
A Low Power Open Multimedia Application Platform for 3G Wireless
James Song, Thomas Shepherd, Minh Chau, Ayesha Huq, Ikram Syed, Somdipta Roy,

Achuta Thippana, Kaijian Shi+, Uming KO.

Texas Instrument Inc.
12500 TI Boulevard,

Dallas, TX 75243, USA
s-son&,ti.com

ABSTRACT
This paper describes a SOC design of a complex, low
power and high performance open multimedia application
pIatform(0MAP") for 3G wireless. The design integrates
a high performance DSP subsystem based on a low power
TMS32OC55x DSP and an MPU subsystem based on the
ARM9 Microprocessor for the optimal combination of
high performance with low power consumption. This paper
explains the system design and the SoC implementations of
the platform.

1. Introduction
Many factors drive the growth of the 2.513G wireless
markets, but one of the most important is the proliferation
of the applications and the growing functionality of
wireless appliances. 3G wireless applications require full-
featured multimedia services. DSP intensive operations
such as MP3 audio and MPEG video encodingidecoding
for video conferencing have significant impact on the
application performance. It becomes essential that a chip
design targeted for 3G wireless applications must provide
DSP capabilities[l][2]. Currently, the MPU providers try
to address this issue by extending the existing MPU
instruction sets to include a number of multimedia
functions[3], such as the ARM" v6 instruction set. Since
the included multimedia functions are restricted and the
MPU architecture is not optimized for DSP processes, the
DSP performance improvement provided by the MPU
instruction extension is limited. A superior solution is a
system with a dual core (DSP and MPU) architecture to
more effectively address the needs for proficient DSP
capabilities in 3G wireless applications.

In this paper, the design of the dual core architecture is
described which addresses the requirements and challenges
in 3G wireless applications. The SoC physical
implementation of the design is also examined in detail.

2. The Dual Core Architecture
This unique dual core architecture offers an attractive
solution to both DSP and MPU developers, providing the
low power real-time signal processing capabilities of a

+IP Design Service, Synopsys Inc.
1491 1 Quorum Drive,

Dallas, TX 15254, USA
Kaiiian.Shi(iisvnousvs.com

DSP coupled with the command and control functionality
of a microprocessor. This low power dual core architecture
forms a platform for various 3G wireless multimedia
applications. The system structure of the dual core
platform is shown in Figure I .

The MPU core has an instruction cache, a data cache and a
write buffer. The DSP subsystem includes a DSP core, a
software configurable instruction cache, embedded SRAM
and a program ROM. It also has an embedded internal
DMA controller for simultaneous data transfers and
hardware accelerators for video processing, pixel
interpolation and motion estimation.

Figure 1 Platform Core Architecture

The MPU is always the master in the system and is
responsible for setting up and bringing the DSP out of
reset. Once the DSP is out of reset, it can start executing
the DSP code. The DSP applications can be either in its
own local memory or can be in the shared system memory.
The DSP tasks and resources are controlled dynamically
through the DSP-MMU by the MPU.

In order for effective communication'to exist between the
MPU and the DSP subsystems, a handshaking protocol is
used. The handshaking between the MPU and DSP cores is

0-7803-81 82-3/03/$17.00 02003 IEEE 377

http://s-son&,ti.com
http://Kaiiian.Shi(iisvnousvs.com

performed through a set of inter-processor mailboxes. In a
typical application, the MPU will send a message to the
DSP to start performing a certain task by wnting to the
MPU2DSP mailbox after the DSP-MMU is configured.
Once the DSP completes the task, it writes to the
DSP2MPU mailbox to indicate that it is done with the
current task. This kind of handshaking maintains the
system coherency.

To support memory accesses, an optimized traffic
controller was designed that allows dynamically
configurable data throughput and asynchronous or
synchronous scalable operations between the system
interface, the DSP and the MPU subsystem. The
programmability of the traffic controller allows for
efficient performance utilization of the cores, as well as
maintaining low system power at the same time. The traffic
controller also supports various arbitration algorithms that
can be used to control and utilize the available bandwidth
efficiently.

The design provides various external memory interfaces to
allow glueless hookup to standard memories such as Flash,
SRAM, ROM and low power mobile SDRAM/DDR. Also,
a rich set of peripherals was designed to support other
multimedia functions.

To boost the system performance, the design implemented
a 16 channel programmable DMA controller to enable 2-D
graphic processing and simultaneous transfers of data
between the host and the memories, the host and the
peripherals, the internal and the external memories, and
from peripherals to other peripherals.

