
614 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 5, MAY 1998

Architecture Scalability of Parallel Vector
Computers with a Shared Memory

Eskil Dekker, Member, IEEE

Abstract—Based on a model of a parallel vector computer with a shared memory, its scalability properties are derived. The
processor-memory interconnection network is assumed to be composed of crossbar switches of size b � b. This paper analyzes
sustainable peak performance under optimal conditions, i.e., no memory bank conflicts, sufficient processor-memory bank
pathways, and no interconnection network conflicts. It will be shown that, with fully vectorizable algorithms and no communication
overhead, the sustainable peak performance does not scale up linearly with the number of processors p. If the interconnection
network is unbuffered, the number of memory banks must increase at least with O(p logb p) to sustain peak performance. If the
network is buffered, this bottleneck can be alleviated; however, the half performance vector length still increases with O(logb p). The
paper confirms the validity of the model by examining the performance behavior of the LINPACK benchmark.

Index Terms—Architecture scalability, parallel vector computers, shared memory, sustainable peak performance, theoretical peak
performance.

—————————— ✦ ——————————

1 INTRODUCTION

HE classical supercomputer concept as it has been em-
ployed by several manufacturers can be characterized

as a parallel vector computer with a shared memory. Be-
sides using multiple dedicated functional units within a
single processor, this approach towards high-performance
computing also makes extensive use of pipelining. With
vector processing, identical operations on multiple oper-
ands can be performed with a single instruction. These
techniques provide a significant increase of throughput for
a single processor. To permit parallel processing, multiple
processors operate concurrently.

The memory bandwidth of the shared memory must be
sufficient to supply each processor with operands required
to sustain continuous execution. The memory is divided
into memory banks which can be accessed in parallel, and
the memory is interleaved to further increase the through-
put. The memory banks are connected to the processors
with an interconnection network. Although this kind of
architecture is still employed in current parallel computers,
it is widely accepted that it cannot sustain a large number
of processors due to scalability problems.

In Bell [3], practical issues of size-, generation-, and prob-
lem-scalability are discussed. A formal definition due to [22]
focuses on algorithm-architecture scalability. The ratio of
speedups of the algorithm on a real machine and a specific
theoretical parallel machine (PRAM) defines scalability. An
evaluation of this and other algorithm-architecture scalability
measures can be found in [16]. Unfortunately, due to the in-
fluence of the algorithm characteristics, these measures can-
not be used to give a definite statement regarding a specific

architecture. Hill [13] argues that scalability should be de-
fined for architectures alone, if possible. Based on limiting
technology, [2] investigates the theoretical aspects of archi-
tecture scalability without addressing actual realization.
Here, architecture scalability is analyzed by considering the
hardware implementation. Furthermore, in order to quantify
architecture scalability, a comparison of the architecture is not
done with respect to some theoretical parallel machine, but
the actual behavior of a real machine is compared to its ideal
behavior. In order to eliminate the influence of the algorithm
characteristics upon the scalability measure, one might con-
sider algorithms that perfectly match the architecture. Obvi-
ously, such algorithms should be meaningful; however, per-
formance degrading factors such as a limited degree of par-
allelism should not arise. The theoretical peak performance is
one of the major characteristics of a real parallel machine, so
it is natural to define scalability with respect to sustainable
peak performance of representative algorithms. An impor-
tant benchmark for evaluating the performance of computers
is LINPACK [8]. This benchmark consists of the solution of a
large dense linear system with LU decomposition. Although
such a benchmark can never represent a real workload and
sustained performance for real codes is only a fraction of the
theoretical peak performance [12], LINPACK performance
plays a significant role in many numerically intensive appli-
cations. Apart from division and square root operations, ba-
sic kernels of numerical algorithms consist of square norm,
inner product, and saxpy operations. These kernels are fully
vectorizable—i.e., peak performance can be obtained in ideal
conditions—and, therefore, they are optimal with respect to
the architecture of parallel vector computers. Furthermore,
since they provide the major performance component in
benchmarks, it is important to consider their performance
characteristics on shared memory architectures. In this paper
the scalability of these kernels is investigated with respect to
sustainable peak performance.

0018-9340/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� E. Dekker is with the Faculty of Information Technology and Systems, Delft
University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.
E-mail: e.dekker@dimes.tudelft.nl.

Manuscript received 23 Jan. 1996; revised 8 Jan. 1998.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 106499.

T

DEKKER: ARCHITECTURE SCALABILITY OF PARALLEL VECTOR COMPUTERS WITH A SHARED MEMORY 615

The sustainable peak performance is analyzed with the
reference to the floating-point operations ratio. No other
sources of performance degradation, such as interconnec-
tion network conflicts or memory bank conflicts, are as-
sumed to exist. It will be shown that the sustainable peak
performance is restricted by the maximal memory band-
width. Moreover, as the number of processors increases, the
sustainable peak performance does not scale up propor-
tionally because of constraints imposed by the shared
memory. Although other machine characteristics, such as
I/O performance, have significant impact upon architecture
scalability, they are left out of this discussion.

First, the significant machine parameters of a parallel
vector computer are defined. In the next section, its
throughput is determined. After that, the actual perform-
ance behavior of the considered kernels is derived. There-
after, the paper treats the actual implementations of shared
memory. In order to illustrate the validity of the model,
Section 6 analyzes the performance behavior of the LIN-
PACK benchmark.

2 PRELIMINARIES

Fig. 1 depicts a schematic diagram of a general parallel
vector computer. The computer has the following features:
The machine comprises p processors with a clock cycle tproc.
Each processor consists of npipe pipelined functional units,
which can operate at a rate of one operation per clock cycle
tproc each. Here, only floating-point units are considered
since floating-point performance is paramount in scientific
computing. There is an equal number of floating-point add
and multiply units. For intermediate storage, each proces-
sor contains a set of scalar and vector registers. A vector
register can contain up to vl elements.

