
1996 International Conference on Parallel Processing Workshop
~ _ _ _ _ _ _ _ ~ _ ~ _ _ _ _ _ -

Interconnection Networks: Dimensions in Design

Seth Abraham

School of Electrical and Computer Engineering
Purdue Universit

West Lafayette, Indiana 4kW7-I285

Abstract
The interconnection network is the switching fabric

responsible for providing communication between all
processors in a parallel computer. Much research has
been directed towards developing superior interconnec-
tion networks, but there is no general agreement that this
problem is solved. The speakers for this panel session
were asked to address the following question: for a given
range of number of commodity high-pe$ormance proces-
sors (e.g. 256 to 1024) what interconnection network
should be used to build a general purpose MIMD parallel
machine.

1. Introduction
One vital component of a parallel computer’s

hardware is its interconnection network. The intercon-
nection network is the switching fabric responsible for
providing communication between all processors in a
parallel computer. The quest for an ideal interconnection
networks is an old one, with many networks proposed,
and (not as) many networks implemented. Much research
effort has been expended, but there is no general agree-
ment that this problem is solved. Three speakers were
asked to comment for a panel session on this issue. They
are Lionel Ni, from the Michigan State University, [Ni96]
Craig Stunkel, from IBM TJ Watson Research Center,
[Stun961 and Pen-chung Yew, from the University of
Minnesota [HsYe96]. (Pen Yew’s co-author is William
Tsun-yuk Hsu from San Francisco State University.) The
speakers were asked to address the following question:
for a given range of number of commodity high-
performance processors (e.g. 256 to 1024) what intercon-
nection network should be used to build a general pur-
pose MIMD parallel machine.

When a uniprocessor architect first examines a MIMD
parallel computer, the part of the machine that is most
alien is the interconnection network. The processors that
comprise the machine are not significantly different than
uniprocessors with which they are already acquainted. If
only a small number of processors are involved, they can
be interconnected with a familiar crossbar or high speed
shared bus. However, if there are a large number of pro-
cessors, the choices for interconnect become less clear.
For this reason, the panelists have been asked to address
their remarks towards the 256 to 1024 processor range.

Historically, many interconnection schemes have
been proposed and extensively studied. Their perfor-
mance has been analyzed with a variety of techniques
ranging from simple back-of-the-envelope guesses to
highly sophisticated and detailed mathematical models.
Simulation performance studies have been conducted
under a plethora of conditions, some of them realistic,
some of them farfetched. Network behavior in the pres-
ence of transient or hard failures has been studied.
Switching schemes have been developed and routing
techniques devised. A variety of operating conditions
and requirements have been proposed, each leading to a
custom, and sometimes unique solution for the intercon-
nection problem. Technology issues, packaging issues,
and scalability issues have also not escaped notice or
attention. Comparative studies, examining the relative
merits of two or more design options abound. The litera-
ture on the subject is a veritable sea, yet agreement over a
broad spectrum of issues is scarce.

Critics of the field are quick to seize upon this last cir-
cumstance. They (rightly) point out that many of the pro-
posals are simply not feasible. They also point out that
very few of the proposed networks have been imple-
mented. Further, of the few systems that have been
implemented, the results have been somewhat disappoint-
ing. Generally, the more successful interconnection net-
works have been the simpler topologies and the smaller
sized systems. This has encouraged critics to claim that
dreams of large systems and/or sophisticated topologies
are impractical fantasies only loosely connected with real
world constraints.

One reason for this feeling is that the interconnection
networks in implemented systems sometimes seem as if
extra hardware has been grafted onto the machine. A
large number of sophisticated high performance proces-
sors are interconnected with a relatively unsophisticated
network. One should realize that providing high perfor-
mance interconnection is not as mature an endeavor as
providing uniprocessor performance. The uniprocessor
comes to today’s parallel computer as a sophisticated
engine that is the product of decades of theoretical study
and practical experience. On the other hand, interconnec-
tion network designer do not have such an extensive
wealth of knowledge to draw upon. Is it any wonder that
the interconnection network fares poorly in the com-
parison?

