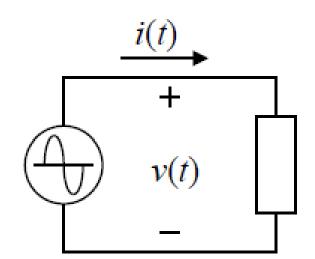
BASIC CONCEPTS

Yahia Baghzouz

Electrical & Computer Engineering Department

INSTANTANEOUS VOLTAGE, CURRENT AND POWER, RMS VALUES

$$v(t) = V_m \cos(\omega t + \theta_v)$$
$$i(t) = I_m \cos(\omega t + \theta_i)$$
$$p(t) = v(t) i(t)$$



$$\theta = \theta_{v} - \theta_{i} \quad V_{m} = \sqrt{2} |V| \quad I_{m} = \sqrt{2} |I|$$

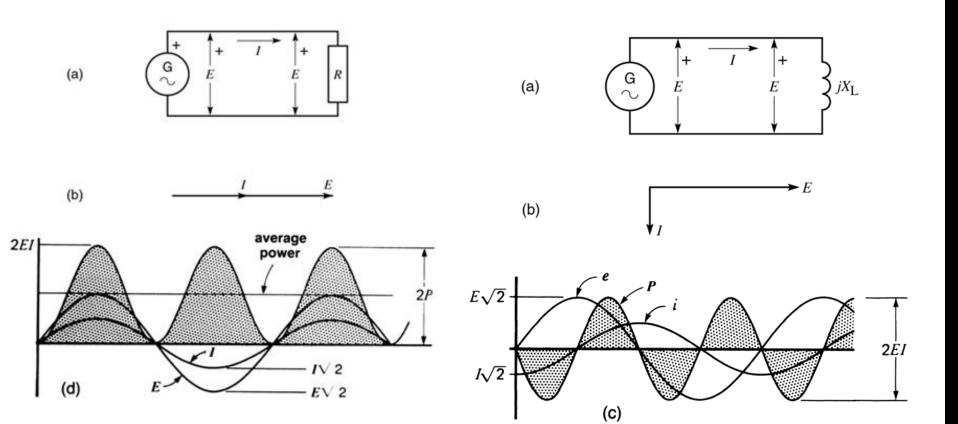
$$p(t) = |V| |I| \cos \theta \{1 + \cos 2(\omega t + \theta_{v})\} + |V| |I| \sin \theta \sin 2(\omega t + \theta_{v})$$
energy flow into
the circuit
energy borrowed and
returned by the circuit

AVERAGE (REAL) POWER, REACTIVE POWER, APPARENT POWER, POWER FACTOR

 $p(t) = |V| |I| \{1 + \cos 2(\omega t + \theta_v)\} \cos \theta + |V| |I| \sin 2(\omega t + \theta_v) \sin \theta$ $p_R(t) = |V| |I| \{1 + \cos 2(\omega t + \theta_v)\} \cos \theta = \overline{P} \{1 + \cos 2(\omega t + \theta_v)\}$ $p_X(t) = |V| |I| \sin 2(\omega t + \theta_v) \sin \theta = S \sin \theta \sin 2(\omega t + \theta_v)$

$$\overline{P} = |V| |I| \cos \theta$$
$$S = |V| |I|$$
$$Q \equiv S \sin \theta = |V| |I| \sin \theta$$
$$pf = \cos \theta = \frac{\overline{P}}{|V| |I|}$$

INSTANTANEOUS POWER IN PURE RESISTIVE AND INDUCTIVE CIRCUITS



PHASOR NOTATION, IMPEDANCE AND ADMITTANCE

Transformation of a sinusoidal signal to and from the time domain to the phasor domain:

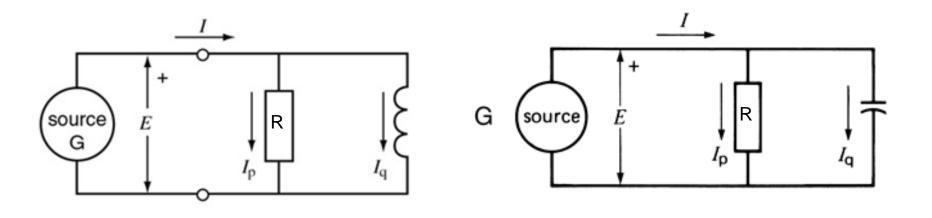
$$v(t) = \sqrt{2} |V| \cos(\omega t + \theta_v) \iff V = |V| \angle \theta_v$$

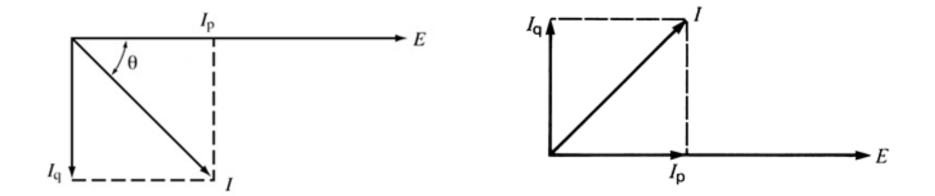
(time domain)

(phasor domain)

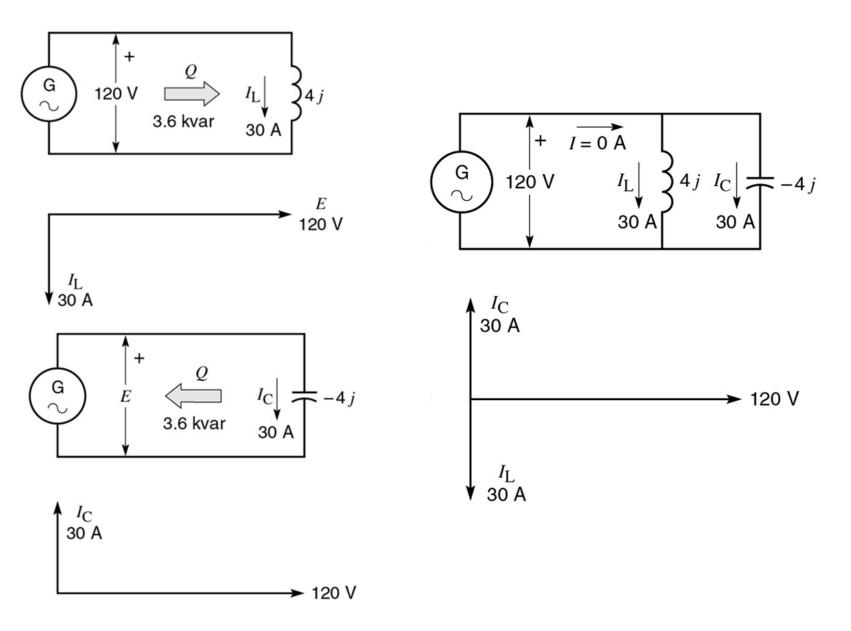
Element	Impedance	Admittance
R	Z = R	$Y = \frac{1}{R}$
L	$Z = j \omega L$	$Y = \frac{1}{j\omega L}$
С	$Z = -j \frac{1}{\omega C}$	$Y = j \omega C$