Each processor has npath pathways to the shared memory,
which can transfer operands at a rate of one operand per
processor clock cycle each. For each pathway, the processor

possesses a memory port which takes care of the addressing
and operand transfer between the processor and the shared
memory. An interconnection network and multiplexers
connect the pnpath processor pathways to the m memory
banks. The memory-access time, which includes the delay
introduced by the interconnection network, the multiplex-
ers, and the memory banks, is equal to tmem.

Since there are an equal number of add and multiply
units, the algorithms must perform exactly one addition per
multiplication to reach peak performance. The sample ker-
nels satisfy this requirement. All functional units can be
chained so that the smallest vector start-up time can be
realized and the least amount of intermediate storage is
required.

The kernels require operands from the shared memory.
The required operand bandwidth is a function of the refer-
ence to floating-point operations ratio R. For large vectors,
the values of R are given for the sample kernels in Table 1.

All vectors are stored in the shared memory, the coeffi-
cients a and a1, a2, ¤, ak for the saxpy and the multiple
saxpy kernel are initially stored in the registers of a proces-
sor. Large vectors cannot be stored in the vector registers
within a processor. Therefore, a vector operation has to be
split into parts so that corresponding operand vectors fit in

Fig. 1. A parallel vector computer with p processors (proci) connected with an interconnection network and multiplexers to m memory banks
(bankj). Each processor comprises npipe floating-point units with npath memory pathways.

TABLE 1
THE KERNELS AND R,

THE REFERENCE TO FLOATING-POINT OPERATIONS RATIO

Kernel R Register storage

x 2 1
2

–

(x, y) 1 –
� = +y y xa 3

2 a

y y x
1

� = +
=

Ía j j
j

k
k

k
+2

2 a1, a2, ¤, ak

616 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 5, MAY 1998

the vector registers. Section 4 addresses this issue in more de-
tail. The kernel code consists of a loop of several vector in-
structions that is executed repeatedly until the vector opera-
tion is completed. It is assumed that the instructions within the
loop are stored in an instruction buffer. Since loop control can
be performed concurrently with the execution of the loop, no
loop overhead exists. Each processor possesses an instruction
buffer that is not shown in Fig. 1. The instruction stream is
assumed to be solely maintained by the instruction buffer, i.e.,
no shared memory references are necessary. This assumption
is realistic if the instruction storage required for each loop does
not exceed the instruction buffer size.

Table 5 shows a concise description of all symbols used
in this paper.

3 THROUGHPUT

This section shows the dependence of sustainable peak per-
formance within the kernels on the machine parameters. If
there are neither interconnection network conflicts nor
memory bank conflicts, the maximal available memory
bandwidth B is equal to

B
m

= tmem
. (1)

Each processor can produce npipe results per clock cycle
tproc, thus the maximum performance of p processors is

P p p
n1 6 = pipe

proct . (2)

The required memory bandwidth to sustain this per-
formance depends on the reference to floating-point opera-
tions ratio R. Table 1 shows that this parameter is kernel
dependent. However, the architecture imposes a limit on
this parameter. If a processor possesses npath pathways, each
capable of transferring one operand per processor clock, R
must satisfy

R
n
n� path

pipe
, (3)

to allow computation bound processing, i.e., the perform-
ance is limited by the maximum operation rate of the proc-
essor pipes. If

R
n
n> path

pipe
, (4)

then there is transfer bound processing. The throughput is
impeded by the limited number of pathways, and the peak
performance can never be reached. In the sequel, it is as-
sumed that there are enough pathways to supply a proces-
sor running at peak rate. It is assumed that there are
enough vector registers per processor to implement a ker-
nel, and that each processor executes the same kernel with
different data so that neither communication nor synchro-
nization is required between the processors. The required
memory bandwidth Breq for p processors is equal to

Breq = RP(p). (5)

The required memory bandwidth cannot exceed the
available memory bandwidth.

Breq � B, (6)

or

pR
n mpipe

proc memt t� . (7)

The maximum number of processors running at peak
performance is thus bounded by

p R n
m

�
1 t

t
proc

pipe mem
. (8)

With (2) and (8), the maximum achievable performance Pmax
is

P R
m

max =
1
tmem

. (9)

Not surprisingly, the maximum achievable performance
is proportional to the memory bandwidth. From this it is
clear that kernels such as polynomial evaluation with a

small value of R, and R
n

n� path

pipe
, can achieve a higher sus-

tainable peak performance than the sample kernels pro-
vided that there is no limit upon the number of processors.

4 PERFORMANCE BEHAVIOR

For kernels with large vectors, the vector start-up time can
be neglected. In order to determine the complete perform-
ance behavior, the vector start-up time must be considered
as well. Therefore, the timings of the kernels are derived
under ideal conditions.

Other assumptions are required for scheduling and vec-
tor register allocation. It is assumed that a single functional
unit supports multiple vector operations. As soon as the
first stage of a pipelined functional unit has processed the
last elements of a vector operation, the next vector opera-
tion can be issued. Although the next vector operation in-
volves a different set of registers, no additional delay
caused by pipeline reconfiguration is assumed. Source and
destination registers of a single vector operation must differ
in order to prevent source-destination conflicts. However,
consecutive vector operations on the same functional unit
can use a destination register of the first operation as source
register for the second operation. In this way, the common
register of consecutive vector operations acts as a delay
line.

First, the saxpy kernel is investigated. The vectors y� , y,

and x with vector length vkernel are split into the vector parts

y�
()i

, y(i), and x(i), for i v
vl

= 1 2, , ,K kernel , with a maximal

vector length vl. Fig. 2 shows the timing of two consecutive

updates y�
()i

 and y�
+()i 1

 on one processor with one add and

one multiply unit.
In Figs. 2, 3, and 4, the timing of each vector operation is

indicated by a bar. The consecutive squares inside the bar
represent the vector elements of the destination register. For
the vector store operation these squares represent the differ-
ent memory banks. Consecutive results appear in consecutive

DEKKER: ARCHITECTURE SCALABILITY OF PARALLEL VECTOR COMPUTERS WITH A SHARED MEMORY 617

squares to the right. There is an initial delay for the first re-
sult to be available that depends on the kind of operation.
That is, for a vector-vector addition, the initial delay is tadd.
After that, a next result is available after each tproc.