45
0190-3918/96 $5.00 0 1996 IEEE

-
1996 International Conference on Parallel Processing Workshop

__

Furthermore, the most exciting and visible feature of
a parallel supercomputer, (especially to the non-
specialist), is the number of processors and the speed of
each. With high performance commodity chips so rea-
sonably priced, one is tempted to gather a large number
of chips and put them into a single box. Then, one can
claim that the new parallel supercomputer has a perfor-
mance many times greater than previously achieved. In
the effort to secure such bragging rights, issues such as
network bandwidth, communication latency, program-
ming model, software overhead, granularity of exploit-
able parallelism, synchronization time, fault tolerance and
reliability are relegated to the fine print. These issues
may not be very exciting, yet failure to carefully consider
them can lead to a machine that is largely unusable.

More fundamentally, harsh "time to market" pressures
pose a large obstacle to parallel machine development.
The machines that are delivered late are guaranteed to
become historical footnotes as conventional uniprocessor
performance continues to improve. The pressure that the
uniprocessor performance curve brings to bear on parallel
computers is not conducive to experimenting with dif-
ferent interconnection solutions. Parallel machines with
large numbers of processors require long development
times, and machines with small numbers of processors
are quickly overtaken by the relentless performance
advances of uniprocessors. Until the uniprocessor perfor-
mance curve flattens, this is unlikely to change. Histori-
cally, the performance increases have been delivered by
increased clock rates and advances in exploiting instruc-
tion level parallelism (ILP). With on chip clock speeds
already pushing 400Mhz, one expects the curve to flatten
soon. It seems unreasonable to expect more than an order
of magnitude improvement in clock speed and an order of
magnitude improvement in ILP. With uniprocessor per-
formance doubling every eighteen months, a maximum of
two orders of magnitude improvement would imply the
performance curve will flatten in about ten years.

In the three workshop papers, the panelists outline
many dimensions in the design space for interconnection
networks. Many important issues impacting interconnec-
tion network design are identified and discussed. Since
the single most descriptive characteristic of an intercon-
nection network is its topology, this introduction will
describe the major network topology options, with refer-
ence to the three papers [HsYe96, Ni96, Stun961. This
will be followed by a summary of such non-topological
issues such as network performance, scalability and
incremental scalability, fault tolerance and reliability.
Section 4 contains a short discussion about issues that
impact the interconnection network but are beyond the
scope of this panel. Lastly, Section 5 concludes this
introduction.

2. Major Network Topologies
One can divide interconnection networks for large

numbers of processors into the two major divisions
indirect networks and direct networks. (We will omit
ATM networks from this classification; however both
Stunkel and Ni discuss how the use of ATM networks
relate to the more traditional interconnection strategies.)
A network is indirect if it is composed of switches con-
nected with links, and a network is considered to be direct
if it is constructed with point-to-point links between the
processors. This classification is due to Pease [Peas771
with particular reference to the direct binary n-cube (or
hypercube), and the indirect binary n-cube (a MIN vari-
ant). (The exact relationship between these two networks
is explored in [Padm90].) Ni describes a more detailed
classification of networks, summarized in Figure 1 of
[Ni96]. Stunkel also describes a similar network
classification summarized in Figure 1 of [Stun96]. Both
authors note that it is possible to have hybrid schemes, yet
both refrain from exploring this design option. However,
Hsu and Yew [HsYe96] focus exclusively on hierarchical
systems that are hybrids.

2.1 Indirect Networks
The most well known indirect network is the multis-

tage network, or MIN. The earliest MINs include the
indirect binary n-cube [Peas77], omega [Lawr73] and
delta [Pate81], among others. These networks are con-
structed of stages of smaller switches, with wires con-
necting the stages together. Figure 1 shows an 8x8
omega constructed from 2x2 switches. These networks
all have simple routing, and can be shown to be topologi-
cally equivalent to each other. A good summary of MIN
properties can be found in [Sieg90].

