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- Analog Filter Characteristics
- Frequency Transforms
- Design of IIR Filters

- Realizations of IIR Filters
» Direct, Cascade, Parallel
- Implementation Considerations
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lIR Design

- Reuse well studied analog filter design
techniques (books and tables for design)

- Need to map between analog design and a digital
design
» Mapping between s-plane and z-plane
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Analog Basics

- Laplace transform

0.0)

= X(s) = J__ x(t)e stdt
- Complex s-plane
° s =0+ jQ
- Complex number with ¢ and () real
s j) —1Imaginary axis
- Fourier transform for ¢ = 0
> When region of convergence contains the j( axis
- Convolution relationship
> y(t) = x(t) x h(t) = Y(s) = X(s)H(s)
> H(s) = % = ffooo h(t)e Stdt
- Stability constraint requires poles to be in the left
half s-plane



Mapping Properties

- z-transform from Laplace by change of variable
o gz = 5T = 0T oJQT — |Z|eja)
- |z| = €T, w=QT
- This mapping is not unique
o —/T < Q <m/T - unit circle
= 2m multiples as well

7
7

%o’<0/§ o>0

s-plane z-plane

Figure 4.1 Mapping properties between the s-plane and the z-plane

> Left half s-plane mapped inside unit circle
= Right half s-plane mapped outside unit circle



Filter Characteristics

- Designed to meet a given/desired magnitude
response

 Trade-off between :
> Phase response

= Roll-off rate — how steep is the transition between
pass and stopband (transition width)



Butterworth Filter

- All-pole approximation to idea filter
e 1H(Q)|? = !
HOP =
» |[H(0)| =1
o [H(Qy)| = 1/V2
- -3dB @ Q,
- Has flat magnitude response in pass and stopband (no ripple)

« Slow monotonic transition band
= Generally needs larger L

|H(Q)|
&
1

» Q)

Figure 4.2 Magnitude response of Butterworth lowpass filter
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Chebyshev Filter

Steeper roll-off at cutoff
frequency than Butterworth

= Allows certain number of

ripples in either passband or IH(E@)!
stopband 1 e _
- Type I — equiripple in 1~4p
passband, monotonic in
stopband
= All-pole filter %s s £y
- Type II — equiripple in i e
stopband, monotinic in H(Q)|
passband )
> Poles and zeros 1~8
- Generally better magnitude
response than Butterworth but
at cost of poorer phase % . IS
p ’

response
Figure 4.3 Magnitude responses of Chebyshev type I (top) and type II lowpass filters
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Elliptic Filter

- Sharpest passband to stopband transition
- Equiripple in both pass and stopbands
- Phase response is highly unlinear in passband

= Should only be used in situations where phase is not
important to design

[H(Q)|

'y

Figure 4.4 Magnitude response of elliptic lowpass filter



Frequency Transforms

OS 3e
) 1 V\]‘p 1 TABLE7.1  TRANSFORMATIONS FROM A LOWPASS DIGITAL FILTER PROTOTYPE
DeSIgn 10 ass fllter and OF CUTOFF FREQUENCY &5 TO HIGHPASS, BANDPASS, AND BANDSTOP FILTERS
transform from LP to another
Filter Type Transformations Associated Design Formulas
type (HP, BP, BS)
- sin ( BLE&)
. . —- - —_ e
- Define mapping Lowpass e — 7 i (2%
wp = desired cutoff frequency
* H(z) = Hp(Z)| 716 (.
Z =Gz
p G( ) _1 cos(g”_tw”)
= Replace Z71 in LP filter with  mignpass 7t it e ()
G ( 7 1) ) wp = desired cutoffhfrequenlcy'
@p21+@p1
= = (wp‘)zwpl )
. =2 _ 2ak _—1 k- cos | ————
- 0 — frequency in LP Bandsass  g<lo. & —HRT¢ “+iat e &
. ATERE EL 2 ik, g k = cot (”“Tpl)tan (7")
° w — frequency 111 Nnew wpy = desired lower cutoff frequency
tranS fOI‘me d fi 1 teI‘ wp> = desired upper cutoff frequency
cos (————w”sz" ! )
e (S
pandsiop ‘o —}-}%:—2 - ]—-’f;;—l +1 k=tan (wpz ;wpl )tan (%ﬁ)

wp) = desired lower cutoff frequency
wp2 = desired upper cutoff frequency
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lIR Filter Design

