
http://www.ee.unlv.edu/~b1morris/ee482/

Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu

EE482:  Digital Signal Processing 

Applications 

Image Processing



Outline

• Digital Images

• Color

• Histogram Equalization

• Image Filtering 
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Digital Image Processing

• Extension of 1D signal processing to 2D signal

▫ E.g. vector valued signal domain or 2D range

▫ Many common principles and ideas

• Many specific concepts arise from images

▫ Large signals (e.g. 10 M pixel image)  video

▫ Need for very efficient and optimized processing

▫ Use of hardware accelerators (e.g. graphic 
processing units)
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Digital Images
• Set of data samples mapped 

onto a 2D grid of points
▫ 𝑥 𝑚, 𝑛 = 𝑣 ; 𝑀 × 𝑁 image

 𝑚 = 0,… ,𝑀 − 1 ; column 
(width) index

 𝑛 = 0, … ,𝑁 − 1 ; row 
(height) index

 Be aware: this is not the 
same notation as Matlab

 Row, column indexing 
beginning with 1 index

▫ Each sample is known as a 
pixel

• Image resolution
▫ Ability to distinguish spatial 

details (dots/pixels per inch)

▫ Analogous to sampling 
frequency

• Image value
▫ Grayscale – 𝑣 = [0,255] (8-bit 

byte)
 0 – black, 255 – white 

▫ Color - 𝑣 = [𝑅, 𝐺, 𝐵] (24-bit 
value) 
 Mixing of primary Red, 

Green, and Blue colors

 Typically thought of as color 
“channels”
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Color
• Color comes from underlying 

physical properties

• However, humans do not 
perceive color in the same 
physical process
▫ There is some subjectivity (e.g. 

color similarity)

• Cones in human retina are 
sensitive to color
▫ In the center of eye

▫ 3 different types for different 
EM frequency sensitivity 
 RGB mixing to build all colors

• Rods are monochromatic
▫ On outside of the eye and good 

for low lighting and motion 
sensing
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Colorspaces
• Uniform method for defining colors

• Can transform from one to another
▫ Want to take advantage of 

properties and color gamut

• XYZ 
▫ International absolute color 

standard

▫ No negative mixing

• RGB 
▫ Additive color mixing for red, 

green, and blue

▫ Widely used in computers

• CMYK 
▫ Cyan, magenta, yellow, black

▫ Used for printers and based off of 
reflectivity 

• HSV
▫ Hue, saturation, and value = color, 

amount, brightness

▫ Closer to human perception 
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Perceptual Colorspace Examples
• YUV – composite color video 

standard (analog)
• Separate brightness from 

chrominance (color)
▫ More perceptually meaningful 

colorspace
 Humans perceive brightness 

changes more than color

•
𝑌
𝑈
𝑉

=
0.299 0.587 0.114
−0.147 −0.289 0.436
0.615 −0.515 −0.100

𝑅
𝐺
𝐵

• YCbCr – digital color standard
• Separate brightness from 

chrominance 
▫ Used in JPEG

•
𝑌
𝑈
𝑉

=
0.299 0.587 0.114
−0.147 −0.289 0.436
0.615 −0.515 −0.100

𝑅
𝐺
𝐵

+
16
128
128

• Matlab – rgb2ycbcr.m

• Efficient representation using 
subsampling color space
▫ Can reduce chrominance bits
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Example Color Spaces
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RGB Image R Channel G Channel B Channel

Y Channel (Intensity) Cb Channel Cr Channel YCbYr Image



Color Balance
• Correct color bias caused by 

lighting and other variations

▫ Also known as white balance

• Adjust image color to more 
closely depict human visual 
system

• White balance algorithm

▫ 𝑅𝑤 = 𝑅𝑔𝑅

▫ 𝐺𝑤 = 𝐺𝑔𝐺

▫ 𝐵𝑤 = 𝐵𝑔𝐵

 Apply gain to each color 
channel

 Normalize to green color 
channel

• Example 11.2

▫ Color balance an image
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Color Correction
• RGB from digital camera may not match color 

perceived by humans
• Color correction adjusts RGB values to correspond 

better to human vision
▫ Also known as chromatic or saturation correction

• Apply correction to white-balanced RGB image

▫

𝑅𝑐

𝐺𝑐
𝐺𝑐

=

𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
𝑐31 𝑐32 𝑐33

𝑅𝑤

𝐺𝑤
𝐵𝑤

• The coefficients are selected to minimize mean-
square error between a reference color chart