Figure 1. A multistage omega network

While MINs are often thought of as NxN networks
(N=2n) comprised of 2x2 switches, this is actually not a
requirement. For example, omega networks of size N can
be constructed using switch sizes corresponding to any

46

1996 International Conference on Parallel Processing Workshop
________ _______

prime factorization of N [Lawr73]. It is even possible to
construct networks for any even number N [Padm91].
While many MINs provide only one path between arbi-
trary source and destination, one can add redundancy to
the network by adding redundant switching stages
[AdSi82, PaLa831

The networks are usually considered to be unidirec-
tional; however, this is also not a requirement. Bidirec-
tional MINs, often called "fat trees", are also an intercon-
nection option. Stunkel describes the use of bidirectional
MINs in the IBM SP2 [Stun96], He also elaborates on the
practical aspects of implementing and manufacturing a
parallel computer and explains why this particular topol-
ogy was employed in the SP2.

The performance of MIN has been widely studied
under both buffered and unbuffered conditions. Unbuf-
fered network performance is well described by Patel
[Pate81]; see Kruskal, Snir and Wyss for an excellent
treatment of buffered network performance under a wide
spectrum of traffic conditions [KrSW88]. There are also
traffic conditions known as hot-spots that are particularly
detrimental to MIN performance. This issue was first
described by Pfister and Norton [PfNo85]. For comparis-
ons of MIN performance to the performance of its direct
connected counterpart, the hypercube, see [AbPa89].

2.2 Direct Networks
Direct networks are constructed with point-to-point

links between processors. These are sometimes termed
router networks although the router used at each proces-
sor is not fundamentally different from the switch used in
indirect networks. The most widely known direct net-
work topologies are the multi-dimensional meshes and
tori, also called called k-ary n-cubes. The simplest of
these networks is the one dimensional ring. If one allows
every processor to belong to two distinct rings, a two
dimensional torus is formed. Figure 2 shows this 2-
dimensional structure for a 4x4 array of processors. If the
end-around connections are removed, a 2-dimensional
mesh results. The number of nodes in each dimension,
and the total number of dimensions can be selected as
desired. These structures are quite popular as they fit the
computation structure of many scientific computations.
Most of the implemented systems that use direct intercon-
nection networks have been some sort of multi-
dimensional mesh.

The links can be either unidirectional or bidirectional.
Unidirectional links utilize a single communication chan-
nel between two nodes A and B. Messages can be sent
from A to B, but not from B to A. In an N node unidirec-
tional ring, messages may only be sent in one direction,
say clockwise, so the average internode distance is Nl2.
Bidirectional links either require two communication
channels so that messages can go from A to B and from B
to A; or, they need to time multiplex a single communica-
tion channel to allow messages to be sent in both

Figure 2. A 2-dimensional torus with 16 nodes

directions. With bidirectional links, an N node ring has
average distance of N/4.

The well known n dimensional hypercube is a special
case of a multi-dimensional torus. It can be viewed as
either a unidirectional torus with two nodes in each of n
dimensions, or it can be viewed as a bidirectional torus
with four nodes in each of n/2 dimensions (for even
numbers n). Thus, the ring and the hypercube represent
the extremes of the multidimensional tori family.

Since the family of multi-dimensional networks, from
rings to hypercubes is obviously closely related, it makes
sense to study these networks comparatively. Wittie
[Witt81] undertook such a study, examining the topology,
routing, node degree, graph diameter, and average inter-
node distance. The idea is that node degree is related to
the network cost, and that graph diameter (or average
internode distance) is related to performance. Some years
later, Dally [Dall901 pointed out that the different
members of the multi-dimensional torus family have very
different implementation costs. Clearly, a ring is much
easier to build than a higher dimensional structure such as
a hypercube. Thus, to do a fair comparison between
these networks, one should allow the lower dimensional
structure to have wider communication links (i.e. com-
munication channels with high bandwidth). This allows
network performance to be compared between networks
of constant cost. Dally chose the network bisection width
as his constant cost constraint, and concluded that lower
dimensional structures are best. A constant bisection
width constraint is a measure of wiring complexity, and is
particularly relevant when the network wiring is imple-
mented on a single chip or board. Since that time, other
authors have applied different cost constraints. Abraham
and Padmanabhan [AbPa90] applied a constant pin-out

47

1 996 International Conference on Parallel Processing Workshop
~

constraint which may be a more relevant cost constraint
for todays pin limited chips, or in cases where connector
costs for cabling between cabinets is a consideration.
With such a constraint, higher dimensional networks look
attractive again. Other authors have compared the perfor-
mance of multidimensional tori using both of the above
cost constraints, and also considered different wire delay
models to account for the large delays required to imple-
ment higher dimensional structures. [Da1190, Agar9 1,
ScGo941. The topology that looks the best is highly
dependent on the constraint chosen, and the wire delay
model considered. It is difficult to do a meaningful com-
parison without considering such cost criteria.