» IIR transter function

- Need to find coefficients a;, b,
= Impulse invariance — sample impulse response
- Have to deal with aliasing
= Bilinear transform

- Match magnitude response
- “Warp” frequencies to prevent aliasing



Bilinear Transform Design

- Convert digital filter into an “equivalent” analog filter
= Use bilinear “warping”

- Design analog filter using IIR design techniques

- Map analog filter into digital
= Use bilinear transform

Bilinear
form .
Digital fiter | _"2">°™ | Analog filter
specifications| o —Q specifications
Analog filter
design
Bilinear
Digital filter | __transform | Anajog filter
H(2) ®—Q H(s)

Figure 4.5 Digital IIR filter design using the bilinear transform



Bilinear Transformation

- Mapping from s-plane to z-plane
2 (z-1 2 (1-z71
9T T (z-l-_l) T (1+z‘1)
- Frequency mapping
> Q=Z2tan (9)
T 2

o, @ = 2arctan (%)
- Entire jw-axis is squished into [—n/T, w/T] to prevent aliasing
= Unique mapping

= Highly non-linear which requires “pre-warp” in design
a

P d

z
2

QT

------------------------- —?r

Figure 4.6 Frequency warping of bilinear transform defined by (4.27)



Bilinear Design Steps

1. Convert digital filter into an :c !
“equivalent” analog filter ,'
= Pre-warp using 'l'
_2. (@ e B!
©0=Fuan(3) =T
2. Design analog filter using NIEREIN
IIR design techniques I
> Butterworth, Chebyshev, ; o i
Elliptical o P Q=7 tan ()
. . . ) g N |
3. Map analog filter into digital :v‘ | T
© H(@) = HS)|__y1pm N T 0T e
S=7(1+z—1) L
M |
| |
7y |
=Y
A
I\
I\
i \:\_.// \\I
0 w, o T 0]




Bilinear Design Example

Example 4.2

Design filter using bilinear transform
= H(s) =1/(s+ 1)

= Bandwith 10000 Hz

- f, = 8000 Hz

- Parameters

o w, = 2m(1000/8000) = 0.257
1. Pre-warp

o Q. = %tan(O.lZSn) =
2. Scale frequency (normalize scale)

~ s 0.8284
H(s) = H (Q_c) ~ sT+0.8284
3. Bilinear transform
_0.2929(1+z71)
H(z) = 1-0.4141z~1

0.8284
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lIR Filter Realizations

- Different forms or structures can implement an
IIR filter

= All are equivalent mathematically (infinite
precision)

- Different practical behavior when considering
numerical effects

« Want structures to minimize error



Direct Form |

- Straight-forward - Requires (L + M) coefficients
implementation of diff. eq. and delays

b, - feed forward coefficients
- From x(n) terms

> q; - feedback coefficients
- From y(n) terms

by v[n]
O—>—70 > O > O >
x[n]
il | A A
by |
X [I’l - 1] C > ) ¢ =
| A A
b, L’

=
S
|
2
+
L
Y
L > ————==0




Direct Form ||

- Notice that we can decompose - Can switch order of operations
the transfer function > H(z) = Hy(2)Hy(p)
o H(z) = H(z)H,(2) > This allows sharing of delays
* Section to implement zeros and saving in memory

section to implement poles

w [n] bO
4 y[n]
z
a by
7]
4 } by
| |
: | |
o ay_q l bn_q ’
H,(2) H,(2) L
ay by

Figure 4.7 Direct-form I realization of second-order IIR filter <

OS 3e



Cascade (Factored) Form

- Factor transfer function and decompose into smaller sub-systems
° H(z) = H(2)H,(2) ... H¢(2)

x(n) by y(n)
H,(2) H,(2) —>-—— Hy(2) —

Figure 4.10 Cascade realization of digital filter

- Make each subsystem second order
> Complex conjugate roots have real coefficients

> Limit the order of subsystem (numerical effects)
- Effects limited to single subsystem stage
- Change in a single coefficient affects all poles in DF

wiln] yiln] wa[n] y2[nl ws[n] y3ln]




Parallel (Partial Fraction) Form

- Decompose transfer function
using a partial fraction
expansion

VCQ

€01 yiln]
* H(z) = H(2) + Hy(2) + ...+ d [ ;
Hy(z) e'y
. Hy(z) = —Doktbuz™

1+a gz " 1+ayz=2

- Be sure to remember that PFE
requires numerator order less
than denominator
= Use polynomial long division

