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INTRODUCTION
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IIR DESIGN

® Reuse well studied analog filter design techniques
(books and tables for design)

" Need to map between analog design and a digital
design

= Mapping between s-plane and z-plane



ANALOG BASICS

» Laplace transform = Convolution relationship
= X(s) = [ x(D)e stdt = y(t) =x(t) * h(t) - Y(s) = X(s)H(5)
= Complex s-plane = H(s) = % = [ . h(De st dt
" s=o0+j = Stability constraint requires
= Complex number with ¢ and Q real poles to be in the left half s-
= jQ) — imaginary axis plane

® Fourier transform for o = 0

= When region of convergence
contains the j( axis



MAPPING PROPERTIES

» Z-transform from Laplace by
change of variable

7 = eST — eaTejQT — |Z|€jw

= |z| =eT, w=QT

= This mapping is not unique

—t/T < Q) < m/T — unit circle

2 multiples as well

Left half s-plane mapped inside unit
circle

Right half s-plane mapped outside
unit circle

s-plane z-plane

Figure 4.1 Mapping properties between the s-plane and the z-plane



FILTER CHARACTERISTICS

= Designed to meet a given/desired magnitude
response

= T'rade-off between:

= Phase response

= Roll-off rate — how steep is the transition between pass
and stopband (transition width)
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BUTTERWORTH FILTER

= All-pole approximation to ideal

filter
| H Q 2: 1
HOP =
= |[H(0)| =1
= [H()|[=1/V2
= -3dB @ Q,
» ()

= Has flat magnitude response in
pass and stopband (no ripple)

Figure 4.2 Magnitude response of Butterworth lowpass filter

= Slow monotonic transition band

= Generally needs larger L



CHEBYSHEV FILTER

= Steeper roll-off at cutoff
frequency than Butterworth

= Allows certain number of ripples in -8
either passband or stopband

= Type I — equiripple in passband,
monotonic in stopband = .0

Qp Qs
= All-pole filter
H(Q)
= Type Il — equiripple in stopband, I
monotinic in passband 1- 6
= Poles and zeros
» Generally better magnitude 5 e
response than Butterworth but at Q Q-

COSt Of poorer phase response Figure 4.3 Magnitude responses of Chebyshev type I (top) and type Il lowpass filters



ELLIPTIC FILTER

= Sharpest passband to stopband
transition

= Equiripple in both pass and
stopbands

® Phase response is highly non-linear
in passband

» ()

= Should only be used in situations Figure 4.4 Magnitude response of elliptic lowpass filter

where phase is not important to
design



FREQUENCY TRANSFORMS

[ : 1 TABLE7.1  TRANSFORMATIONS FROM A LOWPASS DIGITAL FILTER PROTOTYPE
DeS]'gn IOWpa’SS f]‘lter a’nd OF CUTOFF FREQUENCY 6, TO HIGHPASS, BANDPASS, AND BANDSTOP FILTERS

transform from LP to another -
Filter Type Transformations Associated Design Formulas
type (HP, BP, BS) :

. [Ep—
y sin (L‘&)
T —a 1 P, S
o R /i . {8
sin (Pf-ﬂ"-")

wp = desired cutoff frequency

8
cos(L’t&)

Lowpass z

®* Define mapping

i g i o
Highpass zZ "= o cos( _

[ | H(Z) = Hlp (Z)|Z_1:G(Z_1) ) wp = desired cutoff frequency
= Replace Z71 in LP filter with G(Z_l) a B i ;Ew_:;

% B =5 2

Bandpass Z7'=— k1 o Wp2 — Wy 2
k=1 __> 2ak — = —Pe Pl )\uan(Z2
L R | k cot( = t'm(7)

4

bp—wp

L

wpy = desired lower cutoff frequency
wpy = desired upper cutoff frequency

» § — frequency in LP o (22322

o =

= o — frequency in new transformed NP - - N . s
. m;—-_ﬁ:—l +1 A—tan( )tan (7)
fllt eI’ wp) = desired lower cutoff frequency

wp2 = desired upper cutoff frequency

OS 3e



DESIGN OF IIR FILTERS

CHAPTERA4.2
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IIR FILTER DESIGN

= [IR transter function

Yo biz™

H(z) =

" Need to find coetficients ay, b,
®* Impulse invariance — sample impulse response
= Have to deal with aliasing
» Bilinear transform