Other topologies proposed for interconnection are
often motivated by the search for dense graphs. Dense
graphs have a large number of nodes in a graph for a
given maximum node degree and graph diameter. The
notion is that degree is related to network cost, and diam-
eter is related to performance, so the "best" topology
should be the one with the most nodes. Using static
measures to predict cost and performance is approximate
at best- several examples can be provided of networks
that look appealing on the basis of these measures, but
pale under closer inspection. However, many interesting
topologies have been proposed, and Doty [Doty84] lists a
number of dense graphs. There are also a host of other
topologies that have been proposed for interconnection
networks. A small sampling of these include star
[AkKr89], pancake [AkKr89], rotator [Corb92], plus a
number of hypercube variants [Kats& HiKS871.
Stunkel [Stun961 comments on a few of these networks
and their potential for use as an interconnection structure.

2.3 Hybrid and Hierarchical Networks
The hierarchical networks considered by Hsu and

Yew [HsYe96] are essentially hybrid in nature. A good
example of a hybrid topology is the cube-connected
cycles network [PrVu81]. This topology is formed by
replacing each of the hypercube's nodes with a ring of
nodes. (Figure 3 shows an example.) For the remainder
of this introduction, we will adopt Hsu and Yew's prac-
tice of calling these networks hierarchical.

In some sense, hierarchical networks are motivated by
forces similar to those that drove the development of
memory hierarchies. In the case of memory hierarchies,
the speed of different memory technologies motivated the
use of multi-level memory hierarchies. For interconnec-
tion networks, packaging constraints and technology
issues invite the use of different topologies at each level
of the hierarchy.

From a hardware design point of view, as the number
of processors increases, the media implementing the
switching fabric span the spectrum from VLSI routing
and switches, to board level routing and possibly multi-
chip switching, to backplane based routing, to multi-
cabinet (cable) routing. Each movement along this

Figure 3. The Cube Connected Cycles Network

spectrum may represent a change in one or more aspects
of implementation technology. For instance, at one end
of the spectrum signals are transmitted by VLSI wires,
while at the other end signals are transmitted by twisted
pair or coaxial cables. Each technology has its own set of
fundamental propagation delay limits, basic switching
speed limits, and connector costs. Designing a hierarchal
system allows the designer the freedom to match a topol-
ogy to the technology constraints at each level in the
hierarchy. This can have a profound impact on system
costs, ease of scalability, and even the programming tech-
niques used on the parallel machine. Hsu and Yew
develop a framework for characterizing and classifying
hierarchical systems, with particular focus on two level
systems. This is explained and more fully discussed in
[HsYe96].

3. Important Interconnection Issues
Beyond topology, the panelists identify several other

factors that must be considered when building an inter-
connection network. One important issue is performance.
The relationship between performance and topology has
already been discussed; however, there are several other
components to interconnection network performance.
The speed of the interconnect itself is an important factor.
This speed depends on the technology and packaging
used for implementation, and the width (number of wires)
of the communication channel.

There are also several switching techniques that can
be employed. The network can be circuit switched or
packet switched. If the latter, then schemes can be
classified as unbuffered or buffered. The simplest form
of a buffered packet switched network is one that uses a
store and forward strategy. This means that a packet is

48

-
1 996 International Conference on Parallel Processing Workshop

._______

completely received from one communication channel
before it is routed to the next communication channel.
However, if the routing information arrives before the
end of the packet, then one can optimize the switching by
making routing decisions before the packet is completely
received. Thus, the head of the packet can be forwarded
to the next communication channel while the end of the
packet is still in transit on the previous channel. Of
course, the next communication channel must be avail-
able. Kermani and Klienrock [KeK179] describe this
scheme, naming it virtual cut through. One can think of it
as operating like circuit switching when the network load
is low (and hence, the probability of a desired communi-
cation channel being busy is low), and operating like
packet switching when the network load is high. When
only limited buffer space is available and the packet is
forced to remain on the communication channel, the
scheme is called worm-hole [DaSe87]. (We note that the
phrase "worm-hole routing" is somewhat of a misnomer
because it mostly describes switching behavior, not rout-
ing behavior.)