RESISTIVE-INDUCTIVE, RESISTIVE-CAPACITIVE LOAD

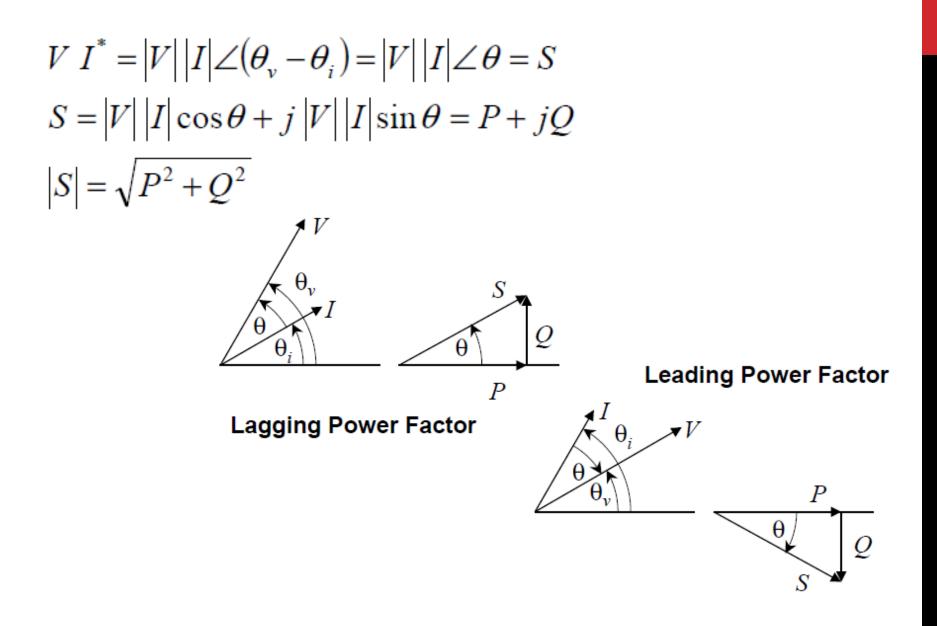




POWER IN INDUCTIVE AND CAPACITIVE CIRCUITS

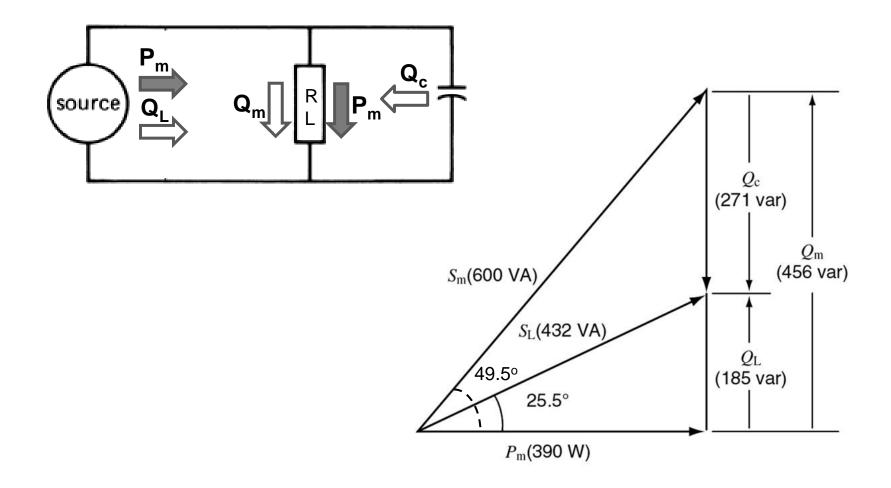


COMPLEX POWER, POWER TRIANGLE



EXAMPLE: POWER FACTOR CORRECTION

The power triangle below shows that the power factor is corrected by a shunt capacitor from 65% to 90% (lag).



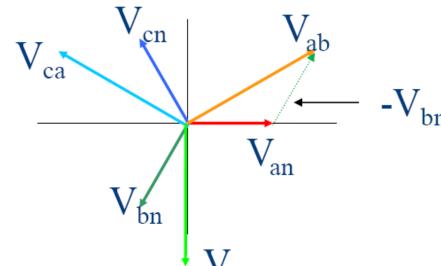
CONSERVATION OF POWER

- \circ At every node (bus) in the system,
 - the sum of real powers entering the node must be equal to the sum of real powers leaving that node.
 - The same applies for reactive power,
 - The same applies for complex power
 - The same **does not apply** for apparent power
- The above is a direct consequence of Kirchhoff's current law, which states that the sum of the currents flowing into a node must equal the sum of the currents flowing out of that node.

