
size becomes very large. However, in the
case of MIN, P A keeps decreasing as the
system size increases.

Figure 10 shows the memory bandwidth
of 16 x 16 synchronous circuit-switched
multiprocessor systems. The horizontal
axis represents a processor’s probability of
request. As we can see, the single bus per-
forms worse since it gets saturated very
quickly and the B W can never exceed 1.
The BWincreases as the number of buses
increases, as shown in the figure.

Figure 11 shows the comparison of syn-
chronous packet-switched networks. In
this figure, processor utilizations are plot-
ted against the probability of request for
a 16 x 16multiprocessor. Processor cycle

times, bus transfer delay, as well as the
total ideal packet transfer time between an
input and an output of an MIN are
assumed to be fixed at the system cycle
time. The memory access time is assumed
to take four system cycles (similar to
Encore’s Multimax) for all three systems.
During a memory access, the processor
that issued the memory request remains
idle until the memory access is finished.

The memory request rate of a processor
as seen by an interconnection network is
adjusted6 in plotting the processor utiliza-
tion in Figure I I . The performance differ-
ence between various networks is not as
pronounced as in Figure 10. This is due to
the packet-switched operation of the INS.
Additionally, a multiple-bus-based multi-
processor system with only four buses can
achieve almost the same performance as
that of the crossbar system while reducing
the hardware cost significantly.

February 1989 35

Bandwidth (B W)

crossbar /

I I I I I t
0.2 0.4 0.6 0.8 1.0

Probability of rcqucrt, p

Figure 10. Memory bandwidth as a function of probability of request for 16 x 16 synchronous circuit-switched systems.

Proce\

0.8

0.6

0.4

0.2

0.0

utili7atior (f,,)

I I I 1 -
0.0 0.2 0.4 0.6 0.8 1 .o

Protmbilitv of rcouert D I 1 I .

Figure 11. Processor utilization as a function of probability of request for 16 x 16 synchronous packet-switched systems.

COMPUTER 36

11 the comparisons above apply
to synchronous systems based on
system cycle. We have intention-

ally avoided comparing asynchronous sys-
tems because their performance is so
dependent on the input parameters that
choosing the wrong parameters might give
rise to the wrong conclusions. However,
the analytical techniques that can be
applied to evaluate those systems are given
in this article. The information provided
here is useful for predicting the approxi-
mate performance of an IN structure
before its design and implementation. Fur-
ther references and a more detailed survey
on the performance evaluation of multi-
processor INS can be found in Bhuyan.’

It seems that enough research has
already been done in evaluating INS in iso-
lation. We strongly feel that more work is
needed at the system level that includes the
IN as a major component. For example,
evaluation of multiprocessor systems with
prefetching, bulk data read or write, and
solving cache coherence with INS shows
promise for future research.

Similarly, task (application) level
modeling on multiprocessor architectures
might produce some good insight into the
trade-offs between computation versus
c o m m u n i c a t i o n , low versus la rge
granularity, static versus dynamic schedul-
ing, etc.

Finally, some actual measurements
(traces) should be obtained on real mul-
tiprocessors and applied to the analytical
models as their input parameters. 0

Acknowledgments

Bhuyan’s research was supported by National
Science Foundation grant No. MIP-8807761
and by a grant from the Louisiana Board of
Regents. Agrawal’s research was partly sup-
ported by US Army Research Office contract
NO. DAAG 29-85-K-0236.

References
1 , D.A. Reed and D.C. Grunwald, “The Per-

formance of Multicomputer Interconnec-
tion Networks,” Computer, Vol. 20, No. 6,
June 1987, pp. 63-73.

2. E.D. Lazowska et al., QuantitativeSystem
Performance-Computer System Analysis
Using Queueing Network Models, Prentice
Hall, Englewood Cliffs, N.J., 1984.

3. L.N. Bhuyan, “An Analysisof Processor-
Memory Interconnection Networks, ” IEEE
Trans. Computers, Vol. C-34, No. 3, Mar.
1985, pp. 279-283.

4. D.P. Bhandarkar, “Analysis of Memory
Interference in Multiprocessors,” IEEE
Trans. Computers, Vol. C-24, Sept. 1975,
pp. 897-908.

5. L.N. Bhuyan, “Performance Evaluation of
Multiprocessor Interconnection Net-
works,” Tutorial Note, ACM SIGMetrics
Conf., May 1988.

