EE482: Digital Signal Processing
Applications

Speech Signal Processing

http://www.ee.unlv.edu/~bimorris/ee482/
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- Speech Coding
- Speech Enhancement
- Speech Recognition
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Speech Coding

- Digital representation of speech signal
= Provide efficient transmission and storage

- Techniques to compress speech into digital
codes and decompress into reconstructed signals
» Trade-off between speech quality and low bit rate
> Coding delay and algorithm complexity
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Coding Techniques

- Waveform coding

= Operate on the amplitude of speech signal on per
sample basis

- Analysis-by-synthesis coding
> Process signals by “frame”

= Achieve higher compression rate by analyzing and
coding spectral parameters that represent speech
production model

= Vocoder algorithms transmit coded parameters
that are synthesized at receiver into speech
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Waveform Coding

» Pulse code modulation (PCM)

= Simple encoding method by uniform sampling and
quantization of speech waveform

- Linear PCM
= 12-bits/sample for good speech quality
» 8 kHz sampling rate = 96 kbps
- Non-linear companding (u-law, A-law)
= Quantize logarithm of speech signal for lower bit rate
- 64 kbps
- Adaptive differential PCM (ADPCM)

= Use adaptive predictor on speech and quantize
difference between speech sample and prediction

= Lower bit rates because correlation between samples
creates good prediction and error signal is smaller
amplitude
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Linear Predictive Coding (LPC)

- Speech production model with excitation input,
gain, and vocal-tract filter

Periodic Voiced sound
pulse =
Vocal tract si) <
— i (All-pole filter) | Speech signal
ite
noise y
Unvoiced sound

Figure 9.1 Speech production model

= Vocal tract model is a pipe from vocal cords to oral
cavity (with coupled nasal tract)

- Most important part of model because it changes shape
to produce different sounds

- Based on position of palate, tongue, and lips
- Vocal tract modeled as all pole filter

= Match a formant (vocal-tract resonance or peaks of
spectrum)
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(Un)Voiced Sounds

eriodic | Voiced sound

j(_,[>_> Vocal tract ‘ s(n) <
All-pole filter .
Whit Gain (All-po ) | Speech signal
Figure 9.1 Speech production model

- Voiced (e.g. vowels) — caused by vibration of vocal-
cords with rate of vibration the pitch

= Modeled with periodic pulse with fundamental (pitch)
frequency

= Generate periodic pulse train for excitation signal
® p ¢ .Y CP g
- Unvoiced (e.g. “s

, “sh”, “f”) — no vibration
= Use white noise for excitation signal

- Gain represents the amount of air from lungs and
the voice loudness

- Speech sounds info [link]


https://web.archive.org/web/20100716051047/http:/speech.bme.ogi.edu/tutordemos/SpectrogramReading/ipa/ipahome.html

Basic Vocoder Operation

- Process speech in frames

- Usually between 5-30 ms
- Use window function for less ringing

- Windows are overlapped

= Smaller frame size and higher overlap percentage
better captures speech transition - better speech
quality



Code-Excited Linear Prediction (CELP)

- Algorithms based on LPC | fe
approach using analysis by & o analyos [ anaysis [~
synthesis scheme generator

- Coded parameters are T ) et Hey  xh)
analyzed to minimize the T ‘QP ] il gl ”@T =
perceptually weighted error in T e LY i B
synthesized speech | ania VR [ Minimem |
= Closed-loop optimization 1 - el

with encoder and decoder | Encoded bit stream |
together PL u Decoder

- Optimize three components: o é ) L0 ) =0 oup
» Time-varying filters e

{1/A(2),P(2),F(2)} Figure 9.2 Block diagram of typical CELP algorithm
= Perceptual weighting filter - Notice the excitation, LPC
W(2) S coefficients (1/A(z)), and pitch
= Codebook excitation signal (P(2)) coefficients must be
ey (1) encoded and transmitted for

decoding and synthesis
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Synthesis Filter

- 1/A(z) filter updated each « Solve for LPC coefficients
frame with Levinson-Durbin using normal equations
recursi lgorithm
ecul SIve a g(z 1t rm(0) ra(l) ... rele-17a ru(1)
o — 5 : rm(1) 'm(0) e ralp=2)| | a2 rm(2)
Az 1-X, ez : : . : e ol
o Coefficients used to estimate rmP—1) rm(p=2) ...  ra(0) ap Tm(P)
current speech sample from
past samples - Can be solved recursively
- LPC coefficients calculated using I.Jevmson-Durbln
using autocorrelation method recursion (pg 334)
on a frame > Matlab levinson.mand
° 1) = lpc.m

SN e (W (n + )



LPC Examples

- Ex9.2 - Ex9.3
- Use Levinson-Durbin to - Repeat with higher order filter
estimate LPC coefficients = Better match speech
spectrum
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Excitation Signals