BALANCED 3 PHASE CIRCUITS

- Bulk power systems are almost exclusively 3-phase. Single phase is used primarily only in low voltage, low power settings, such as residential and some commercial customers.
- □ Some advantages of three-phase system:
 - Can transmit more power for the same amount of wire (twice as much as single phase)
 - Torque produced by 3¢ machines is constant, easy start.
 - Three phase machines use less material for same power rating

PHASE AND LINE VOLTAGES



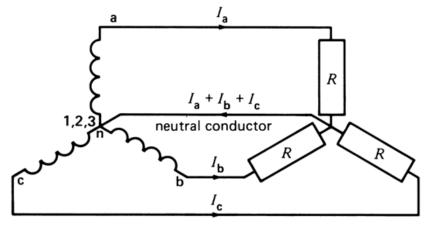
 $V_{an} = |V| \angle \alpha^{\circ}$ -V_{bn} V_{bn} = |V| \arrow \alpha^{\circ} - 120^{\circ} V_{cn} = |V| \arrow \alpha^{\circ} + 120^{\circ} $(\alpha = 0 \text{ in this case})$

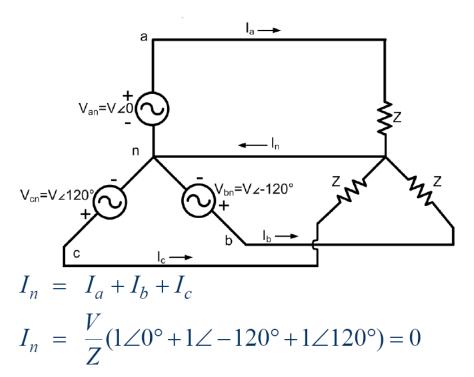
$$V_{ab}$$

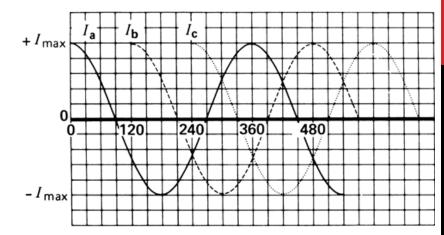
$$V_{ab} = V_{an} - V_{bn} = |V|(1 \angle \alpha - 1 \angle \alpha + 120^{\circ})$$

= $\sqrt{3} |V| \angle \alpha + 30^{\circ}$ Line to line
 $V_{bc} = \sqrt{3} |V| \angle \alpha - 90^{\circ}$ voltages are
 $V_{ca} = \sqrt{3} |V| \angle \alpha + 150^{\circ}$ also balanced

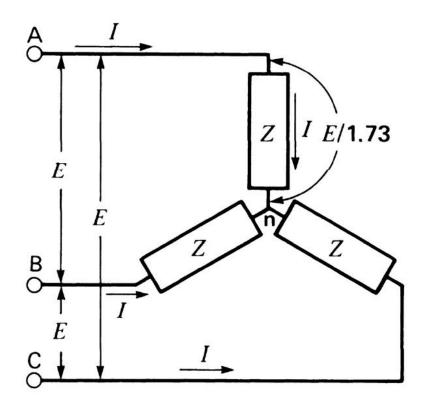
NEUTRAL WIRE

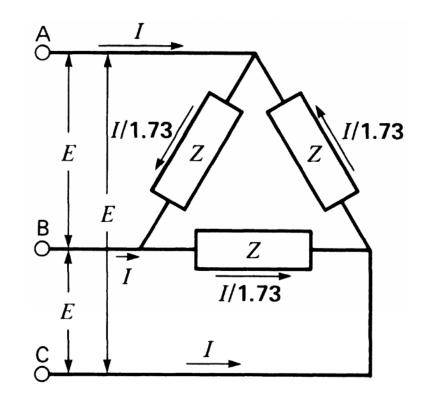






Y- AND Δ -CONNECTED LOADS





POWER IN BALANCED 3-PHASE CIRCUITS

The real power, reactive power, apparent power, complex power and power factor are the same in each phase.