6. D.W. Yen, J .H. Patel, and E.S. Davidson,
“Memory Interference in Synchronous
Multiprocessor Systems,” IEEE Trans.
Computers, Vol. C-31, Nov. 1982, pp.
1,116-1,121.

7. L.N. Bhuyan and D.P. Agrawal, “Design
and Performance of Generalized Intercon-
nection Networks,” IEEE Trans. Com-
puters, V o l . C-32, Dec. 1983, pp.
1,081-1,090.

8. Tse-Yun Feng, “A Survey of Interconnec-
tion Networks,” Computer, Vol. 14, No.
12, Dec. 1981, pp. 12-27.

9. J.H. Patel, “Performance of Processor-
Memory Interconnections for Multiproces-
sors,” IEEE Trans. Computers, Vol . C-30,
Oct. 1981, pp. 771-780.

IO. G.B. Adams 111, D.P. Agrawal, and H.J.
Siegel, “A Survey and Comparison of
Fault-Tolerant Multistage Interconnection
Networks,” Computer, Vol. 20, No. 6,
June 1987, pp. 14-27.

11. C.P. Kruskal and M. Snir, “The Perfor-
mance of Multistage Interconnection Net-
works for Multiprocessors,” IEEE Trans.
Computers, Vol . ‘2-32, Dec. 1983, pp.
1,091 - 1,098.

12. D.M. Diasand J.R. Jump, “Analysis and
Simulation of Buffered Delta Networks,”
IEEE Trans. Computers, Vol . (2-30, Apr.
1981, pp. 273-282.

13. T.N. Mudgeet al., “Analysis of Multiple-
Bus Interconnection Networks,” J . Paral-
leland Distributed Computing, Vol. 3, No.
3, Sept. 1986, pp. 328-343.

14. D. Towsley, “Approximate Models of Mul-
tiple Bus Multiprocessor Systems,” IEEE
Trans. Computers, Vol. C-35, Mar. 1986,
pp. 220-228.

15. Q. Yang, L.N. Bhuyan, and R. Pavaskar,
“Performance Analysis of Packet-Switched
Multiple-Bus Multiprocessor Systems,”
Proc. 8th Real- Time System Symp., Dec.
1987, CS Press, Los Alamitos, Calif., pp.
170- 178.

Laxmi N. Bhuyan is an associate professor at the
Center for Advanced Computer Studies at the
University of Southwestern Louisiana in
Lafayette. His research interests include parallel
and distributed computer architecture, perfor-
mance and reliability evaluation, and local area
networks.

Bhuyan received BS and MS degrees in elec-
trical engineering from the Regional Engineer-
ing College, Rourkela under Sambalpur
University in India. He received a PhD in com-
puter engineering from Wayne State University
in Detroit in 1982. Bhuyan is a senior member
of the IEEE, a distinguished visitor of the IEEE
Computer Society, and served as guest editor of
the Computer issue on interconnection net-
works in June 1987.

I I

Qing Yang is an assistant professor in the
Department of Electrical Engineering at the
University of Rhode Island. His research
interests include parallel and distributed com-
puter systems, design of digital systems, perfor-
mance evaluation, and local area networks.

Yang received a BSc degree in computer
science from Huazhong University of Science
and Technology in China in 1982 and an MASc
in electrical engineering from the University of
Toronto in 1985. He received a PhD in com-
puter engineering from the Center for Advanced
Computer Studies, University of Southwestern
Louisiana. Yang is a member of the IEEE Com-
puter Society.

Dharma P. Agrawal is a professor of electrical
and computer engineering at North Carolina
State University in Raleigh. He is the group
leader for the B-Hive multicomputer project at
NCSU. His research interests include both soft-
ware and hardware aspects of parallel and dis-
tributed processing, computer architecture, and
fault tolerant computing.

Agrawal received the BE degree from
Ravishankar University in India, the ME degree
from the University of Roorkee in India, and the
DScTech degree in 1975 from the Federal Insti-
tute of Technology in Switzerland. He is the
author of the tutorial text Advanced Computer
Architecture published by the IEEE Computer
Society; a member of the’computer Editorial
Board; an editor of the Journalof Paralleland
Distributed Computing and the International
Journal on High-speed Computing; a fellow of
the IEEE; a member of the IEEE Computer
Society; and a recipient of the society’s Certifi-
cate of Appreciation.

Readers may write to Bhuyan at the Center
for Advanced Computer Studies, University of
Southwestern Louisiana, Lafayette, LA
70504-4330.

February 1989 37