For the update y�(i) = y(i) + ax(i), first the vector part x(i) is
loaded from shared memory, indicated by the lower left bar

in the load x segment of Fig. 2. After a delay tmem, the first
vector element of x(i) is available, indicated by the first
square from the left inside this bar. No memory reference is
needed for a because it was initially stored in a register. By
chaining the vector load with the scalar-vector multiplication
ax(i), the first result of this multiplication is available after

Fig. 2. The saxpy kernel implemented with one add and one multiply unit. Two updates for the parts y
()

�
i

 and y
(1)

�
+i

 are shown.

Fig. 3. The multiple saxpy kernel implemented with one add and one multiply unit. The complete update of part y
()

�
i

 and the first update of part

y
(1)

�
+i

 are shown.

618 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 5, MAY 1998

an additional delay tmult. The lower left bar of the scalar-
vector multiply segment represents this multiplication. In
order to prevent any delay in the following vector-vector
addition y(i) + ax(i), the vector part y(i) is loaded from shared
memory so that the first element of y(i) is available at the
same time the first multiplication result is available. In Fig. 2,
the first squares from the left in the lower left bars of the
load y and the scalar-vector multiply segments exactly co-
incide. After a delay tadd the first result of the chained vec-
tor-vector addition is available and it can be written back to
shared memory, indicated by the lower left bar in the store
y� segment. The vector operations for the next vector up-
date y� (i+1) = y(i+1) + ax(i+1), which are represented in Fig. 2 by
the upper right bars in each segment, are scheduled so that
each first result is available just after the last result of the
corresponding vector operation of the y�(i) = y(i) + ax(i)

update.
Intermediate storage of the vector y� is used to exploit

the low value of R for the multiple saxpy. Each vector part

y(i) is updated with all x j
i() for j = 1, 2, ¤, k, before the next

part y�(i+1) is computed. The timing of the multiple saxpy is
shown in Fig. 3.

Two vector registers, VR0 and VR1, serve as intermediate
storage for y�(i). If k is odd, the last vector addition involves
VR1 as source register; otherwise, it uses register VR0. The
update of y(i+1) begins as soon as the first pipeline stages of
the functional units are available. No additional vector
start-up time is needed since the vector operations can be
overlapped.

The inner product of two vectors x and y with vector
length vkernel can be done in a similar manner. In this case,

the vector of products of x(i) and y(i) is computed. While the
next pair is being multiplied, the previous product vector is
added to an intermediate sum vector. At the completion of

the operation, vector register VR0 contains a sum vector of vl

elements if v
vl

kernel is odd, otherwise, the sum vector re-

sides in VR1. The inner product, which is equal to the sum of

elements, is determined with vl - 1 scalar additions. After-
ward, the result is written back to the shared memory.
These operations are not shown in Fig. 4. For the square
norm kernel the timing is identical with the exception that
the load y segment in Fig. 4 is superfluous.

If there are more floating-point add and multiply units
per processor, the actual implementation of the kernels
does not change. In this case, consecutive operations within
a vector operation are allocated to different units. For ex-
ample, if there are two add units, a vector addition is split
into two: The even elements of the vectors are processed by
one unit and the odd elements are processed by the second
unit. Consequently, the same timing is valid and the vector
start-up time is not affected. Only the peak performance
increases accordingly.

The execution time of the kernels T(vkernel) satisfies

T v T kv n v vlkernel start-up kernel
proc

pipe
kernel for 2 7 = + �2 2

t
, . (10)

For the single vector operations, such as the square norm,
the inner product, and the saxpy kernel, k equals 1. The
vector start-up time Tstart-up depends upon which kernel is
performed. In Table 2, the vector start-up times are given
for the various kernels.

For vkernel @ 1, the number of floating-point operations
for each kernel Ops(vkernel) approximately satisfies

Ops(vkernel) = 2kvkernel. (11)

The vector start-up times for a single and a multiple
saxpy are identical. Therefore, if the effective vector length
v of the kernels is defined as

Fig. 4. The inner product kernel implemented with one add and one multiply unit. The calculation of two partial sum vectors (x, y)(1) and (x, y)(2)

are shown.

DEKKER: ARCHITECTURE SCALABILITY OF PARALLEL VECTOR COMPUTERS WITH A SHARED MEMORY 619

v = kvkernel, (12)

the parameter k can be left out. As each processor executes
exactly one kernel, the total number of operations that are
executed by all processors satisfies pOps(v). Hence, the per-
formance as function of the vector length v on p processors
P(p, v) is

P p v
pOps v

T v
P p

T

pv

,1 6 0 5
0 5

1 6
= =

+

1
1

2
start -up

. (13)

The ratio of the sustainable and the theoretical peak per-
formance is

P p v

P p P
T

v

,1 6
1 6 0 5

=
+

1

1 11
2

start -up
. (14)

An important characteristic of vector processing is due
to [14]. Since the performance depends on the vector length,
the half performance vector length v1/2 quantifies the per-

formance behavior. The smaller v1/2, the faster the theoreti-
cal peak performance is approached. The vector length for
P p v P p(,) ()1 2

1
2= is

v P T1 2

1
2 1= 0 5 start-up . (15)

Due to the lack of interprocessor communication, v1/2 is
independent of p.

5 SHARED MEMORY

So far, the memory-access time tmem has not been consid-
ered in detail. Besides the memory-chip access time, the
interconnection network causes additional delay that con-
tributes to the memory-access time. Because the additional
delay depends on the size of the network, and this size de-
pends on the number of processors that are connected to
the shared memory, the memory-access time depends on
the number of processors.