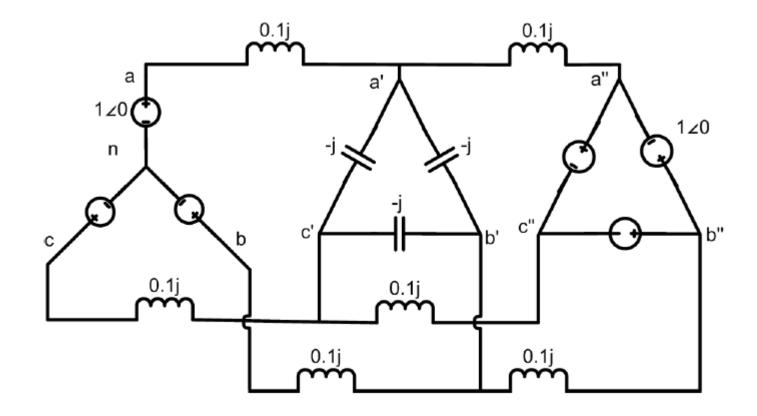
$$P = 3V_p I \cos(\theta) = \sqrt{3}V_L I \cos(\theta)$$
$$Q = 3V_p I \sin(\theta) = \sqrt{3}V_L I \sin(\theta)$$
$$S = 3V_p I = \sqrt{3}V_L$$

PER-PHASE ANALYSIS IN BALANCED 3-PHASE CIRCUITS

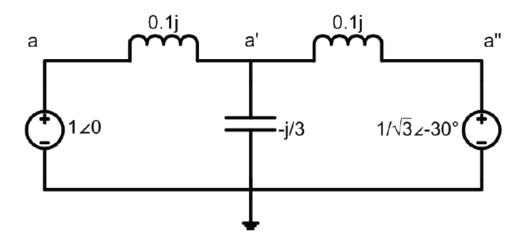
- Per phase analysis allows analysis of balanced 3ϕ systems with the same effort as for a single phase system
- To do per phase analysis
 - 1. Convert all 3ϕ load/sources to equivalent Y's
 - 2. Solve phase "a" independent of the other phases
 - 3. Total system power $S = 3 V_a I_a^*$
 - If desired, phase "b" and "c" values can be determined by inspection (i.e., ±120° degree phase shifts)
 - If necessary, go back to original circuit to determine lineline values or internal 3φ values.

EXAMPLE OF PER-PHASE ANALYSIS

Find the complex power supplied by each of the two sources.



SOLUTION



To solve the circuit, write the KCL equation at a'

$$(V_{a}' - 1 \angle 0)(-10j) + V_{a}'(3j) + (V_{a}' - \frac{1}{\sqrt{3}} \angle -30^{\circ})(-10j) = 0$$

$$(10j + \frac{10}{\sqrt{3}} \angle 60^{\circ}) = V_{a}'(10j - 3j + 10j)$$

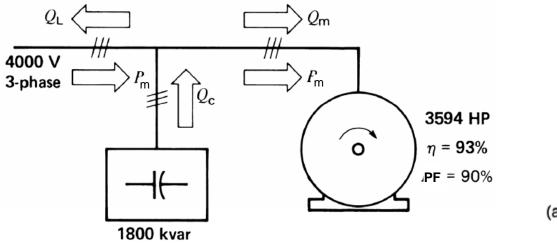
$$V_{a}' = 0.9 \angle -10.9^{\circ} \text{ volts } V_{b}' = 0.9 \angle -130.9^{\circ} \text{ volts }$$

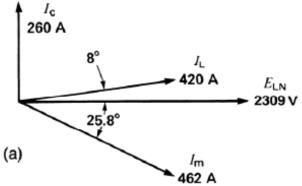
$$V_{c}' = 0.9 \angle 109.1^{\circ} \text{ volts } V_{ab}' = 1.56 \angle 19.1^{\circ} \text{ volts }$$

$$S_{Ygen} = 3V_{a}I_{a}^{*} = V_{a}\left(\frac{V_{a} - V_{a}'}{j0.1}\right)^{*} = 5.1 + j3.5 \text{ VA}$$