For any switching scheme to be effective, it must be
coupled with high speed routing that is simple enough to
be implemented in a minimum of gate delays. Each
topology has its own routing algorithm. If the network
has more than one path between source and destination,
then routing can either be adaptive or non-adaptive.
Stunkel [Stun961 classifies non-adaptive routing algo-
rithms as destination routing, table lookup and source
based routing. Both Stunkel [Stun961 and Ni [Ni96] dis-
cuss adaptive routing as well,

The panelists also call attention to the issue of scala-
bility, incremental scalability and partitionability. Ni
[Ni96] observes that in practical terms, scalability need
be considered over a particular range of processors, rather
than from 1 to infinity, an observation that significantly
simplifies the problem. All three of these issues have
broad marketing implications, effecting the ability of cus-
tomers to upgrade machines, and the ability of manufac-
turers to offer a wide variety of configurations at different
price points.

Fault tolerance and reliability are also extremely
important. Parallel computers contain, by their very
nature, a large number of components. Since each com-
ponent has a certain probability of failure, the chance of
all components being operational becomes small. When
the mean time to failure reduces to a few hours, the sys-
tem becomes unusable in a production environment.
Clearly large parallel processing systems and their inter-
connect must be capable of continued operation (with
reduced performance) in the presence of faulty com-
ponents. Interconnection networks must make routing
and signaling provisions for faults within the switching
fabric, as well as faults in the processing elements.

Lastly, interconnection networks may need to support
special operations for efficient parallel computing.
Examples of such operations may include broadcasts,
multi-casts, and synchronization operations. These
operations can be made significantly more efficient if they
are integrated into the switching fabric. Unfortunately,
there is little common agreement on what special opera-
tions are important, and what operations are not.

4. Issues Beyond the Scope
The panelists were asked to direct their remarks

towards the interconnection network. However, there are
several parallel computing issues which impact the inter-
connection network although they are not, strictly speak-
ing, network issues. Layered on top of the network issues
are two additional sets of issues. The first is the physical
mechanism that the processor uses to make communica-
tion requests, and the second is the method that the appli-
cation programmer uses to specify a communication
request. The former encompasses issues related to the
network interface unit, while the latter relates to the
parallel programming model for interprocessor communi-
cation. In this section, these will be briefly discussed.

Since the fundamental function of the interconnection
network is to provide interprocessor communication, it
makes sense to briefly examine what sort of communica-
tion might be required. There are two dominant para-
digms for requesting communication services in parallel
applications. One way to request communication is obvi-
ous: ask that a message be sent from one process to
another. This leads to the message passing programming
model, usually implemented through the input/output sub-
system of the processors. Typically, it also entails
significant software overhead. The second method of
communication is an extension of the stored program
machine model where the result of one machine language
instruction is written to memory and then subsequently
read from memory by another machine language instruc-
tion. Extending the concept from communication
between instructions to communication between proces-
sors leads to the shared memory programming model.
The shared memory programming model mandates the
need for explicit synchronization to insure the correct
ordering of memory reads and writes. This appears to be
a big advantage for the message passing model; however,
it should be noted that the message passing model has
synchronization implied by the receipt of messages. In
message passing, the coordination of a message receipt
with the application program read is typically accom-
plished by exploiting the (slower) synchronization pro-
vided by the operating system and VO device drivers.

While some interconnection network topologies have
been associated with one programming model or another,
there is really no fundamental reason for this association.
One should not confuse the interconnection network with
the programming model. Usually, the most natural and

49

1996 International Conference on Parallel Processing Workshop

efficient parallel programming model (message passing or
shared memory) for a machine will be determined by the
network interface. When the network interface looks like
an I/O device to the processor, then message passing is
likely to be the favored communication mode. When the
network interface looks like memory to the processor,
then shared memory is likely to be favored. Of course,
the system software can support any desired program-
ming model, regardless of what the network interface
supports.