Y

[ yln]




Matlab Filter Design

- Realization tools: - Filter design tools:
- Finding polynomial roots « Order estimation tool
° roots.m ° butterord.m
° tfZzp.m - Coefficient tool
- Cascade form ° butter.m
o H(z) = - Frequency transforms
G [1¥ bok+b1kz " +bakz”" s 1lp2hp.m, lp2bp.m,

k=1 1+a1kZ_1+a2kZ_2 lp2bS m

5 ZpP2S0Ss.m

» Parallel form

- Residuez.m - Usetul exploration tool

s fvtool.m

- Useful design tool
= fdatool.m

- Useful processing tool
o sptool.m



Stability

- (Causal) IIR filters are stable if all poles are within the
unit circle

° pml| <1
> 'We will not consider marginally stable (single pole on unit

circle)
- Consider poles of 2nd order filter (used in cascade and

parallel forms)
o A(z) =1+ a;z7  +a,z72
- Factor
»A(2) = (1 —piz7H(A —pz7Y)

o Az)=1—-(p, + Pz)Z_.l +.P1PZZ_2
- Because poles must be inside
the unit circle

= |ay| = [p1p2l < 1
o laq| <1+ a,

o

1 a=1+a,

Figure 4.15 Region of coefficient values for the stable second-order IIR filters
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Coefficient Quantization

- Using fixed word lengths results in a quantized

approximation of a filter
, L1 pt 27k

s H'(z) = 1‘%%1\({1 Iccz,’(z—k

- This can cause a mismatch from desired system
H(z)

- Poles that are close to the unit circle may move
outside and cause instability
= This is exacerbated with higher order systems
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Rounding Effects

- Using B bit architecture, products require 2B bits
= Must be rounded into smaller B bit container

- This results in noise error terms
= Can be simply modeled as additive term

- The order of cascade sections influences power of
noise at output
= How should sections be paired and ordered?

- Need to optimize SQNR
= Trade-off with probability of arithmetic overtflow
= Need to use scaling factors to prevent overflow

= Optimality when signal level is maximized without
overflow



Cascade Ordering and Pairing

1.

Good results are obtained
using simple rules

Cascade ordering and pairing
algorithm

Pair pole closest to unit
circle with zero that is
closest in z-plane

= Minimize the chance of
overflow
Apply 1 repeatedly until all
poles and zeros are paired
Resulting 2" -order sections
can be ordered in two
alternative ways

= Increasing closeness to unit
circle

> Decreasing closeness to unit
circle

=70

-80

dB
%
N

-100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Radian frequency (w)
Figure 6.67 Output noise power spectrum for 123 ordering (solid
line) and 321 ordering (dashed line) of 2"-order sections.
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ecursive Resonator
- Filter with frequency response PREK
dominated at a Single peak Figure 4.17 Signal-flow diagram of the second-order resonator filter
- US.e (.:on.lplex—gon.Jugate pole -
pair inside unit circle \_ -
° H (Z) = ) *
_ A _ g 0 @ 6
(1-1pe’ 0z 1) (1-1pe 70z 1) N : _,
-osf B : X 7
A 5
« H(z) = é
( ) 1-2rp cos(wo)z‘1+rgz—2 x
= A — normalization constant T
for unity gain at w, o
= 0<n <1

» Close to unit circle
= Bandwidth = 2(1 — 7))
= Closer to i, = 1, more peaked

magnitude [dB]
' &

-0
o

1 1 1 I 1 1 I 1 1 |
01 02 0.3 04 05 06 07 [1X:] 09 1
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Parametric Equalizer

+ Ex 4.18

Add nearby zeros to the
resonator

> At same angle as poles w,
> Similar radius
Pole and zero counter balance
one another
T, <Tp
> Pole dominates because it is
closer to unit circle
> Generates peak at w = w,
- Provides boost to freq
T, > 1,
> Zero dominates pole
> Generates dip at w = w,
- Cuts freq

Bandwidth still determined by
p

magnitude [dB]

= Create equalizer by changing
gain at given frequency

—rz=0.8, rp=0.9
rz=0.9, rp=0.8

| 1 | 1 | 1 1 | 1 |
1] 0.1 0.2 0.3 D4 05 D& 0.7 1R:] 089 1
nomnalized freq [xn rad/sample]