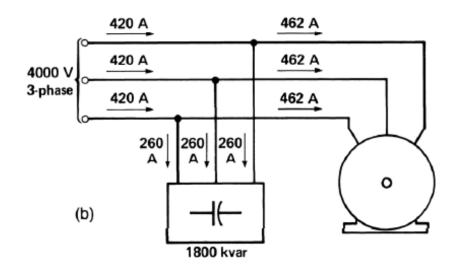
$$S_{\Delta gen} = 3V_{a}''\left(\frac{V_{a}'' - V_{a}'}{j0.1}\right)^{*} = -5.1 - j4.7 \text{ VA}$$

EXAMPLE: POWER FACTOR CORRECTION IN THREE-PHASE CIRCUIT.





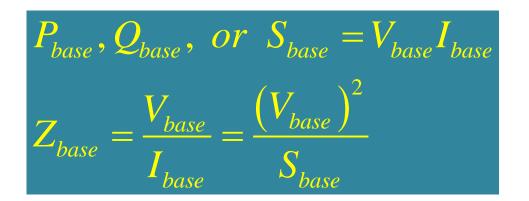
$$\begin{split} \mathsf{P}_{m} &= \sqrt{3} x 4 x 0.462 x \cos(25.8^{\circ}) = 2.88 \text{ MW} \\ \mathsf{Q}_{m} &= \sqrt{3} x 4 x 0.462 x \sin(25.8^{\circ}) = 1.39 \text{ MVAR} \\ \mathsf{Q}_{c} &= 1.8 \text{ MVAR} \\ \mathsf{Q}_{L} &= \mathsf{Q}_{m} - \mathsf{Q}_{c} = -0.41 \text{ MVAR} \end{split}$$

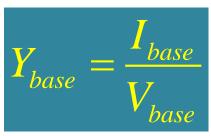


THE PER-UNIT SYSTEM

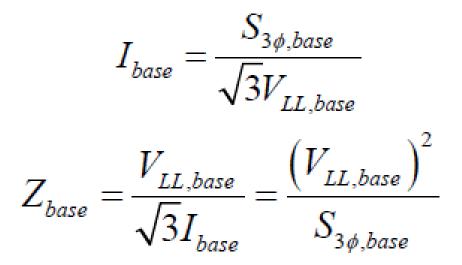
The voltages, currents, powers, impedances, and other electrical quantities are measured as fractions of some base level instead of conventional units.

Usually, two base quantities are selected to define a given per-unit system. Often, such quantities are voltage and apparent power. In a single-phase circuit, once the base values of *S* and *V* are selected, all other base values can be computed form





In a 3-phase circuit, given the base apparent power (3—phase) and base voltage (line-to-line), the base current and base impedance are given by