However, the two programming models do pose a dif-
ferent set of requirements and demands upon the inter-
connection network. In general, a shared memory pro-
gramming model entails greater cost for the network
interface and must provide for hardware synchronization.
This will complicate the design of the network interface,
or may rule out the use of commodity processors alto-
gether. The shared memory programming model allows
the exploitation of fine-grain parallelism, and may require
the interconnection network to provide low latency com-
munication, with small packet sizes. If the network
efficiency decreases with small packet sizes, then a
shared memory programming model will be unsuitable if
single word reads and writes are envisioned, but allow-
able if cache blocks are the unit of transfer. If a cache
strategy is employed on a shared memory machine to
hide network latency and increase packet size, then cache
coherence may need to be assured. However cache
coherence has severe network performance implications
[GuAb95], and this further complicates the design of the
network interface.

Message passing generally means a simpler network
interface, but implies significant software overhead for
message handling. Often, the interconnection network
has a lower performance (i.e. higher communication
latency). This situation discourages the exploitation of
fine-grain parallelism. Communication traffic is likely to
have a fewer number of (multi-word) packets. Packets
may be of variable (and potentially large) size, further
complicating interconnection network design.

Currently, there are no universal parallel program-
ming models, and there is little agreement about what
granularity of parallelism is desirable or feasible. In such
a climate, researchers regularly experiment by modifying
their programming style. Further, application program-
mers constantly tune their codes to match the properties
of the interconnection network in their machine. This
may lead to higher performance on a particular machine
at the expense of the parallel programming paradigm.
Machine architects must be on guard when they examine
the style of application programmers to determine how to
build a parallel computer. Is this the way the programmer
wanted to program, or is this the way the performance
minded programmer was forced to program? Failure to
analyze this situation accurately can be quite harmful to
the study of parallel processing.

5. Summary
In summary, the interconnection network is a major

component of an MIMD parallel computer. The choice
of interconnect has serious consequences for how a paral-
lel processor will be used, and how it will perform. Many
designs have been proposed to solve the interconnection
problem, and many factors must be considered. Clearly,
there is still a need for further study.

References
[AbPa89] S. Abraham and K. Padmanabhan, "Perfor-

mance of the Direct Binary n-Cube Network
for Multiprocessors," IEEE Transactions on
Computers, (July 1989), Vol. 38, No. 7, pp.
1000- 10 1 1.

[AbPa90] S. Abraham and K. Padmanabhan, "Perfor-
mance of Multicomputer Networks under
Pin-out Constraints," Joumal of Parallel and
Distributed Computing, (July 1991), Vol. 12,

[AdSi82] G. B. Adams 111 and H. J. Siegel, "The Extra
Stage Cube: A Fault-tolerant Interconnection
Network for Supersystems," IEEE Transac-
tions on Computers, (May 1982), Vol. C-31,

[Agar9 11 A. Agarwal, "Limits on Interconnection Net-
work Performance," IEEE Transactions on
Parallel and Distributed Systems (Oct. 199 I),

[AkKr89] S. E. Akers and B. Krishnamurthy. "A
Group-Theoretic Model for Symmetric Inter-
connection Networks," IEEE Transactions on
Computers (Apr. 1989), Vol. 38, No. 4, pp.

[Corb92] P. F. Corbett. "Rotator Graphs: An Efficient
Topology for Point-to-Point Multiprocessor
Network," IEEE Transactions on Parallel and
Distributed Systems (Sep. 1992), Vol. 3, pp.

[DaSe87] W. J. Dally and C. L. Seitz. "Deadlock-Free
Message Routing in Multiprocessor Intercon-
nection Networks," IEEE Transactions on
Computers (May 1987), Vol. C-36, No. 5, pp.
547-553.
W. J. Dally, "Performance Analysis of k-ary
n-cube Interconnection Networks", IEEE
Transactions on Computers (Jun. 1990), Vol.

[Doty84] K. W. Doty. "New Designs for Dense Proces-
sor Interconnection Networks," IEEE Tran-
sactions on Computers (May 1984), Vol. C-

[GuAb95] S. Gupta and S. Abraham, "A Distributed
Directory Cache Coherence Scheme and its
Effects on Network Performance," Journal of
High Performance Computing, (NovDec

NO. 3, pp. 237-248.

NO. 5 , pp. 443-454.

Vol. 2, pp. 398-412.