= Match magnitude response

= “Warp” frequencies to prevent aliasing



BILINEAR TRANSFORM DESIGN

= Convert digital filter into an
“equivalent” analog filter

= Use bilinear “warping”

® Design analog filter using IIR design
techniques

= Map analog filter into digital

® Use bilinear transform

Digital filter
specifications

Digital filter
H(2)

Bilinear
transform .
.| Analog filter

@ — Q specifications
Analog filter
design

Bilinear ¥

transform | Analog filter

@ <« ) H(s)

Figure 4.5 Digital IIR filter design using the bilinear transform



BILINEAR TRANSFORMATION

= Mapping from s-plane to z-plane

2 (z—l) 2 (1—2_1)
g =——)=- — @
T \z+1 T \1+z~1 '
= Frequency mapping

, T
o Q=—tan(2) ‘
T 2

QT

QT
= @ = 2arctan (T)

= Entire jw-axis is squished into
|—m/T,n/T] to prevent aliasing

= Unique mappmg Figure 4.6 Frequency warping of bilinear transform defined by (4.27)

= Highly non-linear which requires
“pre-warp”’ in design



BILINEAR DESIGN STEPS

= Convert digital filter into an B
I
“equivalent” analog filter ;'
I
SRR ’
" Pre-warp using: () = ;tan (%) 5 5 //
SCRNE
" Design analog filter using IIR i \\\
design techniques o % o=z, (3)
= Butterworth, Chebyshev, SR f";"i i |
Elliptical |H<ef;w>| |
= Map analog filter into digital el
N |
- H(Z) = H(S)l 2(1—z"1 i\\i
S=7(1+z—1) 0 ai,, J,s\"/ S
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BILINEAR DESIGN EXAMPLE

= Example 4.2 1. Pre-warp: Q = %tan (%)
= Design filter using bilinear
transform

0.8284

= Q= %tan(O.lZSn) =

s H(s) =1/(s + 1) 2. Scale frequency (normalize

scale)
= Bandwith 1000 Hz
= £ =8000 Hz " H(s)=H (nic) = sTOJ;?::m
= DT parameters 3. Bilinear transform:
= w, = 2m(1000/8000) = 0.257 " H(z)=H (S)Isz%(;;:)
s H(z) = 0.2929(1+z71)

1-0.4141z71



REALIZATION OF IIR FILTERS

CHAPTERA4.3
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[IR FILTER REALIZATIONS

® Different forms or structures can implement an IIR
filter

= All are equivalent mathematically (infinite precision)

» Different practical behavior when considering numerical
effects

®» Want structures to minimize error



DIRECT FORM I (DFI)

® Straight-forward
implementation of ditf. eq.

= p; - feed forward coefficients

= From x(n) terms

= q; - feedback coetficients

= From y(n) terms

= Requires (L + M) coefficients
and delays

)

Y




DIRECT FORM II (DFII)

= Notice that we can decompose  ® Can switch order of operations

the transfer function _
" H(z) = Hy(2)H1(p)
= H(z) = Hi(2)H;(2) = This allows sharing of delays and
= Section to implement zeros and saving In memory
section to implement poles
_____________________________________________________ R w[n] by
x(n) & y(n) +_1 yln]
; %—F oy i T + a ) b
; -4, A 2 & ) { -1 ]
P ap : b2
z' z" ) 1 " '
_ b, | |
ﬁa — | |
an -1 i b/\i—l '
T THIG W e ) -
ay l by I

Figure 4.7 Direct-form I realization of second-order IIR filter

OS 3e



CASCADE (FACTORED) FORM

= Factor transfer function and decompose
into smaller sub-systems

= H(z) = H(z)H,(2) ...Hg(2) — H (2) = H,(2) - H,(2) —

= Make each subsystem second order Figure 4.10 Cascade realization of digital filter

= (Complex conjugate roots have real
coefficients

= Limit the order of subsystem (numerical wyln] yilnl waln] ¥ ws(n] valn]
effects)

x[n]

= Effects limited to single subsystem stage

= (Change in a single coefficient affects all

poles in DF
OS 3e

® Preferred over DF because of numerical
stability



PARALLEL (PARTIAL FRACTION) FORM

®» Decompose transfer function
using a partial fraction

expansion ] ] : [
= H(z) = H{(2) + Hy(2) + ...+ He(2) “ L

. b0k+b1kz_1
3 Hk(Z) " ltaqpz +agez 2 R waln] o y2[n] R
x[n] P yln]
= Be sure to remember that PFE [ [
requires numerator order less

than denominator

= Use polynomial long division JZ] [
agz €13

-1
a3 2 OS 3e



DESIGN OF IIR FILTERS USING MATLAB

CHAPTERA4.4
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MATLAB FILTER DESIGN