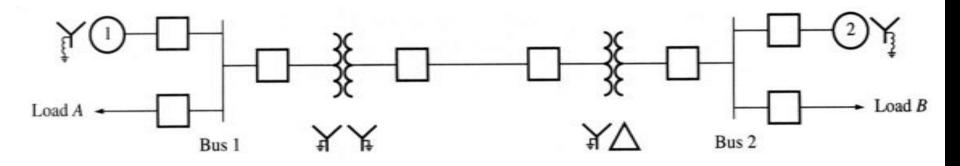


PER-UNIT SYSTEM

The per-unit impedance may be transformed from one base to another as

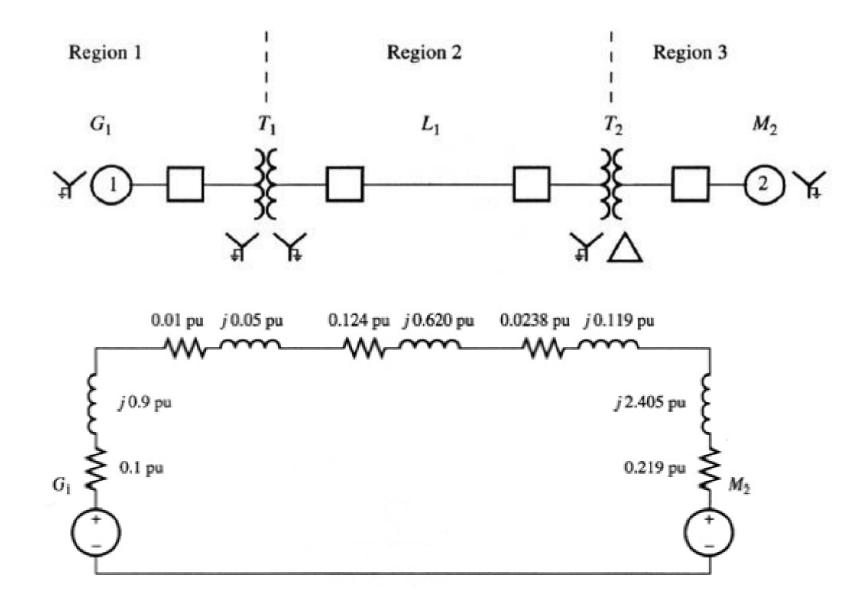
$$Per-unit \ Z_{new} = per-unit \ Z_{old} \left(\frac{V_{old}}{V_{new}}\right)^2 \left(\frac{S_{new}}{S_{old}}\right)$$

ONE-LINE DIAGRAM (SIMPLE POWER SYSTEM)



Machine ratings, impedances, consumed and/or supplied powers are usually included in the diagrams

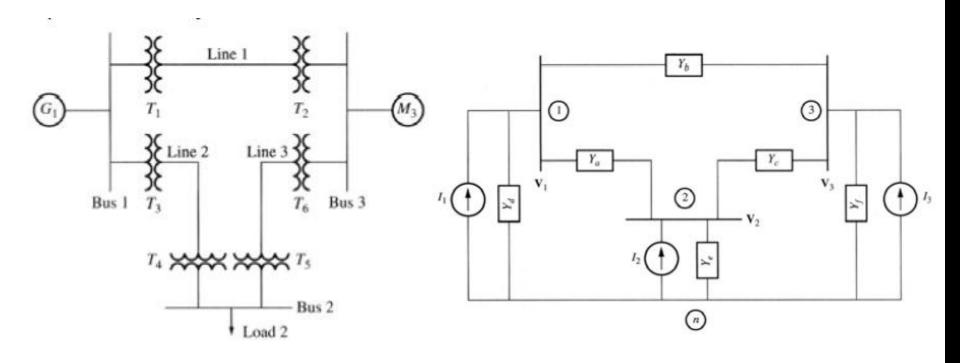
EXAMPLE OF CONVERSION OF ONE-LINE DIAGRAM TO IMPEDANCE DIAGRAM



NODE EQUATIONS

The most common technique used to solve circuit problems is nodal analysis. To simplify the equations,

- Replace the generators by their Norton equivalent circuits
- Replace the impedances by their equivalent admittances
- Represent the loads by the current they draw (for now)



NODE EQUATIONS

KCL is used to establish and solve a system of simultaneous equations with the unknown node voltages:

$$\begin{pmatrix} V_1 - V_2 \end{pmatrix} Y_a + \begin{pmatrix} V_1 - V_3 \end{pmatrix} Y_b + V_1 Y_d = I_1 \begin{pmatrix} V_2 - V_1 \end{pmatrix} Y_a + \begin{pmatrix} V_2 - V_3 \end{pmatrix} Y_c + V_2 Y_e = I_2 \begin{pmatrix} V_3 - V_1 \end{pmatrix} Y_b + \begin{pmatrix} V_3 - V_2 \end{pmatrix} Y_c + V_3 Y_f = I_3$$

NODE EQUATIONS – THE Y_{BUS} MATRIX

In matrix from,

$$\begin{bmatrix} Y_a + Y_b + Y_d & -Y_a & -Y_b \\ -Y_a & Y_a + Y_c + Y_e & -Y_c \\ -Y_b & -Y_c & Y_b + Y_c + Y_f \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix}$$

Which is an equation of the form:

$$Y_{bus}V = I$$

where Y_{bus} is the bus admittance matrix of a system, which has the form:

$$Y_{bus} = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33} \end{bmatrix}$$

 Y_{bus} has a regular form that is easy to calculate:

- 1) The diagonal elements Y_{ii} equal the sum of all admittances connected to node *i*.
- Other elements Y_{ij} equal to the negative admittances connected to nodes I and j.