Under the assumption that there are no memory bank
conflicts, all processors access different memory banks at all
times. As there are multiple memory banks connected to a
single multiplexer, it may happen that multiple processors
want to access the same multiplexer in order to access dif-
ferent banks that are connected with this multiplexer. This
causes conflicts. If it is assumed that no such conflicts arise,
the interconnection network must permit every connection
permutation between the pathways and the multiplexers.
In this way the shared memory exhibits a uniform memory
access (UMA).

Many different interconnection networks are known.
Networks that allow every connection permutation without
conflicts are nonblocking, and rearrangeable nonblocking
networks. Such networks were proposed by Clos [5] and
Benes [4], respectively. Yeh and Feng [28] describe a class of
networks that are rearrangeable nonblocking. Other inter-
connection networks, such as the perfect shuffle network
[25], the omega network [17], the baseline network [27], and
the delta network [23], for example, allow only a subclass of
connection permutations. The simplest interconnection
network is a crossbar switch that can perform all connec-
tion permutations between the pathways and the multi-
plexers without conflict.

The total number of connections between the memory
banks and the processors is pnpath. If the number of inputs
and outputs of a crossbar switch is equal to b and pnpath � b,
the processor-memory network can be a single b � b crossbar
switch. The connections are bidirectional, i.e., the inputs
and outputs can interchange, corresponding to read and
write accesses of the shared memory. Because the circuit
complexity of a crossbar switch is O(b2), the switch size is
limited. Typically, b is < 16 [15]. For a single crossbar switch
network, the memory-access time is

tmem = tchip + tcrossbar. (16)

with tchip the memory-chip access time and tcrossbar the de-
lay introduced by the crossbar switch. The delay caused by
the memory bank multiplexers is ignored. Consequently, if
pnpath � b, the memory-access time does not dependent
upon p.

If pnpath > b, it is not possible to interconnect all path-
ways to all memory bank multiplexers with a single cross-
bar switch. To remove this limitation, multiple crossbar
switches can be cascaded. Obviously, such a multistage in-
terconnection network (MIN) increases the memory-access
time. The rearrangeable MINs of [28] require 2logb(pnpath)
stages of b � b crossbar switches, increasing the memory-
access time to

tmem = tchip + 2tcrossbar logb(pnpath). (17)

Note that additional overhead caused by routing has not
been taken into account. Routing, i.e., setting up of switches
in the MIN for a given permutation, is not straightforward.
The parallel algorithms of [18], [21], and [28] to determine
the switch settings require O pnb(log ())2

path time. Therefore,

for arbitrary permutations, routing dominates the terms in
(17). However, for important subclasses of permutations,
[20] and [24] propose self-routing algorithms that set the
switches as data passes through the MIN. Consequently,
(17) is a lower bound.

With (17), the memory bandwidth satisfies

B
m

pnb

=
+t tchip crossbar path2 log 4 9

, (18)

and the memory bandwidth inequality (7) becomes

pR
n m

pnb

pipe

proc chip crossbar path
t t t

�
+ 2 log 4 9

. (19)

TABLE 2
THE KERNELS AND THEIR VECTOR START-UP TIMES

Kernel Tstart-up

�x�
2

2tmem +tmult+vltadd + (3vl - 2)tproc

(x, y) 2tmem + tmult + vltadd + (3vl - 2)tproc

y� = y + ax 2tmem + tmult + tadd - tproc

y y x� = +
=

Ía j j
j

k

1

2tmem + tmult + tadd - tproc

620 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 5, MAY 1998

For pnpath @ 1, the memory-chip access time can be ne-
glected and the maximum number of processors running at
peak performance is bounded by

pn pn R
m

bpipe path
proc

crossbar
log 4 9 <

1
2

t
t . (20)

In order to guarantee computation bound processing (cf.
(3)), the number of pathways must always satisfy

npath � Rnpipe. (21)

Minimizing the number of stages, implies a lower bound on
npath, so (20) changes to

pn pn R R
m

bpipe pipe
proc

crossbar
log 4 9 <

1
2

t
t . (22)

Although it is more likely that tcrossbar will increase with
the switch size b, it is assumed that there exists a fixed
lower bound on tcrossbar. As soon as this limit has been at-
tained, the number of processors and/or the number of
pipelined functional units per processor and, thus, the peak
performance can only further be improved by increasing
the number of memory banks. Doubling the number of
processors and the memory size at the same time, implies
that the number of memory banks must more than double
to attain the peak performance. This hampers scalability.

However, this bottleneck can be resolved. Up to now, the
MIN was assumed to be indivisible. A single transfer occu-
pies one switch at every stage during the complete transfer
time. Consequently, all switches that are involved are occu-
pied and the MIN latency increases the memory-access
time. In the literature, this is referred to as circuit switching
[10]. Because the MIN consists of several stages, it is possi-
ble to apply buffering at the intermediate stages. If, at each
stage, the switches are equipped with simple latches, a
transfer through the network can be pipelined, and the de-
lay caused by each stage can be overlapped with all other
stages. This form of packet switching [10] effectively im-
proves the MIN throughput. The already mentioned self-
routing algorithms can efficiently be used in this configura-
tion. However, the total memory-access time for a single
memory access does not improve (see Figs. 5a and 5b).

Note that this simple form of buffering is adequate only,
when all transfers are unidirectional accesses. For bidirec-
tional accesses, read-write packet collisions might occur.
Consequently, conflict resolution must be incorporated to
permit redundant operation of the MIN. A way to avoid
such collisions might be to split up the network in two

parts: one part that handles the read accesses and another
part that takes care of the write accesses. The two networks
can operate in parallel, thus reducing the number of inter-
connections for each network. Still, for b = 2, this reduces
the number of connections by at most a factor of two, so,
effectively, at most one MIN stage less is required. Fur-
thermore, an additional stage of switches is required at the
bank multiplexer side to guarantee that both networks can
access all memory banks. Another issue not discussed here
concerns the actual cycle time of the network. The proces-
sor cycle time tproc is assumed to be a multiple of the MIN
cycle time.

