DATA AND COMPUTER COMMUNICATIONS
 Lecture 4 Wide Area Networks Routing

Mei Yang
Based on Lecture slides by William Stallings

Routing in Packet Switched Network

- key design issue for (packet) switched networks
o select route across network between end nodes
o characteristics required:
- correctness
- simplicity
- robustness
- stability
- fairness
- optimality
- efficiency

Performance Criteria

- used for selection of route
- simplest is "minimum hop"
o can be generalized as "least cost"
- because "least cost" is more flexible it is more common than "minimum hop"

Example of Packet Switched Network

Decision Time and Place

decision time

- packet or virtual circuit basis
- fixed or dynamically changing

decision place

- distributed - made by each node
- more complex, but more robust
- centralized - made by a designated node
- source - made by source station

Network Information Source and

Update Timing

- routing decisions usually based on knowledge of network, traffic load, and link cost
- distributed routing
- using local knowledge, information from adjacent nodes, information from all nodes on a potential route
- central routing
issue of update timing
- depends on routing strategy
- fixed - never updated
- adaptive - regular updates

Routing Strategies - Fixed Routing

o use a single permanent route for each source to destination pair

- determined using a least cost algorithm o route is fixed
- at least until a change in network topology
- hence cannot respond to traffic changes
- advantage is simplicity
- disadvantage is lack of flexibility

Routing Strategies - Flooding

- packet sent by node to every neighbor - eventually multiple copies arrive at destination
- no network info required
- each packet is uniquely numbered so duplicates can be discarded
- need some way to limit incessant retransmission
- nodes can remember packets already forwarded to keep network load in bounds
- or include a hop count in packets

(c) Third hop

Routing Strategies - Random Routing

o simplicity of flooding with much less load

- node selects one outgoing path for retransmission of incoming packet
o selection can be random or round robin
- a refinement is to select outgoing path based on probability calculation
- no network info needed
- but a random route is typically neither least cost nor minimum hop

Routing Strategies - Adaptive Routing

- used by almost all packet switching networks
- routing decisions change as conditions on the network change due to failure or congestion
- requires info about network
- disadvantages:
- decisions more complex
- tradeoff between quality of network info and overhead
- reacting too quickly can cause oscillation
- reacting too slowly means info may be irrelevant

Adaptive Routing - Advantages

- improved performance
- aid congestion control
- but since is a complex system, may not realize theoretical benefits
- cf. outages on many packet-switched nets

Classification of Adaptive Routing Strategies

o on the basis of information source

```
local (isolated)
- route to
outgoing link
with shortest
queue
- can include
bias for each
destination
- rarely used does not make use of available information
```

```
adjacent nodes
- takes advantage of delay and outage information
- distributed or centralized
```


Isolated Adaptive Routing

Node 4's Bias
Table for
Destination 6
Next Node Bias

1	9
2	6
3	3
5	0

ARPANET Routing Strategies
 1st Generation

- designed in 1969
- distributed adaptive using estimated delay
- queue length used as estimate of delay
o using Bellman-Ford algorithm
- node exchanges delay vector with neighbors
o update routing table based on incoming info
- problems:
- doesn't consider line speed, just queue length
- queue length not a good measurement of delay
- responds slowly to congestion

ARPANET Routing Strategies
 2ND GENERATION

- designed in 1979
- distributed adaptive using measured delay
- using timestamps of arrival, departure \& ACK times
o recomputes average delays every 10secs
- any changes are flooded to all other nodes
o recompute routing using Dijkstra's algorithm
- good under light and medium loads
o under heavy loads, little correlation between reported delays and those experienced

Oscillation

Figure 12.7 Packet-Switching Network Subject to Oscillations

ARPANET Routing Strategies
 3RD Generation

- designed in 1987
- link cost calculations changed
- to damp routing oscillations
- and reduce routing overhead
- measure average delay over last 10 secs and transform into link utilization estimate
- normalize this based on current value and previous results
- set link cost as function of average utilization

ARPANET Delay Metrics

Least Cost Algorithms

alternatives: Dijkstra or Bellman-Ford algorithms

Least Cost Algorithms

- basis for routing decisions
- can minimize hop with each link cost 1
- or have link value inversely proportional to capacity
- defines cost of path between two nodes as sum of costs of links traversed
- in network of nodes connected by bi-directional links
- where each link has a cost in each direction
- for each pair of nodes, find path with least cost
- nb. link costs in different directions may be different
- alternatives: Dijkstra or Bellman-Ford algorithms

