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Fourier Series

- Periodic signals
= x(t) =x(t+ Typ)

- Periodic signal can be represented as a sum of an
infinite number of harmonically-related sinusoids

= x(t) = Ype— oo cke]kﬂot
= ¢, - Fourier series coefficients
- Contribution of particular frequency sinusoid
s Qo = 21 /T, - fundamental frequency
= k — harmonic frequency index

- Coefficients can be obtained from signal
1 T, —jkQ
H Ck :T—Ofoox(t)e J Ot

= Notice ¢, is the average over a period, the DC
component



Fourier Series Example

- Example 5.1 Al o
- Rectangular pulse train 08l
A —T<t<rt 081
e X t = G*
(©) {O else 04 1, 1,
ocq’eée?ele ele?eée‘?o

At sin(kQqyt/2) 030 10 0 10 20
C k - - frequency [rad/sec]
To kﬂo'l—/z

1.2
e T=1;
1r (o}
1
¢ 'Q0=27T*;=2T[ 08+
0.6-
- Magnitude spectrum is known 04t
as a line spectrum o2 ‘[ 1’
> Only few specific frequencies 0020 0le [ ok Poyots
represented 02 ,
-10 5 0 5 10

frequency [Hz]
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Fourier Transform

- Generalization of Fourier - Fourier representation of
series to handle non-periodic signal
signals o x(t) = — [7 X(Q)eIMd0

o LetTy —» o©
> Spacing between lines in FS

= Inverse Fourier transform
» Fourier transform

go to zero o _
© Qg = 21/T, = X(Q) = f_oox(t)e‘]mdt
- Results in a continuous
frequency spectrum - Notice that a periodic function
= Continuous function has both a FS and FT
- The number of FS coefficients ° ¢y = TiOX (kQy)

to create “periodic” function

. .. = Notice a normalization
goes to infinity

constant to account for the
period



Discrete Time Fourier Transform

- Usetul theoretical tool for discrete
sequences/signals
« DTFT
o X(w) = X% _ox(nT)e JonT
> Periodic function with period 2n
* Only need to consider a 2m interval [0,27] or [—m, ]
« Inverse FT

s x(nT) = %f_nﬂX(a))ejw"T dw

= Notice this is an integral relationship
- X(w) 1s a continuous function
- Sequence x(n) is infinite length



Sampling Theorem

- Aliasing — signal distortion X()
caused by sampling /\
= Loss of distinction between wif

= fu
different signal frequencies )

- A bandlimited signal can be
recovered from its samples

when there is no aliasing /_\ - / ‘\n,i /—\ ......
© fs 2 2fm, Q5 =20, — e

—;‘s R f
£, Qg - signal bandwidth

(a) Spectrum of bandlimited analog signal.

X(f1£,)
4

(b) Spectrum of discrete-time signal when the

sampling theorem fy; < £, /2 is satisfied.

- Copies of analog spectrum are

X(f11,)
copied at f; intervals * &
- Smaller sampling frequency @ / y y \
compresses spectrum into AV

overlap

(c) Spectrum of discrete-time signal that shows aliasing
when the sampling theorem is violated.

Figure 5.1 Spectrum replication of discrete-time signal caused by sampling



Discrete Fourier Transform

» Numerically computable transform used for
practical applications
= Sampled version of DTFT

« DFT definition

= X (k) = YnZg x(n)e J(2m/Nkn
» k=0,1,..,N —1:frequency index
= Assumes x(n) = 0 outside bounds [0, N — 1]
- Equivalent to taking N samples of DTFT X (w) over
the range [0, 27]
= N equally spaced samples at frequencies w;, = 2mwk/N
- Resolution of DFT is 2 /N
» Inverse DFT

= x(n) =2 N5 X (k)ed @m/Nkn



Relationships Between Transforms

A bird’s eye view of the relationship between

FT, DTFT, DTFS and DFT
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Relationships Between Transforms

Con Ahsse Fime
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Relationships Between Transforms
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DFT Twidle Factors

- Rewrite DFT equation using - Properties of twidle factors

Euler’s * W - N roots of unity in
- X(k) = ¥NZ3 x(n)e =/ @mn/N)kn clockwise direction on unit
. X(k) = YNZ1 x(n) wkn circle

> k=01,..,N—1 ° Symmetry

. WI\IIm — o j@r/N)kn — ‘ WIJHN/Z —WE, 0<k <

cos (2) i (22
= Periodicity
. k+N _ k
- IDFT F qW Zlgvl tion
- Frequency resoluti