If, for simplicity, only unidirectional accesses are consid-
ered, the MIN acts as a delay line. Consequently, the mem-
ory bandwidth is independent of p and it satisfies

B
m

= t chip
. (23)

Hence, the doubling of the number of processors and mem-
ory banks at the same time no longer penalizes sustainable
peak performance (cf. (18)).

As the memory-access time still satisfies (17), the vector
start-up time for a kernel is

T f vlstart-up mem mult add proc= +2t t t t, , ,4 9, (24)

= + +4 2t t t t tcrossbar path chip mult add proclog , , ,b lpn f v4 9 4 9 . (25)

The function f(tmult,tadd,tproc,vl) represents the kernel de-
pendent parameters. The term 2tmem is the same for every
kernel (see Table 2). In fact, other kernels not considered
here exhibit the same behavior; at least one nonoverlapped
read and one nonoverlapped write access is required for
any kernel. For large p, only the first term of the r.h.s. be-
comes significant; all other terms are independent of p.
Therefore, scheduling and vector register allocation are of
minor importance as long as all functional units can operate
concurrently without conflict. When Tstart-up depends on p,
v1/2 also depends on p. With the lower bound of (21), and
pnpipe @ 1, (15) changes to

v n pn Rb1 2 2>
t
t
crossbar

proc
pipe pipelog 4 9 . (26)

A reduction of a factor of 1/2 can be realized in (26) by
sacrificing rearrangeability of the MIN. In this case, only
logb(pnpath) network stages are required, and self-routing
algorithms exist which do not cause additional terms in (26)
(see [17]). However, due to the fact that conflicts might arise

Fig. 5. Consecutive memory bank read access with an unbuffered and a buffered MIN. In the first case, a connection through all stages is re-
served for the complete transfer time, In the latter, a connection through only one stage is reserved each time.

DEKKER: ARCHITECTURE SCALABILITY OF PARALLEL VECTOR COMPUTERS WITH A SHARED MEMORY 621

in the MIN, conflict resolution must be incorporated for a
redundant network operation. Buffered MINs that are not
rearrangeable can be characterized by the model, the buffer
size at each switch and the control signal propagation. Dias
and Jump [6] and Mun and Youn [19] propose models for
buffered delta and Banyan networks, respectively. For so-
called small clock cycle designs, where the control signal
propagation is limited to only one network stage, [7] and
[29] propose models for buffered delta and Banyan net-
works, respectively. In these models, the buffers are oper-
ating with a FIFO arbitration. Tamir and Chi [26] discuss
the design of a crossbar switch that incorporates buffers
with non-FIFO arbitration to resolve conflicts. They also
simulate an omega network with this buffered crossbar
switch.

The implications of (26) are serious. To proportionally
increase the performance with p, npipe, and R remaining
fixed, the vector length of the kernels must increase with
O(logb p) and the total amount of floating-point operations
must increase with O(p logb p). For ideal algorithms under
ideal conditions, this last observation is truly distressing.

6 PERFORMANCE BEHAVIOR OF THE LINPACK
BENCHMARK

As the model was derived under the assumption of ideal
conditions, its scope might be considered academic. How-
ever, in special cases where the actual circumstances ap-
proach the ideal, it is possible to accurately predict the per-
formance behavior of parallel vector computers with a
shared memory for a specific algorithm.

In the LINPACK benchmark, large linear systems are
solved with LU decomposition with partial pivoting [8]. For
a system with n unknowns, 2n3/3 + 2n2 floating-point op-
erations are required. Although there exist other methods
which involve block matrix operations [11], here only a
straightforward implementation of LU decomposition is
considered. The dominant part of the computations is the
saxpy with an average vector length of 2n/3 [9]. Partial
pivoting requires n2/2 comparisons and n indirect ad-
dressing operations. Furthermore, n2/2 floating-point divi-
sions are required. If communication overheads are ne-
glected and it is assumed that the total number of opera-
tions is distributed equally over all pipelined floating-point
units, then, for large n, the effects of partial pivoting and
the divisions can be neglected because the amount of op-
erations to be processed by a single pipelined functional
unit is (2n3/3 + 2n2)/(pnpipe) with pnpipe ! n.

Given the average vector length, it is natural to wonder
whether (14) also holds for the average vector length. It is
easy to show that this conjecture is correct. If each of the p
processors executes a sequence of saxpys with consecutive

vector lengths v1, v2, ¤, vq, the total number of operations

performed is p vii

q
2

1=Í and the execution time is

T v ni
i

q

start-up
proc

pipe
+

%&'
()*=

Í 2
1

t

(cf. (10)-(12)). The overall performance satisfies

p v

T v

pii

q

ni

q
ii

q

n

qT

vii
q

2

2
1

1 1 2
1

=

= =

Í
Í Í+

=
+

=Ístart-up
proc

pipe

proc

pipe

start -upt t

=
+

=Í

p

P

T

vq ii
q

1
1

1
2 1

1
0 5

start -up
. (27)

Hence, the ratio w.r.t. the theoretical peak performance is

1

1 1

1
1
2 1+

= =
=
Í

P

P p v

P p
v q vT

v

i
i

q

0 5
1 6
1 6start -up

 with
,

, . (28)

If each processor executes an equal fraction of saxpys
with the same average vector length v n= 2

3 , then the per-
formance ratio as function of the linear system size n is

P p n

P p P
T

n

,1 6
1 6 0 5

=
+

1

1 13
4

start -up
. (29)

If n1/2 is the size to reach half the theoretical peak perform-
ance, the ratio becomes

P p n

P p
n P Tn

n

,
,

1 6
1 6 0 5=

+
=

1

1

3
4 1

1 2 1 2 with start-up . (30)