▫ min  𝑛=1
3  𝑚=1

3 𝑐𝑛𝑚𝑥𝑤 𝑚, 𝑛 − 𝑥𝑟𝑒𝑓 𝑚, 𝑛
2

, 𝑛 ≠ 𝑚

▫ 𝑐𝑛𝑚 = 1, 𝑛 = 𝑚

10



Gamma Correction
• Used to compensate for 

nonlinearity in display device

▫ 𝑅𝑤 = 𝑔𝑅𝑐
1/𝛾

▫ 𝐺𝑤 = 𝑔𝐺𝑐
1/𝛾

▫ 𝐵𝑤 = 𝑔𝐵𝑐
1/𝛾

 𝛾 – gamma value represents 
non-linearity of display

 𝑔 – is a correction factor

• Example  11.3
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Histogram Processing

• Digital image histogram is the count of pixels in 
an image having a particular value in range 
[0, 𝐿 − 1]
▫ ℎ 𝑟𝑘 = 𝑛𝑘

 𝑟𝑘 - the kth gray level value
 Set of 𝑟𝑘are known as the bins of the histogram

 𝑛𝑘- the numbers of pixels with kth gray level

• Empirical probability of gray level occurrence is 
obtained by normalizing the histogram

▫ 𝑝 𝑟𝑘 = 𝑛𝑘/𝑛
 𝑛 – total number of pixels

▫ Histogram is viewed as the probability that a pixel 
will take a given intensity value in an image
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Histogram Example
• x-axis – intensity value

▫ Bins [0, 255]

• y-axis – count of pixels

• Dark image

▫ Concentration in lower values

• Bright image

▫ Concentration in higher 
values

• Low-contrast image

▫ Narrow band of values

• High-contrast image

▫ Intensity values in wide band
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Histogram Equalization
• Assume continuous functions 

(rather than discrete images)

• Define a transformation of the 
intensity values to “equalize” 
each pixel in the image

▫ 𝑠 = 𝑇 𝑟 0 ≤ 𝑟 ≤ 1
▫ Notice: intensity values are 

normalized between 0 and 1

• The inverse transformation is 
given as

▫ 𝑟 = 𝑇−1 𝑠 0 ≤ 𝑠 ≤ 1

• Viewing the gray level of an 
image as a random variable

▫ 𝑝𝑠(𝑠)=𝑝𝑟(𝑟)
𝑑𝑟

𝑑𝑠

• Let 𝑠 by the cumulative 
distribution function (CDF)

▫ 𝑠 = 𝑇 𝑟 =  0
𝑟
𝑝𝑟 𝑤 𝑑𝑤

• Then

▫
𝑑𝑠

𝑑𝑟
= 𝑝𝑟(𝑟)

• Which results in a uniform 
PDF for the output intensity

▫ 𝑝𝑠 𝑠 = 1

• Hence, using the  CDF of a 
histogram will “equalize” an 
image
▫ Make the resulting histogram 

flat across all intensity levels
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Discrete Histogram Equalization

• The probability density is approximated by the 
normalized histogram

▫ 𝑝𝑟 𝑟𝑘 =
𝑛𝑘

𝑛
𝑘 = 0,… , 𝐿 − 1

• The discrete CDF transformation is 

▫ 𝑠𝑘 = 𝑇 𝑟𝑘 =  𝑗=0
𝑘 𝑝𝑟(𝑟𝑗)

▫ 𝑠𝑘 =  𝑗=0
𝑘 𝑛𝑘

𝑛

• This transformation does not guarantee a 
uniform histogram in the discrete case
▫ It has the tendency to spread the intensity values 

to span a larger range
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Histogram Equalization Example

16

• Equalized histograms 
have wider spread of 
intensity levels

• Notice the equalized 
images all have similar 
visual appearance

▫ Even though histograms 
are different

▫ Contrast enhancement

Original histogram original image histogram equalized equalized image



Example 11.4
• Histogram equalization of a 

dark image
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Local Histogram Enhancement
• Global methods (like 

histogram equalization as 
presented) may not always 
make sense

▫ What happens when 
properties of image regions 
are different?