+ x(n) =~ TNZ3 X (k) el @m/Nkn

= Coefficients equally spaced
- x(n) = _Z L X (k) wykn, on unit circle
- k=01,..,N—1 © A= fs/N



DFT Properties

- Linearity - Z-transform connection
> DFTlax(n) + by(n)] = aX (k) + o X(k) = X(2)|,_pien/mk
bY (k) > Obtain DFT coefficients by
- Complex conjugate evaluating z-transform on the unit

circle at N equally spaced

= X(=k) = X" (k) frequencies w;, = 2wk /N

1<k<N-1 - Circular convolution
For x(n) real valued o Y(k) = HUOX (k)
l’T:'::H MM-2) MM-1) X{:‘:";MA') NM2) . XIN-T) 0 y(n) == h(n) ®x (n)
E—— | -
| & —1 ] » y(m) = Zmzo hm)x((n — M)moa v)
——— ' - Note: both sequences must be
1 Wi v o, b« 2 padded to same length

l = |

o phac Vn;'(uqaln

(0) N is an odd numbar, M= (N-1)2

Vigure £.2  Complex-conjuguie propesty foc N is () an even sumber und (b) an odd sumsher

= Only first M + 1 coefficients are
unique

= Notice the magnitude spectrum is
even and phase spectrum is odd
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Fast Fourier Transform

- DFT is computationally expensive

= Requires many complex multiplications and
additions

> Complexity ~4N?
- Can reduce this time considerably by using the
twidle factors

» Complex periodicity limits the number of distinct
values

= Some factors have no real or no imaginary parts
- FFT algorithms operate in N log, N time
= Utilize radix-2 algorithm so N = 2™ is a power of 2
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FFT Decimation in Time

- Compute smaller DFTs on subsequences of x(n)
« X(k) = ¥aZo x(m) W,
c X(k) = Tp/Zy xa(m) w4

ZN/Z 1x2( )Wk(2m+1)

m=0
= x;(m) = g(n) = x(2m) - even samples
o x,(m) = h(n) = x(Zm + 1) — odd samples

- Since W™ = wls

= X(K) = B2y %0 (m) WiT3 + Wi 2/20 " 2o (m) W,
- N /2-point DFT of even and out parts of x(n)
= X(k) = G(k) + W¥H (k)

- Full N sequence is obtained by periodicity of each N /2
DFT



FFT Butterfly Structure

- Full butterfly (8-point) - Simplified structure

G(O)

z(0) O—— \ / X(0) x(0) X,(0) i
ca = A ;

220 Eiig & x() oI e T A Al

DET cfz)\\ / / xa | NZROM ] xe) NN\ //

z(4) O———| X (2 (6) Y X(2)
G(3) —

z(6) O———r st (3)

M::::“" o]

W X3) ‘
#{3) O] X(5) X(5) | Ni2-point X,(2)

4-Point jEV /\Xuj =2 DFT - * X(6)
3
4 Omsa| | REE X(6) A X0 _Ws, N X(7)
H(®) we
2(7)0 H(3) W7x(7) Figure 5.4 Decomposition of N-point DFT into two N/2-point DFTs, N=38

Fig. 7-2. An eight-point decimation-in-time FFT algorithm after the first decimation.

(m~1)th mth
stage stage
W, -1

Figure 5.5 Flow graph for butterfly computation



FFT Decimation

- Repeated application of - Complete 8-point DFT
even/odd signal split structure

= Stop at simple 2-point DFT

z(0)
0

4 OFT »X(1
e N4-point WE XX \\ // X:2; z(2) O-
e) | Mo wg \N\X//

X(3)

= z(6) c>

wg

i ><

%L' M4-point w: X4  z)o

ﬁ DFT Nt L/ ANN ><
><

0 > <> < 2 * X(5)
N/4-point WZ W; / / \\ xe) =)0
POl wa Al Wg / —\
BT . e S X(7)
1 =(3)0
Figure 5.6 Flow graph illustrating second step of N-point DFT, N=8

z(7) c,L

Fig. 7-6. A complete eight-point radix-2 decimation-in-time FFT.