3. SoC Debugging Features
Since the platform architecture is based on multiple cores,
it is important to provide an efficient and relative-easy
means to trace back an error to the source of the problem.
In this platform, various emulation and debugging facilities
were implemented such as a Catscan and a window tracer
at the system level besides the core specific emulators and
tracers in the DSP and MPU subsystems. The Catscan
facility allows the users to set a breakpoint, execute
emulation, stop the execution at the breakpoint and dump
out internal data and states through scan chains. This
feature allows developers to isolate a problem fast and
easy. The window tracer enables the users to define an
address window to monitor bus transactions of all shared
target interfaces. The information of the bus transaction is
captured when the address of the access address falls in the
defined window. The captured data is sent out through a
serial tracer interface for software and hardware
debugging. These target tracers provide visibility of the
order of program execution on a per target basis in the
complex system.

4. Low Power Platform
Since.this application platform is targeted towards wireless
devices, longer battery life is a necessity. Power reduction
techniques were implemented at the Process, Architecture,
Logic Design and Physical Design phases of the
development. The dual core architecture enables assigning
a task to one of the processors that is best suited for the
task. This dynamic task allocation leads to a significant
reduction in the number of processor cycles required to
perform a task, which leads to a significant decrease in
power consumption.

The OMAP architecture ensures that the software/OS has
full control on all the clocking and idle modes of platform.
If an application does not need a particular resource, the
software can put the resource in an idle mode and even can
turn off the power of the resource. This feature enables the
application developer to write the application code such
that the power consumption is minimized. An aggressive
strategy of local clock gating coupled with the reduction of
unnecessary signahus toggling and an optimal floor-plan
has been used to further reduce power consumption.

5. High Performance Graphical Display
System

A high performance graphical display system is one of the
main requirements in 3G wireless applications, particularly
in quality video streaming and games. Many features were
designed in the platform to provide for high performance
graphical display capabilities.

5.1 Dedicated DMA Channel for LCD Display
A high priority, dedicated DMA channel was implemented
specifically for the LCD Controller. This dedicated DMA-
LCD channel ensures minimum latency in real-time LCD
operations. Also, the system DMA channels were
enhanced to implement in hardware essential graphic
display operations such as 2D image rotation, transparent
copying, solid color fills, and support for multibuffering.

5.2 Multibuffering Support
In most instances, the user doesn’t want to see the process
of polygons or lines appearing on the screen one after
another as they build a single frame. To address this
concern, a multibuffering strategy was implemented. The
user can designate two sections of memory as frame
buffers. While one section (Front Buffer) is repeatedly
being rendered to the LCD , the MPU, DSP, or DMA can
update the second memory section (Back Buffer) with the
next frame of data. Hardware was implemented in the
LCD Controller to allow the two buffers to be swapped at
the next vertical sync of the LCD. This process can be
repeated for future frames. This wilfproduce flicker free

378

animations and create an impression of smooth movement

To support the technique of multibuffering, two sets of
DMA configuration registers (shadow registers) were
implemented in the system DMA controller. The
programming register set is used to configure the hack
frame buffer and the active register set controls the front
frame buffer. The registers contain the base address of the
image in the frame buffer, the type of addressing modes
(consecutive read addresses, or 2D addressing modes for
image rotation), as well as the image size.

To assist the software programmer, the hardware provides
status registers to verify which buffer is currently being
rendered to the screen, as well as generating interrupts at
the end of each DMA frame transfer.

5.3 Transparent Copy with Source Color Key
Another beneficial graphical operation that was
implemented in hardware is the transparent copy
functionality for DMA transfers. This feature is very useful
for game programmers. Each sprite (a moving image on
screen) in a game is represented in memory as a
rectangular region. However, the image the sprite
represents is usually irregular shaped, such as a person or
spaceship. The ability to copy only the irregular shape
onto a hackground, and not the entire rectangle, is desired.

To achieve this functionality, a source color key register
was implemented in the DMA channels. This register is
programmed by the user to the correct pixel value of the
default color key that was created by the artist. A DMA
channel is setup to transfer the sprite into the frame buffer.
As the DMA transfer is occurring, each pixel of the sprite
is compared to the value in the color key register. If there
is a match, then the memory write to the frame buffer is not
performed. This process continues until the entire sprite is
copied. The desired effect is the background remains
unchanged and the irregular shape is copied to the frame
buffer.

[I] .

6. Security Access Control
Security control is another important requirement for 3G
wireless applications using the Internet. A 3G design must
provide the confidentiality to the system ensuring that only
the active participants are able to understand the content of
the transferred information. Also, the design must prevent
data received to be maliciously altered during transmission
and must guarantee the communication to the active
participants who are able to prove their authentication.
Moreover, a 3G design for security must not wronghlly
repudiate the transaction of the parties in the transaction,
and the design must protect users against pseudonym and
anonymity.

To address those issues, a security-distributed scheme was
introduced. In this scheme, an optimized' combination of
selected hardware blocks and a protected software
execution environment was implemented. The
implementation contained the security control module,
which serves as a special purpose hardware that creates an
environment for protecting sensitive information from
accesses by non-trusted software.

