EE482: Digital Signal Processing
Applications

Spring 2014
TTh 14:30-15:45 CBC C222

Lecture 11
Adaptive Filtering

14/03/04

http://www.ee.unlv.edu/~bimorris/ee482/

Outline

- Random Processes
- Adaptive Filters
- LMS Algorithm

- 3
Adaptive Filtering

- FIR and IIR filters are designed for linear time-
invariant signals

- How can we handle signals when the
characteristics are unknown or changing?

- Need ways to update filter coefficients
automatically and continually
= Track time-varying signals and systems

I |
Random Processes

- Real-world signals are time varying and have
randomness in nature
= E.g. speech, music, noise

- Need to characterize a signal even if full
deterministic mathematical definition does not
exist

- Random process — sequence of random
variables

|
Autocorrelation

- Specifies statistical relationship of signal at
different time lags (n — k)
° Tex (N, k) = Elx(n)x (k)]
= Similarity of observations as a function of the time
lag between them
- Mathematical tool for detecting signals
= Repeating patterns (noise in sinusoid)
= Measuring time-delay between signals
- Radar, sonar, lidar
» Estimation of impulse response
= Ktc.

.. |
Wide Sense Stationary (WSS) Process

- Random process statistics do not change with time
- Mean independent of time
> Elx(n)] = m,
- Autocorrelation only depends only on time lag
> Tex(k) = Elx(n + k)x(n)]
- WSS autocorrelation properties
= Even function

* Tx (k) = 13y (k)
= Bounded by 0 time lag
: |Txx(k)| < rxx(o) — E[xz(n)]
- Zero mean process: E[x?(n)] = o
 Cross-correlation

* Tey(k) = E[x(n + k)y(n)]

- 7
Expected Value

- Value of random variable “expected” if random
variable process repeated infinite number of
times
= Weighted average of all possible values

- Expectation operator

© E[]1= [f()dx

s f(x) — probability density function of random
variable X

.
White Noise

- v(n) with zero mean and variance o
 Very popular random signal
= Typical noise model
- Autocorrelation
° Ty (k) = 0-35(1{)
= Statistically uncorrelated except at zero time lag
« Power spectrum
° Pp(w) =05, |o|l<m
= Uniformly distributed over entire frequency range

|
Example 6.2

- Second-order FIR filter with white noise input
o y(n) =x(n) +ax(n —1) + bx(n — 2)
+ Mean
Ely(n)] = E[x(n) + ax(n — 1) + bx(n — 2)]
o Ely(n)] = E[x(n)] + aE[x(n — 1)] + bE[x(n — 2)]
El[yn)]=04+a-0+b-0=0
- Autocorrelation
° 1yy(k) = E[y(n + k)y(n)]
o (k) = E (x(n+k)+ax(n+k—1)+bx(n+k—2))-
yy (x(n) + ax(n — 1) + bx(n — 2))
© Tyy(k) = E[x(n + k)x(n)] + E[ax(n + k)x(n — 1)] +
- ryy(k) = rxx(k) + arxx(k - 1) + -

(14+a*+b*of k=0
] _ (a + ab)c? k=+1
YW =1 k=+2

. 0 else

- o

Practical Estimation

- Practical applications have finite length
sequences

0 Sample mean
Z Zox(n)
0 Sample autocorrelation
° Tx (k) = —ZN 5T x(n 4+ k)x(n)
= Only produces a good estimate of lags < 10% of N

» Use Matlab (mean.m, xcorr.m, etc.) to
calculate

. 4
Adaptive Filters

- Signal characteristics in practical applications are
time varying and/or unknown

- Must modify filter coefficients adaptively in an
automated fashion to meet objectives

- Example: Channel equalization

» High-speed data communication via media channel
(e.g. wireless network)

= Channel equalization compensates for channel
distortion (e.g. path from wifi router and computer)

= Channel must be continually tracked and
characterized to compensate for distortion (e.g.
moving around a room)

. =
General Adaptive Filter

« Two components
= Digital filter — defined by coefficients

= Adaptive algorithm — automatically update filter
coefficients (weights)

d(n)
. - +
XI:ﬂ:l ‘ Dlgltal jfl:n} _ + E‘[ﬂ] X

ilter N_/

Adaptive
algorithm [

- Adaption occurs by comparing filtered signal y(n)
with a desired (reference) signal d(n)

= Minimize error e(n) using a cost function (e.g. mean-
square error)

= Continually lower error and get y(n) closer to d(n)

|
FIR Adaptive Filter

> - L 2-1
T Wq{ﬁ} II"'II1 (n} e Ywa-i I:ﬂ‘}
YA,

o
Figure 6.2 Block diagram of time-varying FIR filter for adaptive filtering

cy(n) = Y dwi(n)x(n =)
> Notice time-varying weights
- In vector form
= y(n) = w'(mx(n) = x" (Mwn)
= x(n) = [x(n),x(n—1),...,.x(n—L+ D]’
= w(n) = [wo(m),wy (), ..., w,_; (M]"
- Error signal
= e(n) =dm) —yn) =dmn) —w' ()xn)