Equation (30) gives the upper bound that can only be
approximated when n and n1/2 are large. Based on the fact
that the number of operations and the execution time can
both be represented as polynomials of the same degree in n,
Arnold [1] derives an equation for the LINPACK perform-
ance that appears to be similar. However, since not all the
polynomial coefficients are known, he is unable to show
that (30) is an absolute upper bound with P(p) equal to the
theoretical peak performance, and he cannot determine
n1/2. Consequently, a two-parameter least-squares fit of per-
formance data is inappropriate. With (25) and the lower
bound of npath in (21), n1/2 is

n
n

pn Rb1 2

3
4 4= +pipe

proc
crossbar pipet t log 4 9J

2t t t tchip mult add proc+ f vl, , ,4 9L . (31)

Consequently, n1/2 increases with O(logb p). Due to the fact
that scheduling and vector register allocation of real paral-
lel vector computers are likely to be different from the pre-
sumed machine characteristics mentioned in Section 4, the
actual implementation of the saxpy kernel might be differ-
ent. Because the function f depends on the characteristics of
the subsequent machine, and data such as tadd and tmult are
not available—such data is considered proprietary—f can-
not be estimated. Still, however, with (30), it is possible to
predict the performance behavior.

In Table 3, the measured maximal performance of the
LINPACK benchmark Pm(nmax) is compared with the per-
formance predicted by (30), given n1/2 and the maximal size
of the linear system nmax. Although [8] defines n1/2 as the
size of the linear system to reach half the maximal perform-
ance, instead of half the theoretical peak performance, the
predicted performance according to (30) closely matches
the measurements. The relative error is less than 10 percent

622 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 5, MAY 1998

in all but one case. As (30) gives the absolute upper bound,
the relative error cannot become negative. An explanation
might be the following: If, due to a small system size, the
effects of pivoting, the divisions and the communication
overhead slightly increase the execution time, n1/2 must
increase to reach half the theoretical peak performance.
Consequently, the performance ratio for nmax is underesti-
mated, which accounts for negative relative errors.

Table 4 shows the performances of the top 10 fastest dis-
tributed memory machines. It is remarkable that (30) also
gives an accurate prediction for distributed memory ma-
chines. Apparently, for large n, the communication over-
head becomes independent of n and an additional term,
which is constant, can account for it in (24).

7 CONCLUSIONS

Although only the dot, square norm, and saxpy kernels
were considered, similar derivations can be given for other
kernels. Due to the fact that the dominant term in the vector
start-up time (see Table 2) is 2tmem, corresponding to a
nonoverlapped read and write access of the shared mem-
ory, other kernels behave in a similar manner. For every
kernel, at least one read and one write is necessary.

In order to achieve a uniform memory access (UMA),
every pathway should be able to access every memory
bank. For a conflict free interconnection network operation,
the MIN must be rearrangeable and, based on the rearran-

geable MINs derived by [28], 2logb(pnpath) stages are re-
quired. For general connection permutations routing over-
head is O pnb(log ())2

path , which dominates the MIN latency

of O(logb(pnpath)). However, for important subclasses of
connection permutations, self-routing algorithms exist so
that routing overhead can be neglected. If the MIN is un-
buffered, the maximal memory bandwidth is determined
by the number of memory banks, the memory-chip access
time, and the MIN latency. In this case, the theoretical peak
performance can only be achieved if the number of memory

banks increases with O(p logb p). If the MIN is buffered,
pipelining can be applied and the maximal memory band-
width becomes independent of the MIN latency. The maxi-
mum achievable performance is proportional to the number
of memory banks. The number of stages can be reduced to

logb(pnpath) by sacrificing the rearrangeability. In this case,
not all connection permutations can be realized without
conflict and conflict resolution with buffering must be in-
corporated. This reduces the memory-access time at the

TABLE 3
LINPACK PERFORMANCE OF PARALLEL VECTOR COMPUTERS

WITH A SHARED MEMORY (DERIVED FROM [8, TABLE 3])

Computer n1/2 nmax P(p) Pm(nmax) P(p, nmax) Error
Gflop/s Gflop/s Gflop/s %

Hitachi S-3800/480 830 15,500 32 28.4 30.4 7.0
NEC SX-3/44R 830 6,400 26 23.2 23.0 –0.9
Hitachi S-3800/380 760 15,680 24 21.6 22.9 6.0
NEC SX=3/44 832 6,144 22 20.0 19.4 –3.0
NEC SX-3/34R 691 6,144 19 17.4 17.1 –1.7
Hitachi S-3800/280 570 15,680 16 14.6 15.4 5.5
Cray Y-MP C90 650 10,000 15 13.7 14.1 2.9
NEC SX-3/42R 516 4,352 13 11.6 11.6 0.0
NEX SX-3/24R 492 4,352 13 11.6 11.7 0.9
NEC SX-3/24 500 4,352 11 10.0 9.9 –1.0
NEC SX-3/42 640 4,608 11 10.0 9.7 –3.0
NEC SX-3/32R 717 6,144 9.6 8.7 8.6 –1.1
Hitachi S-3800/180 470 15,680 8 7.4 7.8 5.4
Cray J932 550 10,000 6.4 5.8 6.1 5.2
NEC SX-3/41R 414 3,584 6.4 5.8 5.7 –1.7
NEC SX-3/22R 370 3,072 6.4 5.8 5.7 –1.7
NEC SX-3/14R 282 2,816 6.4 5.8 5.8 0.0
NEC SX-3/22 384 3,072 5.5 5.0 4.9 –2.0
NEC SX-3/14 384 3,072 5.5 5.0 4.9 –2.0
NEC SX-3/31R 414 6,144 4.8 4.4 4.5 2.3
NEC SX-3/21R 257 2,560 3.2 2.9 2.9 0.0
NEC SX-3/12R 174 2,048 3.2 2.9 2.9 0.0
Cray J916 360 10,000 3.2 2.8 3.1 10.7
NEC SX-3/12 256 2,048 2.8 2.5 2.5 0.0
NEC SX-3/11R 130 2,048 1.6 1.5 1.5 0.0
NEC SX-3/11 192 2,816 1.4 1.3 1.3 0.0
NEC SX-3/1LR 112 2,304 .8 .78 .76 –2.6
NEC SX-3/1L 128 2,084 .68 .67 .64 –4.5

 The measured and the predicted performance Pm(nmax) and P(p, nmax) resp. are compared.
 The error is determined w.r.t. Pm(nmax).

