

FIC MANAGEMENT
ed, small cell size, limited overhead
nng majority of traffic not amenable to flow control
feedback is slow due to reduced transmission time compared with propagation delay
wide range of application demands
different traffic patterns
different network services
high speed switching and transmission increases volatility

- for ATM voice/video, data is a stream of cells
- o delay across network must be short
- o rate of delivery must be constant
- there will always be some variation in transit
- delay cell delivery to application so that constant bit rate can be maintained to application

NETWORK CONTRIBUTION TO CELL DELAY VARIATION

• in packet switched networks is due to queuing delays and routing decision time

o in Frame relay networks is similar

o in ATM networks

- less than frame relay
- ATM protocol designed to minimize processing overheads at switches
- ATM switches have very high throughput
- only noticeable delay is from congestion
- must not accept load that causes congestion

TRAFFIC SHAPING

- UPC provides a form of traffic policing
- ${\color{black}\circ}$ can be desirable to also shape traffic
- smoothing out traffic flow
- reducing cell clumping
- o token bucket

FRAME RECOGNITION

- GFR recognizes frames as well as cells
- when congested, network discards whole frame rather than individual cells
- all cells of a frame have same CLP bit setting
- CLP=1 AAL5 frames lower priority (best effort)
- CLP=0 frames minimum guaranteed capacity

GFR CONTRACT PARAMETERS

- Peak cell rate (PCR)
- Minimum cell rate (MCR)
- Maximum burst size (MBS)
- Maximum frame size (MFS)
- Cell delay variation tolerance (CDVT)

o deals with treatment of buffered cells

- congestion indicated by high buffer occupancy
- will discard tagged cells in preference to untagged cells
 - including ones already in buffer to make room
- o may do per VC buffering for fairness
- o cell discard based on queue-specific thresholds

SCHEDULING

- o preferential treatment to untagged cells
- separate queues for each VC
- make per-VC scheduling decisions
- o enables control of outgoing rate of VCs
- VCs get fair capacity allocation
- o still meet contract

SUMMARY

> congestion effects

- ideal and practical performance
- > congestion control
 - backpressure, choke packet, implicit/explicit
- > traffic management
 - fairness, QoS, reservations
- > ATM traffic management
- > ATM-GFR traffic management
 - tagging, policing, buffer, scheduling
- > QoS eligibility testing