555-566.

622-626.

[Dall901

39, pp. 775-785.

33, NO. 5, pp. 447-450.

50

1 996 International Conference on Parallel Processing Workshop

1995) Vol. 2, NO. 1, pp. 3-16.
[HiKS87] P. A. J. Hilbers, M. R. J. Koopman and J. L.

A. van de Snepscheut. "The Twisted Cube,"
Parallel Architectures and Languages Europe,
Lecture Notes in Computer Science (Jun.

[HsYe96] W. T. Hsu and P. C. Yew, "An Introduction to
Hierarchical Network Topologies," 1996
ICPP Workshop on Challenges for Parallel
Processing Aug. 1996.
H. P. Katseff, "Incomplete Hypercubes," IEEE
Transactions on Computers (May 1988), Vol.

KeK1791 P. Kermani and L. Kleinrock. "Virtual Cut-
Through: A New Computer Communication
Switching Technique," Computer Networks,

KrSW881 C. P. Kruskal, M. Snir and A. Weiss. "The
Distribution of Waiting Times in Clocked
Multistage Interconnection Networks," IEEE
Transactions on Computers (Nov. 1988), Vol.

[Lawr73] D. H. Lawrie. "Memory-processor Connec-
tion Networks," Ph.D. Thesis, University of
Illinois at Urbana-Champaign, Feb. 1973.
L. M. Ni, "Issues in Designing Truely Scalable
Interconnection Networks," 1996 ICPP
Workshop on Challenges for Parallel Process-
ing Aug. 1996.

[PaLa83] K. Padmanabhan and D. H. Lawrie. "Fault
Tolerance Schemes in Shuffle-Exchange Type
Interconnection Networks," 1983 Interna-
tional Conference on Parallel Processing

[Padm901 K. Padmanabhan. "Cube Structures for Mul-
tiprocessors," Communications of the ACM
(January 1990), Vol. 33,'No. 1, pp. 43-52.

1987), pp. 152-159.

Kats881

37, NO. 5, pp. 604-608.

(1979), Vol. 3, pp. 267-286.

C-37, NO. 11, pp. 1337-1352.

[Ni96]

(Aug. 1983), pp. 71-75.

[Padm9 13 K. Padmanabhan. "Design and Analysis of

[Pate811

[Peas771

[PfNo85]

[PrVu8 11

[%Go941

[SiegBO]

[S tun961

[WittSl]

Even-Sized Binary Shuffle-Exchange Net-
works for Multiprocessors," IEEE Transac-
tions on Computers (Oct. 1991), Vol. 2, No. 4,

J. H. Patel. "Performance of Processor-
Memory Interconnections for Multiproces-
sors," IEEE Transactions on Computers (Oct.

M. C. Pease 111. "The Indirect Binary n-Cube
Microprocessor Array," IEEE Transactions on
Computers (May 1977), Vol. C-26, No. 5, pp.

G. F. Pfister and V. A. Norton. "Hot Spot
Contention and Combining in Multistage
Interconnection Networks," IEEE Transac-
tions on Computers (Oct. 1985), Vol. C-34,

F. Preparata and J. Vuillemin, "The Cube-
connected Cycles: A Versatile Communica-
tion Network for parallel Computation," Com-
munications of the ACM (1981), Vol. 24, No.

S. L. Scott and J. R. Goodman, "The Impact of
Pipelined Channels on k-ary n-cube Net-
works," IEEE Transactions on Parallel and
Distributed Systems (Jan. 1994), pp. 2-16.
H. J. Siege], Interconnection Networks for
Large-scale Parallel Processing: Theory and
Case Studies, 2nd Edition, McGraw-Hill, New
York, NY, 1990.
C. B. Stunkel "Commercially Viable MPP
Networks," 1996 ICPP Workshop on Chal-
lenges for Parallel Processing Aug. 1996.
L. D. Wittie. "Architectures for Large Net-
works of Microcomputers," IEEE Transac-
tions on Computers (Apr. 19Sl), Vol. C-30,

pp. 385-397.

1981),V01. C-30, NO. 1 0 , ~ ~ . 771-780.

458-473.

NO. 10, pp. 943-948.

5, pp. 300-309.

pp. 264-273.

51