DEKKER: ARCHITECTURE SCALABILITY OF PARALLEL VECTOR COMPUTERS WITH A SHARED MEMORY 623

expense of possible MIN conflicts. In all cases, the memory-

access time grows at least as fast as O(logb p). Therefore, if
the performance should scale up linearly with p, the vector

length of any kernel must increase with O(logb p). This

amounts to O(p logb p) floating-point operations. Evidently,
it is not just the memory bandwidth that is the main char-
acteristic of a shared memory; the memory latency also af-
fects the performance behavior. The performance meas-
urements of LINPACK concurred with the performance
prediction based on the model. The half performance system

size increases with O(logb p). If the memory-access pattern
is less regular, the memory bandwidth decreases due to
memory bank conflicts and, possibly, interconnection net-
work conflicts, and it affects the achievable performance
significantly. Therefore, the shared memory architecture is
not very scalable.

Apparently, a single shared memory based on a uniform
memory access is too costly. As parallel algorithms exhibit
topological structure, some form of data locality always exists.
In order to exploit such locality, a single shared memory is not

TABLE 4
LINPACK PERFORMANCE OF THE TOP 10 FASTEST DISTRIBUTED MEMORY MACHINES

(DERIVED FROM [8, TABLE 3])

Computer p n1/2 nmax P(p) Pm(nmax) P(p, nmax) Error
Gflop/s Gflop/s Gflop/s %

Intel Paragon XP/S MP 6,768 25,700 128,600 338 281.1 281.7 0.2
Intel Paragon XP/S MP 6,144 24,300 122,500 307 256.2 256.2 0.0
Intel Paragon XP/S MP 5,376 22,900 114,500 269 223.6 224.2 0.3
Intel Paragon XP/S MP 4,608 21,000 106,000 230 191.5 192.0 0.3
Numerical Wind Tunnel 140 13,800 42,000 236 170.4 177.6 4.2
Numerical Wind Tunner 128 13,120 40.960 216 157.9 163.6 3.6
Intel Paragon XP//S MP 3,648 18,100 95,000 182 151.7 152.9 0.8
Fujitsu VPP500/128 128 13,120 40,960 205 149.7 155.3 3.7
Intel Paragon XPS-140 3,680 20,500 55,700 184 143.4 134.5 –6.2
Paragon XP/S MP 3,072 17,800 86,000 154 127.1 127.6 0.4

 The measured and the predicted performance Pm(nmax) and P(p, nmax) resp. are compared. The error is determined w.r.t. Pm(nmax).

TABLE 5
SUMMARY OF SYMBOLS

Symbol Description
b number of in- and outputs of a crossbar switch
B memory bandwidth

Breq required memory bandwidth to sustain peak performance
f() part of Tstart-up which is independent of the memory-access time
m number of memory banks

nmax maximal linear system size for a specified machine
npath number of pathways between a processor and the shared memory
npipe number of pipelined floating-point units per processor
n1/2 linear system size to reach half the theoretical peak performance

Ops(v) number of floating-point operations for a single kernel with a vector length v
p number of processors

Pmax maximal sustainable peak performance based on throughput
Pm(nmax) measured LINPACK performance for a system size nmax on a specified machine

P(p) theoretical peak performance of p processors
P(p, n) sustainable peak performance of p processors for a linear system size n
P(p, v) sustainable peak performance of p processors for kernels with a vector length v

R reference to floating-point operations ratio
Tstart-up vector start-up time of a kernel

T(v) execution time as function of the vector length v
tadd addition time
tchip memory-chip access time

tcrossbar crossbar switch delay
tmem memory-access time
tmult multiplication time
tproc processor cycle time

v effective vector length
v average vector length

vkernel vector length of a kernel
vl maximal number of elements in a vector register

v1/2 vector length to reach half the theoretical peak performance

624 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 5, MAY 1998

needed, since it is not required that all data is to be shared by
all processors all the time. On the other hand, given the topo-
logical structures of an algorithm and a distributed memory
architecture, the performance heavily depends on the fit of
both. This issue causes portability problems. For shared mem-
ory architectures, the topological structure of algorithms is not
important and portability is much better. With the advent of
vector processing, new algorithms and techniques had to be
developed to exploit performance characteristics of pipelined
functional units. At this moment, these techniques have ma-
tured so that significant benefits can be achieved on parallel
vector computers. Similar to vector processing, the introduc-
tion of distributed memory machines has caused a serious
trend change. Therefore, it will be clear that a certain time
must pass before new algorithms and techniques emerge so
that distributed memory machines can effectively compete
with shared memory parallel vector computers on general
applications.

ACKNOWLEDGMENTS

The author would like to thank the referees for their valu-
able comments.

REFERENCES

[1]� C.N. Arnold, “Methods for Performance Evaluation of Algorithms
and Computers,” Computers in Physics, vol. 4, no. 5, pp. 514-520,
Sept./Oct. 1990.

[2]� G. Bilardi and F.P. Preparata, “Horizons of Parallel Computation,”
J. Parallel and Distributed Computing, vol. 27, no. 2, pp. 172-182,
June 1995.

[3]� G. Bell, “Ultracomputers: A Teraflop Before Its Time,” Comm. ACM,
vol. 35, no. 8, pp. 27-47, Aug. 1992.