In addition, the secure ROM/RAM modules provide
protected executions, and an Efuse is used with a public
key to provide a secure boot process in which the boot
code/device is protected. A HW-based Random Number
Generator (RNG) enhanced the security compared with
using a SW-based pseudo RNG. The HW accelerators
were used for a crypto engine, which helped enhance the
power and performance of the system. Together, all the
modules made up a robust design structure to ensure the
security for applications that run on the open platform.

7. Open Application Platform
A key component of this application platform is an open
software architecture that supports application
development and provides a flexible upgrade capability.
The architecture includes a framework for developing
software that targets the system design and Application
Programmer Interfaces (API) for executing software on the

Figure 2 The platform software architecture

To simplify software development, the DSP software
architecture is abstracted from the RISC environment. The
abstraction is accomplished by defining an architectural
interface that allows the RISC to be the system master. The
DSP/BIOS bridge interface provides communication that
enables the RISC applications and device drivers to:

379

Perform status inquiries

Initiate and control DSP tasks
Exchange messages with the DSP
Stream data to and from the DSP

8. SoC Implementation
The integration phase of the design utilized Jupiter@ for
floor planning, Apollo@ for global and detail routing, and
clock tree synthesis; Star-RCXT@ for parasitic extraction;
Hercules@ for design rule check, and TI internal sign-off
tools for cross-talk, EM and IR-drop checks. Logic and
physical combined optimization [4] is essential to this high
performance and low power design. Physical Compiler8
was used to perform such an optimization. The physical
implementation methodology of the platform is described
below.

To shorten the time-to-market, the physical design was
done hierarchically. The DSP subsystem physical
implementation was separated from the MPU system. The
DSP subsystem and the MPU system achieved timing
closure in layout individually and in parallel. Then, both
were abutted with their interface pins aligned to form the
platform in layout.

The DSP subsystem and the MPU system are million gate
designs. A hierarchical timing was developed for the
timing closure flow. The MPU system was partitioned into
a MPU core, 11 subchips and 22 soft blocks based on
functionality, interconnects and layout constraints.
Subchips were only created on those blocks which could
be placed in the chip without causing routing congestions
and had clear interfaces and derivable quality input and
output (IO) constraints. The subchips achieved timing
closure individually and in parallel. Then, they were
integrated into the MPU system by their timing and
physical models. Next, The MPU system was optimized by
Physical Compiler@ using a two pass placement
optimization strategy. In the first pass, hold violations were
ignored to focus on optimizing the design for speed and
area. In the second pass, A restrictive incremental
placement optimization was used to fix hold violations and
reduce utilization.

By selectively abstracting 1 1 blocks into subchips, the
design size and complexity at the MPW system level were
able to be reduced to speed up timing closure process. By
applying the logic and physical combined optimization
flow to the soft blocks in the MPU system, quality
optimization results were able to be achieved that
correlated well with post-layout results.

After achieving timing closure, the DSP subsystem and the
MPU system were abutted to complete the dual core
platform. Then, post-layout timing was checked using a
sign-off STA flow in 10 PVT conditions and 8 operation

modes. EM, IR drops and cross talk were checked to meet
sign off requirements.

To prevent long nets from being driven by weak cells,
which are the main cause of design rule violations and
signal integrity problems, the max capacitance of the
standard cells were scaled down in the libraries during the
placement optimization. Also, the cells' maximum fanout
was confined to be 8 loads to control load distribution.
This signal integrity problem prevention strategy worked
well. There were only a few design rule and cross-talk
violations in post-layout.

Long, large fanouts or feedback subchip IO nets can cause
antenna rule violations and inaccurate IO path timing at
top-level layout. To resolve this issue, a rule based 10
buffer insertion and placement method was developed
which detected the problematic 1 0 nets, inserted strong
buffers to isolate the nets from the 10 pins and placed the
buffers close to the IO pins. As the result, the subchip IO
nets became short point-to-point nets.

9. Summaries
The OMAP Platform was successhlly designed and
implemented in eight months, and has increased the
performance of advanced applications that include
graphics, multimedia content, and Java as much as 8x
while reducing standby current as much as lox in wireless
handsets and PDAs. As a result of the excellent
engineering effort and dual core architecture, the OMAP
platform has been integrated into five different chipsets as
first passed silicon.

10. References
[I] Sergei Savchenko, Msc., 3D Graphics Programming
Games and Beyond, Sams Publishing, 2000, Indianapolis
Indiana, p 14
[2] P.E. Gronowski, W.J. Bowhill, et al. High
performance microprocessor design. IEEE Journal of Solid
State Circuits, May, 1998, pp 676-685
[3] Bill Moyer, Low-power designs for embedded
processor" Proc. of IEEE Vol. 89, No. 11,2001
141 Hojat and Villarubbia "An Integrated Placement and
Synthesis Approach for Timing Closure of PowerPC
Microurocessor" ICCD 1997

380