• Compute histogram over 
smaller windows

▫ Break image into “blocks”

▫ Process each block separately

• Original image

• Block histogram equalization

• Notice the blocking effects that 
cause noticeable boundary 
effects
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Local Enhancement
• Compute histogram over a block (neighborhood) for every pixel in a moving window

• Adaptive histogram equalization (AHE) is a computationally efficient method to 
combine block based computations through interpolation (adapthisteq.m)
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Figure 3.8 Locally adaptive histogram equalization: (a) original image; (b) block histogram
equalization; (c) full locally adaptive equalization.



Image Processing Motivation
• Image processing is useful for 

the reduction of noise

• Common types of noise

▫ Salt and pepper – random 
occurrences of black and 
white pixels

▫ Impulse – random 
occurrences of white pixels

▫ Gaussian – variations in 
intensity drawn from normal 
distribution

20

Adapted from S. Seitz



Ideal Noise Reduction

• How can we reduce noise given a single camera 
and a still scene?

▫ Take lots of images and average them

• What about if you only have a single image?
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Adapted from S. Seitz



Image Filtering

• Filtering is a neighborhood operation

▫ Use the pixels values in the vicinity of a given pixel 
to determine its final output value

• Motivation: noise reduction

▫ Replace a pixel by the average value in a 
neighborhood

▫ Assumptions:

 Expect pixels to be similar to their neighbors (local 
consistency)

 Expect noise processes to be independent from pixel 
to pixel (i.i.d.)
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Linear Filtering

• Most common type of neighborhood operator

• Output pixel is determined as a weighted sum of 
input pixel values

▫ 𝑔 𝑥, 𝑦 =  𝑘,𝑙 𝑓 𝑥 + 𝑘, 𝑦 + 𝑙 𝑤(𝑘, 𝑙)

 𝑤 – is known as the kernel, mask, filter, template, or 
window

 𝑤(𝑘, 𝑙) – entry is known as a kernel weight or filter 
coefficient

• This is also known as the correlation operator

▫ 𝑔 = 𝑓⨂𝑤
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Filtering Operation
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• 𝑔 𝑥, 𝑦 =  𝑘,𝑙 𝑓(𝑥 + 𝑘, 𝑦 +



Filtering Raster Scan

• Zig-zag scan through of image

▫ Process image row-wise
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Connection to Signal Processing
• General system notation

• LTI system

▫ Convolution relationship

• Discrete 1D LTI system • Discrete 2D LTI system

▫ Linear filtering is the same as 
convolution without flipping
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𝑓𝑥 𝑦

𝑤𝑓(𝑥, 𝑦) 𝑔(𝑥, 𝑦)ℎ𝑥[𝑛] 𝑦[𝑛]

𝑦 𝑛 =  

𝑘=−∞

∞

𝑥 𝑘 ℎ[𝑛 − 𝑘] 𝑔(𝑥, 𝑦) =  

𝑠=−∞

∞

 

𝑡=−∞

∞

𝑓 𝑠, 𝑡 𝑤(𝑥 − 𝑠, 𝑦 − 𝑡)



Image Filters
• Can be used for noise reduction, edge enhancement, 

sharpening, blurring, etc.
▫ Generally like to use linear filtering (simple)

 Advanced photoshopping uses more complex non-linear filters

• Lowpass filters - remove high frequency (noise) 
components 
▫ Smoothing filter

 Blurs edges

• Highpass filters - remove low frequency components
▫ Edge enhancement filter

• Generally, kernels are symmetric in both horizontal and 
vertical directions

• Filtering is computationally expensive
▫ Use small 3 × 3 or 5 × 5 kernels for real-time application
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Smoothing Filters

• Smoothing filters are used for blurring and noise 
reduction

▫ Blurring is useful for small detail removal (object 
detection), bridging small gaps in lines, etc.