[4]� V.E. Benes, Mathematical Theory of Connecting Networks and Telephone
Traffic. New York: Academic Press, 1965.

[5]� C. Clos, “A Sudy of Non-Blocking Switching Networks,” Bell
System Technical J., vol. 32, pp. 406-424, Mar. 1953.

[6]� D.M. Dias and J.R. Jump, “Analysis and Simulation of Buffered
Delta Networks,” IEEE Trans. Computers, vol. 30, no. 4, pp. 273-
282, Apr. 1981.

[7]� J. Ding and L.N. Bhuyan, “Finite Buffer Analysis of Multistage
Interconnection Networks,” IEEE Trans. Computers, vol. 43, no. 2,
pp. 243-247, Feb. 1994.

[8]� J.J. Dongarra, “Performance of Various Computers Using Stan-
dard Linear Equations Software,” Technical Report CS-89-85,
Univ. of Tennessee and Oak Ridge Nat’l Laboratory, Nov. 1995.

[9]� J.J. Dongarra, “The LINPACK Benchmark: An Explanation,” Lecture
Notes in Computer Science, vol. 297, pp. 456-474. Berlin: Springer,
1988.

[10]� T.-Y. Feng, “A Survey of Interconnection Networks,” Computer,
vol. 14, no. 12, pp. 12-27, Dec. 1981.

[11]� G.H. Golub and C.F. Van Loan, Matrix Computations, second ed.,
chapter 3. Baltimore: The Johns Hopkins Univ. Press, 1989.

[12]� J.J. Hack, “Peak vs. Sustained Performance in Highly Concurrent
Vector Machines,” Computer, vol. 19, no. 9, pp. 11-19, Sept. 1986.

[13]� M.D. Hill, “What Is Scalability?” Computer Architecture News, vol. 18,
no. 4, pp. 18-21, Dec. 1990.

[14]� R.W. Hockney, “Super-Computer Architecture,” Infotech State of the
Art Report: Future Systems 2, pp. 277-305. Maidenhead: Infotech,
1977.

[15]� K. Hwang, Advanced Computer Architecture: Parallelism, Scalability,
Programmability, p. 338. New York: McGraw-Hill, 1993.

[16]� V. Kumar and A. Gupta, “Analysis of Scalability of Parallel Algo-
rithms and Architectures: A Survey,” Proc. Int’l Conf. Supercomputing,
pp. 396-405, 1991.

[17]� D.H. Lawrie, “Access and Alignment of Data in an Array Proces-
sor,” IEEE Trans. Computers, vol. 24, no. 12, pp. 1,145-1,155, Dec.
1975.

[18]� G.F. Lev, N. Pippenger, and L.G. Valiant, “A Fast Parallel Algo-
rithm for Routing in Permutation Networks,” IEEE Trans. Comput-
ers, vol. 30, no. 2, pp. 93-100, Feb. 1981.

[19]� Y. Mun and H.Y. Youn, “Performance Analysis of Finite Buffered
Multistage Interconnection Networks,” IEEE Trans. Computers,
vol. 43, no. 2, pp. 153-162, Feb. 1994.

[20]� D. Nassimi and S. Sahni, “A Self-Routing Benes Network and
Parallel Permutation Algorithms,” IEEE Trans. Computers, vol. 30,
no. 5, pp. 332-340, May 1981.

[21]� D. Nassimi and S. Sahni, “Parallel Algorithms to Set-Up the Benes
Permutation Network,” Proc. Workshop Interconnection Networks for
Parallel and Distributed Processing, pp. 70-71, 1980.

[22]� D. Nusbaum and A. Agarwal, “Scalability of Parallel Machines,”
Comm. ACM, vol. 34, no. 3, pp. 56-61, Mar. 1991.

[23]� J.H. Patel, “Performance of Processor-Memory Interconnections for
Multiprocessors,” IEEE Trans. Computers, vol. 30, no. 10, pp. 771-780,
Oct. 1981.

[24]� C.S. Raghavendra and R.V. Boppana, “On Self-Routing in Benes
and Shuffle-Exchange Networks,” IEEE Trans. Computers, vol. 40,
no. 9, pp. 1,057-1,064, Sept. 1991.

[25]� H.S. Stone, “Parallel Processing with the Perfect Shuffle,” IEEE
Trans. Computers, vol. 20, no. 2, pp. 153-161, Feb. 1971.

[26]� Y. Tamir and H.-C. Chi, “Symmetric Crossbar Arbiters for VLSI
Communication Switches,” IEEE Trans. Parallel and Distributed
Systems, vol. 4, no. 1, pp. 13-27, Jan. 1993.

[27]� C.-L. Wu and T.-Y. Feng, “On a Class of Multistage Interconnec-
tion Networks,” IEEE Trans. Computers, vol. 29, no. 8, pp. 694-702,
Aug. 1980.

[28]� Y.-M. Yeh and T.-Y. Feng, “On a Class of Rearrangeable Networks,”
IEEE Trans. Computers, vol. 41, no. 11, pp. 1,361-1,379, Nov. 1992.

[29]� H.Y. Youn and Y. Mun, “On Multistage Interconnection Networks
with Small Clock Cycles,” IEEE Trans. Parallel and Distributed Sys-
tems, vol. 6, no. 1, pp. 86-93, Jan. 1995.

Eskil Dekker received the MS degree in applied
physics from the Delft University of Technology,
The Netherlands, in 1987, and the PhD degree
in technical sciences from the same university in
1995. From 1987 to 1990, he was with CER-
FACS in Toulouse, France, investigating algo-
rithms and architectures for parallel computing.
Currently, he is a postdoctoral fellow with the
Faculty of Information Technology and Systems
of the Delft University of Technology. Dr. Dekker
is a member of the IEEE, the ACM, and EURO-

SIM. His research interests are in high-performance computing, spe-
cifically in fast numerical algorithms, highly parallel computer architec-
tures, and scalability.