The diagonal elements of Y_{bus} are called the self-admittance or driving-point admittances of the nodes; the off-diagonal elements are called the mutual admittances or transfer admittances of the nodes.

Y_{BUS} AND Z_{BUS} MATRICES

Inverting the bus admittance matrix Y_{bus} yields the bus impedance mat

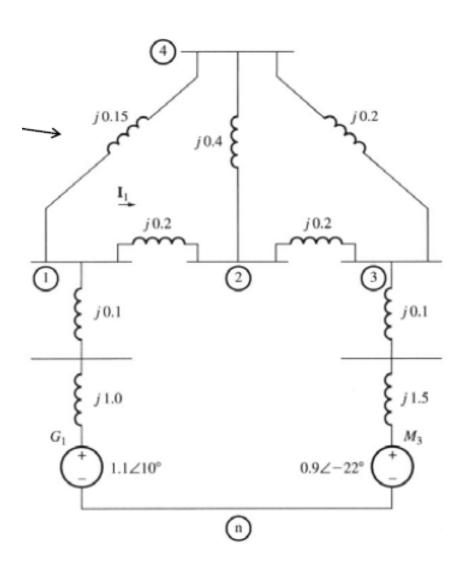
$$Z_{bus} = Y_{bus}^{-1}$$

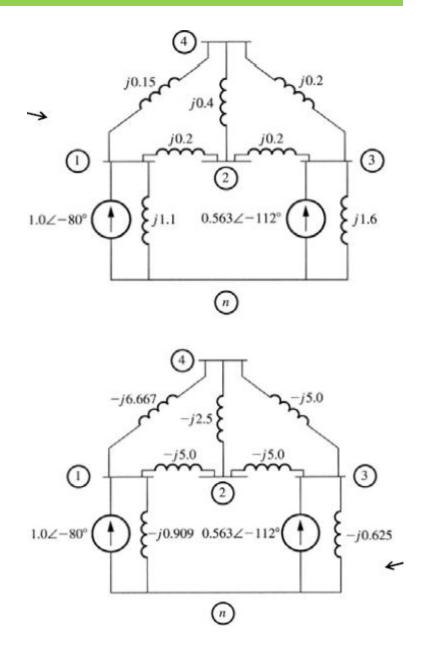
Then,

or

$$V = Y_{bus}^{-1}I$$
$$V = Z_{bus}I$$

EXAMPLE





EXAMPLE (CONT.)

The resulting admittance matrix is:

$$Y_{bus} = \begin{bmatrix} -j12.576 & j5.0 & 0 & j6.667 \\ j5.0 & -j12.5 & j5.0 & j2.5 \\ 0 & j5.0 & -10.625 & j5.0 \\ j6.667 & j2.5 & j5.0 & -j14.167 \end{bmatrix}$$

The current vector for this circuit is:

$$I = \begin{bmatrix} 1.0 \angle -80^{\circ} \\ 0 \\ 0.563 \angle -112^{\circ} \\ 0 \end{bmatrix}$$

The solution to the system of equations will be

$$V = Y_{bus}^{-1}I = \begin{bmatrix} 0.989 \angle -0.60^{\circ} \\ 0.981 \angle -1.58^{\circ} \\ 0.974 \angle -2.62^{\circ} \\ 0.982 \angle -1.48^{\circ} \end{bmatrix} V$$

PROBLEMS FROM CHAP. 1: # 7, 15, 19, 21, 26

END!