- Short-term — noise signal - An excitation signal is formed
as the combination of both
- Long-term — periodic signal short-term and long-term
- Pitch synthesis filter models signals
long-term correlation of ° e(n) = e,(n) + e, (n)
speech to provide spectral ey(n) — voiced long-term
structure prediction excitation
, * e, (n) — unvoiced noise
o P(2) = Li__; bz~ (Loret) sgl(ec)ted from stochastic
* Loyt - optimum pitch period codebook (a set of stochastic
« Generally, a frame will be signals)
divided into subframes for - Both excitation signals are
better temporal analysis passed through H(z)
= Excitation signal is generated (combined short-term
per subframe synthesis and perceptual

weighting) to find error

= Will optimize pitch (first)
separately from stochastic
contribution
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Perceptual-Based Minimization

- Perceptual weighting filter - Ex9.5
W (2) used to control the error - Examine perceptual weighting
calculation filter

A(2) and W(2) filter spectrum responses
40 T T T T T

- Emphasize the weight of
errors between format LPC envelope
------- v2=0.958y1=1.0

frequeHCieS i M" y2=0.75871=1.0 |
- Shape noise spectrum to ok @

place errors in formant
regions where humans ears
are not sensitive

- Reduce noise in formant "
nulls

. W(Z) — A(z/v1)

_100 r r r r r r r
A (Z/ yz ) 0 500 1000 1500 2000 2500 3000 3500 4000

. )/1 - 0.9, )/2 = 0_5 Frequency (Hz)

20+

Magnitude (dB)

-40

-80

- Lower y, causes more
attenuation at formant
frequencies

= Allows more distortion
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Voice Activity Detection (VAD)

- Critical function for speech analysis (for
reduction in bandwidth for coding)

- Basic VAD assumptions
> Spectrum of speech changes in short time but
background is relatively stationary
= Energy level of active speech is higher than
background noise

- Practical speech applications highpass filter to
remove low-frequency noise
= Speech is considered in 300 to 1000 Hz range



Simple VAD Algorithm

Calculate frame energy
o En = Yply, |X (O

— | Calculate | | Calculate | | Calculate * K; bin for 300 Hz
x(n) 5 M Tr - K, bin for 1000 Hz
> Recursively compute for short
and long windows

Update hangover
counter

- Estimate noise level (floor) N¢

> Increase noise floor slowly at
beginning of speech and

Expired?

1 , quickly at end
Shence | vaDiagia] s - Calculate adaptive threshold
Figure 9.7 Block diagram of simple VAD algorithm r 1-ay

* a; - long window length
+ B — small zero margin
- Threshold signal energy with
threshold to determine speech
or silence

= Need a hangover period = 90
ms to handle tail of speech
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Speech Enhancement

- Needed because speech may be acquired in a
noisy environment
= Background noise degrades the quality or
intelligibility of speech signals
- In addition, signal processing techniques are
generally designed under low-noise assumption
» Degrades performance with noisy environments

- Many speech enhancement algorithms look to
reduce noise or suppress specific interference
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Noise Reduction

- WIill focus on single channel techniques

> Dual-channel - adaptive noise cancellation from
Chapter 6

> Multi-channel — beamforming and blind source
separation

- Three classes:

= Noise subtraction — subtract estimated amplitude
spectrum of noise from noisy signal

- Harmonic-related suppression — track
fundamental frequency with adaptive comb filter
to reduce periodic noise

» Vocoder re-synthesis — estimate speech-model
parameters an synthesize noiseless speech
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Noise Subtraction

Spgg':h Xn) Data segmenting
source \r\_ Noisy speech [Singlechannel Enhanced speech " and buffering FFT
/ pxcn1=s{n}+ vin) |__NR system §(n) No:
MNoise speech
source VAD Noeizctai ;z:gtr:um
Figure 9.13 A single-channel speech enhancement system feech
. . | ectrum 1
- Input is noisy speech + Phase calulation acbtracion o,
. . Attenuation
stationary noise .
s(n
- Estimate noise characteristics IFEF Querien. « 1
during Silent periOd between Figure 9.14 Block diagram of the spectral subtraction algorithm
utterances

- Subtract estimated noise mag
spectrum from input signal

- Reconstruct enhanced speech

= Need robust VAD system

- Spectral subtraction — signal using IFFT
1mplemented in frequency = Coefficients are difference in
domain mag and original phase

= Based on short-time
magnitude spectra estimation



Short-Time Spectrum Estimation

 Output for non-speech frames

An) Date::| s:g“mgnting FET
and buffering
. = Set frame to zero
speech . .
s S i ——— = Attenuate signal by scaling by
estimation
Speech faCtOI' < 1
4 Spectrqm _—1
Ph lculat subtraction A@Jtion
- Better not to have complete
= oews ——  silence in non-speech areas
Figure 9.14 Block diagram of the spectral subtraction algorithm = Accentuates I’IOiSG il’l Spe€Ch
frames
» During non-speech frames .
8 P ’ = Use 30 dB attenuation

noise spectrum is estimated

- During speech frames,
previously estimated noise
spectrum is subtracted
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Magnitude Spectrum Subtraction

Assumes that background
noise is stationary an does not
change at subsequent frames
With changing background,
algorithm has sufficient time
to estimate new noise
spectrum