• These filters are known as lowpass filters

▫ Higher frequencies are attenuated

▫ What happens to edges?
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Linear Smoothing Filter

• The simplest smoothing filter is the moving 
average or box filter

▫ Computes the average over a constant 
neighborhood

• This is a separable filter

▫ Horizontal 1D filter 

▫ Remember your square wave from DSP

 ℎ[𝑛] =  
1 0 ≤ 𝑛 ≤ 𝑀
0 else

 Fourier transform is a sinc function
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More Linear Smoothing Filters

• More interesting filters can be readily obtained

• Weighted average kernel (bilinear) - places more 
emphasis on closer pixels

▫ More local consistency

• Gaussian kernel - an approximation of a 
Gaussian function 

▫ Has variance parameter to control the kernel 
“width”

▫ fspecial.m

30

Adapted from S. Seitz



Lowpass Examples
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Median Filtering
• Sometimes linear filtering is not sufficient 

▫ Non-linear neighborhood operations are required
• Median filter – replaces the center pixel in a mask 

by the median of its neighbors
▫ Non-linear operation, computationally more expensive
▫ Provides excellent noise-reduction with less blurring 

than smoothing filters of similar size (edge preserving)
 For impulse and salt-and-pepper noise
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Sharpening Filters

• Sharpening filters are used to highlight fine 
detail or enhance blurred detail

• Smoothing we saw was averaging

▫ This is analogous to integration

• Since sharpening is the dual operation to 
smoothing, it can be accomplished through 
differentiation
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Digital Derivatives

• Derivatives of digital functions are defined in 
terms of differences

▫ Various computational approaches

• Discrete approximation of a derivative

▫
𝜕𝑓

𝜕𝑥
= 𝑓 𝑥 + 1 − 𝑓(𝑥)

▫
𝜕𝑓

𝜕𝑥
= 𝑓 𝑥 + 1 − 𝑓(𝑥 − 1)

 Center symmetric

• Second-order derivative

▫
𝜕2𝑓

𝜕𝑥2
= 𝑓 𝑥 + 1 + 𝑓 𝑥 − 1 − 2𝑓(𝑥)
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Difference Properties
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• 1st derivative

▫ Zero in constant segments

▫ Non-zero at intensity transition

▫ Non-zero along ramps

• 2nd derivative

▫ Zero in constant areas

▫ Non-zero at intensity transition

▫ Zero along ramps

• 2nd order filter is more 
aggressive at enhancing sharp 
edges

▫ Outputs different at ramps

 1st order produces thick edges

 2nd order produces thin edges

▫ Notice: the step gets both a 
negative and positive response 
in a double line



The Laplacian
• 2nd derivatives are generally better for image 

enhancement because of sensitivity to fine detail
• The Laplacian is simplest isotropic derivative 

operator

▫ 𝛻2𝑓 =
𝜕2𝑓

𝜕𝑥2 +
𝜕2𝑓

𝜕𝑦2

▫ Isotropic – rotation invariant
• Discrete implementation using the 2nd derivative 

previously defined


𝜕2𝑓

𝜕𝑥2 = 𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦 − 2𝑓(𝑥, 𝑦)


𝜕2𝑓

𝜕𝑦2 = 𝑓 𝑥, 𝑦 + 1 + 𝑓 𝑥, 𝑦 − 1 − 2𝑓 𝑥, 𝑦

▫ 𝛻2𝑓 = [𝑓 𝑥 + 1, 𝑦 + 𝑓 𝑥 − 1, 𝑦 + 𝑓 𝑥, 𝑦 + 1 +

36



Discrete Laplacian
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• Zeros in corners give isotropic 

results for rotations of 90°

• Non-zeros corners give 
isotropic results for rotations 

of 45°

▫ Include diagonal derivatives 
in Laplacian definition

• Center pixel sign indicates 
light-to-dark or dark-to-light 
transitions

▫ Make sure you know which



Sharpening Images
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• Sharpened image created by 
addition of Laplacian

▫ 𝑔 𝑥, 𝑦 =

 
𝑓 𝑥, 𝑦 − 𝛻2𝑓(𝑥, 𝑦) 𝑤 0,0 < 0

𝑓 𝑥, 𝑦 + 𝛻2𝑓(𝑥, 𝑦) 𝑤 0,0 > 0

• Notice: the use of diagonal 
entries creates much sharper 
output image

• How can we compute 𝑔(𝑥, 𝑦)
in one filter pass without the 
image addition?

