
Exploitation of Nested Thread-Level Speculative
Parallelism on Multi-Core Systems
Arun Kejariwal§ Milind Girkar‡ Xinmin Tian‡ Hideki Saito‡

Alexandru Nicolau† Alexander V. Veidenbaum† Utpal Banerjee† Constantine D. Polychronopoulos¶

§Yahoo! Inc. ‡Intel Corporation †University of California at Irvine ¶University of Illinois at Urbana-Champaign

ABSTRACT
Multi-cores such as the Intel Core 2 Duo, AMD Barcelona
and IBM POWER6 are becoming ubiquitous. The number
of cores and the resulting hardware parallelism is poised to
increase rapidly in the foreseeable future. Nested thread-level
speculative parallelization has been proposed as a means to
exploit the hardware parallelism of such systems. In this pa-
per, we present a methodology to gauge the efficacy of nested
thread-level speculation with increasing level of nesting.

Categories and Subject Descriptors: C.4 [Computer
Systems Organization]: Performance of Systems – Mea-
surement techniques
General Terms: Performance, Measurement
Keywords: Thread-level speculation, performance

1. INTRODUCTION
Over the recent years there has been a proliferation in the
number of cores per chip. For example, Intel and AMD have
already fielded 6-core processors – “Dunnington” for Intel
and “Istanbul” for AMD. The next few months will see the
introduction of a raft of new x86 server chips that offer be-
tween 6 and 12 cores [1, 2]. Efficient use of such systems
is critically dependent on the availability of concurrent soft-
ware [3]. Thread-level speculation (TLS) has been proposed
as one of the ways to parallelize difficult-to-analyze (poten-
tially parallel) program regions. Although there has been a
study on the efficacy of TLS at the innermost loop-level [4,
5] and call-graph level [6] evaluation of the performance po-
tential of TLS, a limit study of the efficacy of nested TLS1

has not been done.
In this paper we propose a methodology to assess the

efficacy of nested TLS. We present a probabilistic model
to determine the sensitivity of nested TLS with respect to
misspeculation at the different levels of nested execution.
Specifically, the parent-child relationship, a key aspect of
nested speculative execution, is modeled using conditional
probability. Our analysis shows that the efficacy of nested
TLS decreases with increasing levels of nesting.

The rest of the paper is organized as follows: Section 2
overviews the different models for exploiting sTLP. The method-
ology of evaluation the efficacy of nested TLS is presented
in Section 3.

2. BACKGROUND
In this section, we present an overview of the speculative
execution model and the basics of conditional probability.

1The need for exploiting nested speculative thread-level
parallelism (sTLP) [7] has its roots in the industrial trend
of putting many (>2) cores on a single chip.

Copyright is held by the author/owner(s).
CF’10, May 17–19, 2010, Bertinoro, Italy.
ACM 978-1-4503-0044-5/10/05.

2.1 Speculative Execution Model
Existing TLS mechanisms can be broadly classified into two
categories based on the speculative thread spawning poli-
cies: (a) in-order and (b) out-of-order (OOO) In the former,
each thread can spawn at most one thread. On the other
hand, in OOO spawn, a thread can spawn thread(s) in an
unrestricted fashion. For example, let us consider the fol-
lowing loop (taken from 401.bzip2, file name compress.c,
line number 575):

L1: for (t = 0; t < nGroups; t++) {

S1: Int32 curr = s->len[t][0];

S2: bsW (s, 5, curr);

L2: for (i = 0; i < alphaSize; i++) {

L3: while (curr < s->len[t][i]) { bsW(s,2,2); curr++; /* 10 */ };

L4: while (curr > s->len[t][i]) { bsW(s,2,3); curr--; /* 11 */ };

S3: bsW (s, 1, 0);

}

}

Figure 1(a) illustrates the in-order spawn model wherein
the non-speculative thread T0 spawns speculative thread T1

which in turn spawns speculative thread T2 and so on. In
contrast, in OOO spawn, see Figure 1(b), non-speculative
thread T0 spawns two speculative T1 and T2.

2 Thread T2

then spawns speculative threads T3, T4 and T5. Thread T0

executes the statement S1 and the function bsW (S2 in the
snippet) non-speculatively, whereas the thread T5, for ex-
ample, speculatively executes the function bsW inside the
inner for loop. Clearly, OOO spawn exposes higher degree
of sTLP. Therefore, we assume an OOO spawn policy for
the analysis presented in this paper.

T
0

T
1

T
2

T
3

T
0

T
1

T
2

T
3

T
4

T
5

t=
0

t=
1

t=
2

t=
3

(a)

t=
1t=

0

i=
0

i=
1

L
4

b
s
W

(b)

Figure 1: (a) In-order spawn (b) Out-of-order spawn

2.2 Conditional Probability
Let A and B be two events. The conditional probability of
event A to occur, given that event B has occurred, is given
as follows:

P (A|B) =
P (A ∩B)

P (B)
(1)

where, P (B) denotes the probability of occurrence of event
B and P (A ∩ B) denotes the occurrence of both the events
A and B.

2Due to the space limitations, speculative spawning
of other threads corresponding to the iterations t =
2, . . . , nGroups is not shown.

99

3. NESTED TLS
One way to leverage the large number of cores (on a chip)
is to exploit nested sTLP. Several techniques have been pro-
posed for this. However, none of the existing techniques has
evaluated the sensitivity of the profitability of nested TLS
w.r.t. speculation depth. This makes it difficult to gauge
the performance gain achievable via nested TLS. To this
end, we propose an analytical model based on conditional
probability which captures the parent-child relationship –
a key aspect of nested TLS. We illustrate the model with
the help of an example call graph, shown in Figure 2. The
function Strparse is part of the 456.hmmer benchmark.