>

e

Figure 5.7 Flow graph of two-point DFT




FFT Decimation in Time Implementation

- Notice arrangement of samples is not in sequence — requires
shuffling
= Use bit reversal to figure out pairing of samples in 2-bit DFT
Table 5.1 Example of bit-reversal process, N =8 (3-bit)

Input sample index Bit-reversed sample index
Decimal Binary Binary Decimal
0 000 000 0
1 001 100 <+
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

- Input values to DFT block are not needed after calculation
= Enables in-place operation
- Save FFT output in same register as input
= Reduce memory requirements
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FFT Decimation in Frequency

- Similar divide and conquer strategy
= Decimate in frequency domain

« X(2k) = XNt x(m)wignk
- X(2k) = ¥V x(n )W,G‘"2 + Ynon 2 X (W,
= Divide into first half and second half of sequence

- X(2k) = ZNfz 1x(n) ZN/Z ! (n +



FFT Decimation in Frequency Structure

- Stage structure - Full structure
x{0) x,(0) | X0) (0) Or——=0x o O< O———0 X(0)
)\ / x(1) L Xxe), ,(1)\ Z 5 R
2 \\__ /. x@ Nepolt | ate. SZ o - TR
x(3) X3 (3) | X6) 2(2) Q VAVAFS LN 1 0% O- 0 X(2)
‘A‘A’ w3 wg
x(4) x(0) W§ X(1) i 'VVV‘V w: -1 = e
2 8 | W?/

x5/ / AN\ %) Wi | xg) z(4) "%#‘ o o- X(1)
X6) ; Z \Q‘. w@) Wi NEEM [ xs) =7 A‘A‘, e ?: =
X(7) N %@ Wi | X N NS Y tay ¢

’ «6) IA\“A’A e e

3 W2

-

Figure 5.8 Decomposition of an N-point DFT into two N/2-point DFTs Wy 2 Wi
z(7) O & O 0 X(7)

N ~
-1 -1

Fig. 7-8. Eight-point radix-2 decimation-in-frequency FFT.

- Bit reversal happens at output
instead of input
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Inverse FFT

1 — _
c x(n) =~ NI X (k) W

» Notice this is the DFT with a scale factor and
change in twidle sign

- Can compute using the FFT with minor
modifications

X 1 - k
* x"(n) =~ Xkzo X (k) Wy™
- Conjugate coefficients, compute FFT with scale
factor, conjugate result

- For real signals, no final conjugate needed

= Can complex conjugate twidle factors and use in
butterfly structure



FFT Example
- Example 5.10 50f v
- Sine wave with f = 50 Hz ® 40 -
i . (2mfn 2
x(n) = sm( - ) S 30
*n=0,1,..,128 =
20/
* f¢ =256 Hz
10 -
- Frequency resolution of DFT? 0 , , , L
256 10 20 30 40 50 60
= A= f/N = o8 = = 2 Hz Frequency index, k
- Location of peak 6¥10°
¢ 50 =kA >k =2"=25 “4

0 50 100 150
sample n
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Spectral Leakage and Resolution

- Notice that a DFT is like windowing - Example 5.15
a signal to finite length = Two close sinusoids smeared

= Longer window lengths (more together
samples) the closer DFT X (k) L
approximates DTFT X (w)

- Convolution relationship

= xy(m) = w)x(n)
o Xn(k) = W(k) * X (k)

« Corruption of spectrum due to
window properties
(mainlobe/sidelobe)

= Sidelobes result in spurious peaks
in computed spectrum known as J
spectral leakage 0 a5 40 o o
* Obviously, want to use smoother Frequency index, k
windows to minimize these effects . _
= Spectral smearing is the loss in » To avoid smearing:
sharpness due to convolution > Frequency separation should be
which depends on mainlobe width greater than freq resolution

2
= N>—, N> f/Af

Magnitude

w iy (2] 2] ~
o o o o o
T 7 T T

N
o
T

=
o
7
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Power Spectral Density

- Parseval’s theorem - Spectrogram
.o E = > Each short FFT is arranged as a
SN=11x ()2 = EZ’X;&IX(k)IZ cplumn in a matrix to give the
N time-varying properties of the
= |X(k)|? - power spectrum or signal
periodogram = Viewed as an imag
- Power spectral density (PSD, or T AR 1 SN
power density spectrum or »
power spectrum) is used to |
measure average power over - i
frequencies < 2500 o hl
- Computed for time-varying 2000 e
signal by using a sliding window 3 . “E i
technique £ 71
> Short-time Fourier transform 100028 .
o Grab N samples and compute 500 = e S
- Must have overlap and use 05 b s 2

windows “She had your dark suit in greasy wash water all year”
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Fast FFT Convolution

- Linear convolution is multiplication in frequency
domain
= Must take FFT of signal and filter, multiply, and
1FFT
= Operations in frequency domain can be much
faster for large filters
» Requires zero-padding because of circular
convolution
- Typically, will do block processing

= Segment a signal and process each segment
individually before recombining