DiJkstra's Algorithm

- finds shortest paths from given source node s to all other nodes
- by developing paths in order of increasing path length
- algorithm runs in stages (next slide)
- each time adding node with next shortest path
- algorithm terminates when all nodes processed by algorithm (in set T)

Diskstra's Algorithm Method

- Step 1 [Initialization]

- $T=\{s\}$ Set of nodes so far incorporated
- $\mathrm{L}(\mathrm{n})=\mathrm{w}(\mathrm{s}, \mathrm{n})$ for $\mathrm{n} \neq \mathrm{s}$
- initial path costs to neighboring nodes are simply link costs
- Step 2 [Get Next Node]
- find neighboring node not in T with least-cost path from s
- incorporate node into T
- also incorporate the edge that is incident on that node and a node in T that contributes to the path
- Step 3 [Update Least-Cost Paths]
- $L(n)=\min [L(n), L(x)+w(x, n)]$ for all $n \notin T$
- flatter term is minimum, path from s to n is path from s to x concatenated with edge from x to n

Dijkstra's Algorithm Example

DiJKstra's Algorithm Example

Iter	\mathbf{T}	$\mathbf{L}(\mathbf{2)}$	Path	$\mathbf{L}(3)$	Path	$\mathbf{L}(4)$	Path	$\mathbf{L}(5)$	Path	$\mathbf{L}(6)$	Path
1	$\{1\}$	2	$1-2$	5	$1-3$	1	$1-4$	∞	-	∞	-
2	$\{1,4\}$	2	$1-2$	4	$1-4-3$	1	$1-4$	2	$1-4-5$	∞	-
3	$\{1,2,4\}$	2	$1-2$	4	$1-4-3$	1	$1-4$	2	$1-4-5$	∞	-
4	$\{1,2,4$, $5\}$	2	$1-2$	3	$1-4-5-3$	1	$1-4$	2	$1-4-5$	4	$1-4-5-6$
5	$\{1,2,3$, $4,5\}$	2	$1-2$	3	$1-4-5-3$	1	$1-4$	2	$1-4-5$	4	$1-4-5-6$
6	$\{1,2,3$, $4,5,6\}$	2	$1-2$	3	$1-4-5-3$	1	$1-4$	2	$1-4-5$	4	$1-4-5-6$

Bellman-Ford Algorithm

- find shortest paths from given node subject to constraint that paths contain at most one link
- find the shortest paths with a constraint of paths of at most two links
- and so on

Bellman-Ford Algorithm

o step 1 [Initialization]

- $L_{0}(n)=\infty$, for all $n \neq s$
- $L_{h}(s)=0$, for all h
- step 2 [Update]
- for each successive $\mathrm{h} \geq 0$
- for each $\mathrm{n} \neq \mathrm{s}$, compute: $L_{h+1}(n)=\min _{j}\left[L_{h}(j)+w(j, n)\right]$
- connect n with predecessor node j that gives min
- eliminate any connection of n with different predecessor node formed during an earlier iteration
- path from s to n terminates with link from j to n

Results of Bellman-Ford Example

\mathbf{h}	$\mathbf{L}_{\mathbf{h}} \mathbf{(2)}$	Path	$\mathbf{L}_{\mathbf{h}} \mathbf{(3)}$	Path	$\mathbf{L}_{\mathbf{h}} \mathbf{(4)}$	Path	$\left.\mathbf{L}_{\mathbf{h}} \mathbf{5}\right)$	Path	$\mathbf{L}_{\mathbf{h}} \mathbf{(6)}$	Path
0	∞	-								
1	2	$1-2$	5	$1-3$	1	$1-4$	∞	-	∞	-
2	2	$1-2$	4	$1-4-3$	1	$1-4$	2	$1-4-5$	10	$1-3-6$
3	2	$1-2$	3	$1-4-5-3$	1	$1-4$	2	$1-4-5$	4	$1-4-5-6$
4	2	$1-2$	3	$1-4-5-3$	1	$1-4$	2	$1-4-5$	4	$1-4-5-6$

Comparison

- results from two algorithms agree - Bellman-Ford
- calculation for node n needs link cost to neighbouring nodes plus total cost to each neighbour from s
- each node can maintain set of costs and paths for every other node
- can exchange information with direct neighbors
- can update costs and paths based on information from neighbors and knowledge of link costs
- Dijkstra
- each node needs complete topology
- must know link costs of all links in network
- must exchange information with all other nodes

Evaluation

SUMMARY

o routing in packet-switched networks

- routing strategies
- fixed, flooding, random,adaptive
- ARPAnet examples
- least-cost algorithms
- Dijkstra, Bellman-Ford