▫ Think of a linear system



Unsharp Masking
• Edges can be obtained by subtracting 

a blurred version of an image

▫ 𝑓𝑢𝑠 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 −  𝑓 𝑥, 𝑦

▫ Blurred image

  𝑓 𝑥, 𝑦 = ℎblur ∗ 𝑓(𝑥, 𝑦)

• Sharpened image

▫ 𝑓𝑠 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 + 𝛾𝑓𝑢𝑠 𝑥, 𝑦
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The Gradient
• 1st derivatives can be useful for 

enhancement of edges

▫ Useful preprocessing before 
edge extraction and interest 
point detection

• The gradient is a vector 
indicating edge direction

▫ 𝛻f =
𝐺𝑥
𝐺𝑦

=

𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦

• The gradient magnitude can be 
approximated as

▫ 𝛻𝑓 ≈ 𝐺𝑥 + 𝐺𝑦

▫ This give isotropic results for 

rotations of 90°

• Sobel operators

▫ Have directional sensitivity 

▫ Coefficients sum to zero

 Zero response in constant 
intensity region

40
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Highpass Examples
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Border Effects

• The filtering process suffers from boundary 
effects

▫ What should happen at the edge of an image?

▫ No values exist outside of image

• Padding extends image values outside of the 
image to “fill” the kernel at the borders

▫ Zero – set pixels to 0 value

 Will cause a darkening of the edges of the image

▫ Constant – set border pixels to fixed value

▫ Clamp – repeat edge pixel value 

▫ Mirror – reflect pixels across image edge
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Computational Requirements
• Convolution requires 𝐾2

operations per pixel for a 𝐾 ×
𝐾 size filter

• Total operations on an image 
is M×𝑁 × 𝐾2

• This can be computationally 
expensive for large 𝐾

• Cost can be greatly improved if 
the kernel is separable

▫ First do 1D horizontal 
convolution

▫ Follow with 2D vertical 
convolution

• Separable kernel

▫ 𝑤 = 𝑣ℎ𝑇

 𝑣 – vertical kernel

 ℎ - horizontal kernel

▫ Defined by outer product

• Can approximate a separable 
kernel using singular value 
decomposition (SVD)

▫ Truly separable kernels will 
only have one non-zero 
singular value
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Fast Convolution

• Computationally efficient linear filtering by using 
the 2D FFT for large kernels
▫ Avoid large nested loops – instead only have 

multiplication in frequency domain
 𝑂(log2𝑁𝐽) instead of 𝑂(𝑁𝐽) term

▫ Use fft2.m and ifft2.m

• Steps:
▫ Pad both image and kernel with zeros to same size

 Image + kernel size

▫ Compute 2D FFT of both image and kernel
▫ Multiply element-wise 
▫ Inverse FFT for result

 Crop to get usable image
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Fast Convolution Examples
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Discrete Cosine Transform for Coding

• DCT is widely used in image 
compression

▫ Part of JPEG standard

▫ Process image in 8 × 8 blocks

• JPEG2000 improves 
compression and removes 
block artifacts using wavelet 
transform

▫ Never really caught on

• DCT definitions

• DCT is separable 

▫ Horizontal (column-wise) 
and vertical (row-wise) 

▫ Significant computation 
reduction (1D operations)
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JPEG Coding Example
• DCT coefficients are ordered 

in zig-zag fashion

▫ DC component first (only 
code difference between 
blocks)

▫ AC coefficients have lower 
weight in higher-order

 Compaction property (only 
code non-zero coefficients)
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