Figure 2: An example call graph with a depth 7

From the figure we see that the call graph of Strparse has
a depth of 7. Let us consider the path along Strparse,

sqd regcomp, reg, regbranch, regpiece, regatom and
regc. Assume all the functions along the path are executed
speculatively. Then, the successful execution of regc, de-
noted by event A, is contingent on the successful execution
of regatom, denoted by event B. The variation of P (A|B),
i.e., probability of successful execution of regc given that
regatom was successfully executed, is shown in Figure 3.
Note that P (A ∩B) ≤ P (B).

From the figure (along the P (B) axis) we note that P (A|B)
decreases linearly with decrease in P (A∩B). P (A∩B) cor-
responds to the case wherein no conflicts occur between the
speculative threads executing regatom and regc. Even if
P (A ∩ B) = 1, this does not, by itself, guarantee an overall
correct speculation as the success of A and B is dependent
on the correct speculation of the function regpiece, denoted
by event C. To address this, we extend the model to capture
higher levels in of the call graph. The probability of success
of B given that C was successfully executed is given by:

P (B|C) =
P (B ∩ C)

P (C)

In a similar fashion, the model can be extended to all 7 lev-
els of speculation. The overall probability of correct specula-
tion decreases exponentially with increase in the speculation
nesting level.

We analyze the hottest loop in 435.gromacs [8], taken
from innerf.f:3932 (see Figure 4), as a case study. The
loop is doubly nested and covers 57% of the total execu-

Figure 3: Variation of P (A|B) (refer to Equation 1)

tion time. The loop nest contains many array references
through subscript arrays (e.g., faction(jjnr(k)-1)), thus
dependences on this loop nest cannot be detected statically.
Besides the reduction updates to elements of faction be-
tween line 4140 and 4148, there are additional reads and
writes to faction in the inner k-loop that are not in the
reduction form.

3932 do n=1,nri

...

ii3 = 3*iinr(n)-1

...

3961 do k=nj0,nj1

jnr = jjnr(k)+1

j3 = 3*jnr-2

...

fjx1 = faction(j3)-tx11

...

faction(j3) = fjx1-tx31

...

4139 end do

4140 faction(ii3) = faction(ii3) + fix1 /* dep freq 51% */

4141 faction(ii3+1) = faction(ii3+1) + fiy1 /* dep freq 51% */

...

4148 faction(ii3+8) = faction(ii3+8) + fiz3 /* dep freq 51% */

...

4155 end do

Figure 4: Hot loop at 435.gromacs:innerf.c:3932

In [9], Wu et al. showed that, with the training input data
set, the inner loop is profiled to be parallel and is thus
amenable for TLS. The frequency of run-time materializa-
tion of dependences associated with faction is shown in Fig-
ure 4 (taken from [9]). True dependences associated with the
references to faction in the inner and the outer loop results
in degrading the efficacy of nested TLS by 50%. Similar
observation, i.e., decreasing efficacy of nested TLS with 2 or
more nesting levels, was made for other applications in the
SPEC CPU2006 suite such as 429.mcf.

4. REFERENCES
[1] AMD Confirms 12-Core Opteron Production, Februrary, 2010. http://www.

hpcwire.com/blogs/AMD-Confirms-12-Core-Opteron-Production-85118242.html#38593146.
[2] Multicore Watershed, March, 2010.

http://www.hpcwire.com/blogs/Multicore-Watershed-86426622.htm.
[3] H. Sutter and J. Larus. Software and the concurrency revolution. ACM

Queue, 3(7), 2005.
[4] A. Kejariwal, X. Tian, W. Li, M. Girkar, S. Kozhukhov, H. Saito,

U. Banerjee, A. Nicolau, A. V. Veidenbaum, and C. D. Polychronopoulos.
On the performance potential of different types of speculative thread-level
parallelism. In Proceedings of the 20th ACM ICS, pages 24–35, 2006.

[5] A. Kejariwal, X. Tian, M. Girkar, W. Li, S. Kozhukhov, H. Saito,
U. Banerjee, A. Nicolau, A. V. Veidenbaum, and C. D. Polychronopoulos.
Tight analysis of the performance potential of thread speculation using
SPEC CPU2006. In Proceedings of the 12th ACM SIGPLAN Symposium on PPoPP,
2007.

[6] A. Kejariwal, M. Girkar, X. Tian, H. Saito, A. Nicolau, A. V. Veidenbaum,
and U. Banerjee. On the efficacy of call graph-level thread-level speculation.
In Proceedings of the First Joint WOSP/SIPEW ICPE, pages 247–248, 2010.

[7] J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J. Torrellas. Tasking
with out-of-order spawn in TLS chip multiprocessors: Microarchitecture
and compilation. In Proceedings of the 19th ACM ICS, pages 179–188, 2005.

[8] SPEC CFP2006. http://www.spec.org/cpu2006/CFP2006.
[9] P. Wu, A. Kejariwal, and C. Caşcaval. Compiler-driven dependence

profiling to guide program parallelization. In Proceedings of the 21st
International Workshop on LCPC, 2008.

100

http://www.hpcwire.com/blogs/AMD-Confirms-12-Core-Opteron-Production-85118242.html#38593146
http://www.hpcwire.com/blogs/AMD-Confirms-12-Core-Opteron-Production-85118242.html#38593146
http://www.hpcwire.com/blogs/Multicore-Watershed-86426622.htm
http://www.spec.org/cpu2006/CFP2006

	1 Introduction
	2 Background
	2.1 Speculative Execution Model
	2.2 Conditional Probability

	3 Nested TLS
	4 References