Modeling noisy speech with
noise v(n)

o x(n) =s(n) + v(n)

o X(k) =S(k) +V(k)
Speech estimation

* S| = 1X(R)| - EV (k)]

- E|V(k)| - estimated noise
during non-speech

- Assume human hearing is

insensitive to noise in the
phase spectrum (only
magnitude matters)

e X(k)
S(k) = |S(k)| 1X(K)]
S(k) =[1X(k)| = EV (k)] ﬁgl
S(k) = Hk)X (k)
_ E|V (k)|
° H(k) =1- 1X (k)|

Notice the phase spectrum
never has to be explicitly
calculated

= Avoid computations for
arctan
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Speech Recognition

- Different than signal processing up to now

x(n) —>

Signal Processing

—> y(n)

» Signal input 2 (enhanced) signal output
- Automatic speech recognition (ASR)

x(n) —>

Automatic Speech
Recognition (ASR)

—> text

= Convert speech signal into “text”
- Label describing speech

- This is a pattern recognition task
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ASR Applications and Issues

- Applications - Sources of variability in speech
> Dictation machines = Speaker

= Interfaces to devices - Accent, social context,

» Reservation systems, phone mood/style, vocal tract size,
service, stock quotes, male/female/child
directory assistance = Acoustic environment

s Transcribing databases and * Background noise
searching reverberation

> Aids for handicapped > Microphone

- Language to language . Non—lineE}r e.lnd spectral

characteristics
= Channel

- Echoes, distortion
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Speech Recognition System

x(n) —> Eifrfgclign > Recognizer [—> text

- Feature extraction
= Represent speech content
= Typically will use mel-frequency cepstrum
(MFCC) coefficients
- Recognizer
= Pattern recognition system that maps features into
text
» Hidden Markov model (HMM) is popular choice
[dynamic time warping (DTW)]
- See HTK Speech Recognition Toolkit [link]


http://htk.eng.cam.ac.uk/
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Cepstrum ==

time history Spectrum
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- Calculation:
- Take FFT: x(n) - X(e/¢)
= Take log magnitude:

-971.548, -34.2345

- Using excitation and vocal track

. model
log | X (ef “)) | . . :
> Take iFFT: c[n] = ) |X(efw)l = |H(e")]] U.(e]w)l
7~ {log|x (e/*)|} + log|x(e/®)| = log|H(e/*)| +
log|U (/)]

- MFCC: Use non-linear o - ¢, (n) = cp,(n) + c,(n)
frequency band§ that mimic - Can separate excitation from
human perception . vocal tract with “liftering”

= Lower frequency have higher (excitation not required for

resolution recognition)
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Recognition System

- The recognition system is a - Two main tasks:
classifier - Template design
= Compares input speech with = Comparing template with a
a template of known speech given observation
to generate output text label
— - Issues
x(n) —> classifier ——> text - Unequal length data
1 = Alignment of speech
templates > Distortion (distance) measure

for comparison
- Templates (reference) patterns
- {R1,R?,..,R"}
-V — size of vocabulary
- RJ = {rlj,rzj, ...,r,{j}

- n; depends on particular
template
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Log Spectral Distortion

- Given two speech signals s[n] and s'[n]
- Log spectral distortion
s V(w) =logS(w) —log S’ (w)
* V(w) = Y(c[n] = c'[n])e /"
o d2(S,5") = — [" |V (w)|2dw
° d? = Y |c[n] — c'[n]]?
- Cepstral coefficients as features lead to simple

computational procedure

= ¢[0] usually not considered in comparison
(measure of intensity)

= Often cepstra derivatives used in representation



Dynamic Time Warping

Similar, but out of phase peaks ... \/\,\
Y\ C

- Generic method to compare
sequences of unequal length
= Align sequences so that
distance is minimized
- Misaligned sequences may be
very similar but have large
distortion

> Need alignment to handle
different speeds of utterance

- Warping function to align two
sequences can be solved
efficiently with dynamic
program

= Search for a minimum cost
path matching elements of
sequences

Q N e (&
... produce a large Euclidean distance.

However this can be corrected by DTWs
nonlinear alignment.

Q
Q\ /C

H_JR

Figure 3: left) Two time series which are similar but out of phase.
right) To align the sequences we construct a warping matrix, and
search for the optimal warping path (red/solid squares). Note that
Sakoe-Chiba Band with width R is used to constrain the warping path

- Each element (cepstrum for a
frame) is compared between
two sequences to build cost
matrix
= Cost it the distortion between

sequence elements
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Hidden Markov Models (HMM)

- DTW is restricted to small
tasks
> Cannot include statistical
information and to design
templates
- HMM is used for statistical
model of speech

» States of HMM correspond to
phonemes

= Don’t know state, but observe
measurement of state (sound)
probabilistically related to
state

- Use HMM package

- Use left-to-right HMM

http://www.jmblancocalvo.com/2007/07/speech-recognizer/

« Must learn for each “word”:
= QObservation distributions b;
- State transitions a;;

- Recognition by evaluating
likelihood that a HMM word
generated observation x(n)