Filter design tools:

= Realization tools:

* Finding polynomial roots

® rOoOotsS.m

= t{2zp.m

= Cascade form

= H(z) =G H11§=1

" 7p2s0s.m

= Parallel form

® Residuez.m

box+b1xz 14+byjz2

1+aq,z 1+ayrz=2

Order estimation tool
= butterord.m
Coefficient tool

= butter.m

Frequency transforms

= Ip2hp.m, Ip2bp.m, 1p2bs.m

Useful exploration tool
= fvtool.m

Usetul design tool

= fdatool.m

Useful processing tool

= sptool.m



IMPLEMENTATION CONSIDERATIONS

CHAPTERA4.5
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STABILITY

= (Causal) IIR filters are stable if all poles are within the unit circle

" |pnl <1

= We will not consider marginally stable (single pole on unit circle)

= Consider poles of 2nd order filter (used in cascade and parallel forms)
. A(Z) =1+ CllZ_1 + ClzZ_z

= Factor T 1
1 az=

= A(z) = (1 —-p1z DA —paz7h) f%// %///

= A(z) =1—(p1 +p)z '+ p1ppz™°
the unit circle _a,=1+a, 1 N—tea,

=,
= Because poles must be inside

= |ay| = |p1p2l <1
. |a1| <1 + a,

Figure 4.15 Region of coefficient values for the stable second-order IIR filters



COEFFICIENT QUANTIZATION

» Using fixed word lengths results in a quantized
approximation of a filter

= This can cause a mismatch from desired system H(z)

" Poles that are close to the unit circle may move outside
and cause instability

= This is exacerbated with higher order systems
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ROUNDING EFFECTS

= Using B bit architecture, products require 2B bits

® Must be rounded into smaller B bit container

® This results in noise error terms
= Can be simply modeled as additive term

®» The order of cascade sections influences power of noise at output
= How should sections be paired and ordered?

®» Need to optimize SQNR
» Trade-off with probability of arithmetic overflow

= Need to use scaling factors to prevent overflow

= Optimality when signal level is maximized without overflow



CASCADE ORDERING AND PAIRING

® (Good results are obtained using
simple rules

= (Cascade ordering and pairing
algorithm:

= Pair pole closest to unit circle with
zero that is closest in z-plane

= Minimize the chance of overflow

=70

= Apply 1 repeatedly until all poles
and zeros are paired

-80

» Resulting 2nd-order sections can be s
ordered in two alternative ways

= Increasing closeness to unit circle

95 - & .

\\\
-~
—————

= Decreasing closeness to unit circle P T ST T T S B R S
(

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Radian frequency (w)
Figure 6.67 Output noise power spectrum for 123 ordering (solid
line) and 321 ordering (dashed line) of 2nd-order sections.




PRACTICAL APPLICATIONS

CHAPTERA.6
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RECURSIVE RESONATOR

= Filter with frequency response dominated at

a single peak X(1) — () > y(n)
=  Use complex-conjugate pole pair inside unit .
circle - ‘
A
" H(z) = (1—rpejw°z‘1)(1—rpe_jwoz‘l) 211
s
. H(Z) _ A «

1-21p cos(wo)z™ 1415272

= A — normalization constant for unity gain at w,

Figure 4.17 Signal-flow diagram of the second-order resonator filter

= 0<np<l1 i x
= (lose to unit circle v
= Bandwidth = 2(1 —1r,) £ g
P o0 S,
= Closer to r, = 1, more peaked : ,_ :
-0sf x
_ik X - -70f

normalized freq [xx rad/sample]



PARAMETRIC EQUALIZER

= Add nearby zeros to the resonator » Fx 4.18
= At same angle as poles wy with similar . . .
radius = (Create equalizer by changing gain
= Pole and zero counter balance one at given frequency
another
"< _ e

® Pole dominates because it is closer to unit
circle

= (Generates peak at w = wy 2 Provides
boost to freq

magnitude [dB]

">
= Zero dominates pole

= Generates dip at w = wg =2 Cuts freq

= Bandwidth still determined by r, DI T T R R TR TR

nomialized freq [xx rad/sample]