. 1
Performance Function

- Use mean-square error (MSE) cost function

- ¢(n) = E[e?(n)]
» &(n) = E[d*(m)] — 2p"w(n) + w' (n)Rw(n)
P = Eld(n)x(n)] = [de(O),de(l), o Tax (L — 1)]T
= R — autocorrelation matrix
* R = E[x(n)x"(n)]

re(0) () re(l=)]
re(1) re(0) ven Te(L—2) (6.22)

| ra(L—=1) ra(l—2) ... r«(0)

- Toeplitz matrix — symmetric across main diagonal

Steepest Descent Optimization

Esror surface

- Error function is a quadratic

surface
o &(n) = E[d*(n)] — 2p"w(n) +
wl (n)Rw(n)

- Therefore gradient decent
search techniques can be used

» Gradient points in direction
of greatest change

- Iterative optimization to “step”
toward the bottom of error
surface

= win+1) =w(n) —gi(n)

Figure 6.4 Fxamples of error surface (top) and error contours (bottom), L=2

|

LMS Algorithm

- Practical applications do not
have knowledge of d(n), x(n)

> Cannot directly compute
MSE and gradient

= Stochastic gradient algorithm

- Use instantaneous squared
error to estimate MSE

> £(n) = e*(n)
- Gradient estimate
> VE(n) = 2[Ve(n)]e(n)
- e(n) =dmn) —wl(n)xn)
o« Vé(n) = —2x(n)e(n)
- Steepest descent algorithm
o wn+1) =w) + ux(n)e(n)

- LMS Steps
1. SetL,u,and w(0)
= L — filter length
= — step size (small e.g. 0.01)
= w(0) — initial filter weights
2. Compute filter output
> y(n) = w'(m)x(n)
3. Compute error signal
° e(n) =dmn) —ymn)
4. Update weight vector

* wi(n+1) =w(n)+ux(n—Den),
[=01,..L—1

- Notice this requires a reference
signal

.
LMS Stability

- Convergence of LMS algorithm

° 0 <u <2/Amax
* Amax - largest eigenvalue of autocorrelation matrix R
- Not easy to compute eigenvalues

- Eigenvalue approximation
s 0 < u<2/LP,
- L — length of data window, filter length
* Py = 1, (0) = E[x*(n)]
- Step size is inversely proportional to filter length
= Smaller u for higher order filters
- Step size inversely proportional to input signal
power
= Larger u for lower power signal

Convergence Speed

- Convergence of filter weights
is defined by the time 7,5 to

go from initial MSE to min &
= Plot of MSE vs. time is known el
as the learning curve

Ensemble

- Convergence time related to

the minimum eigenvalue of R

1 0
UAmin
- Smaller step size results in
longer convergence time
- In practice, weights will not
converge to a fixed optimum
value but will vary around it

u]

Tyse =

The learning curve for u=0.01/M with M=8
T

L
500

=y
T

k=1 4

0.6

0.4

02ZF

o

02F

0.4
u]

L L L L
1000 1500 2000 2500 3000
Iterations, n

feight Tracks iy to g for LM S with =20, mu = 0.04

L PR — i

— b
— "
— "
—

Example 6.7

o sd = 12357; rng(sd); % Set seed
value
e X = randn(1l,128); % Reference
signal x(n)
e b =100.1,0.2,0.4,0.2,0.1]; % An FIR
filter to be identified
. d = filter(b,1,x); % Desired
signal d(n)
e mu = 0.05; % Step size
mu o
e h = adaptfilt.lms (5,mu); % LMS 'g
algorithm =
o
. [yv,e] = filter(h,x,d); % Adaptive]
filtering <
D n=1:128;
. hl=figure;
o hold all;
¢ plot(n,d,'-"',"'linewidth', 3);
e plot(n,y,"'-."', '"linewidth', 3);
¢ plot(n,e,'--', 'linewidth', 2); 20 40 60 80 100 120
. xlabel ('Time index, n');
. ylabel ('Amplitude');
e legend('d[n]', 'y[n]', 'e[n]'"); . .
. « Coefficients
e [b; h.coefficients] - b =1[0.1000 0.2000 0.4000 0.2000 0.1000]

¢« w=/[0.1005 0.1999 0.3996 0.1995 0.0996]

o

Practical Applications

- Four classes of adaptive filtering applications
» System identification
= Prediction
= Noise cancellation
= Inverse modeling

- Differences based on configuration of control
signals x(n), d(n), y(n), e(n)

System ldentification

- Given an unknown system, try

to determine (identify)
coefficients
| Unknown d(n)
system P(2)
Signal [x(n) Digtal | () _ e(n)
generator fiter W(2) '\'f/
LMS
algorithm

Figure 6.7 Adaptive system identification using the LMS algorithm

- Excite unknown system and
adaptive system with same
input
= Input signal: white noise
= Reference signal: output of

unknown system
> Error is difference between

adaptive filter and the output
of unknown system

=l

Prediction

- Linear predictor estimates - Reference signal: signal of
signal values at future times interest
- Input signal: delayed reference
" signal
xin
- Error is difference between
g . current sample and predicted
rot) IDigi.;l.' ve Syl faerstend sample (using past samples)
| flterWia) | by 5 = Leverage correlation between
P y\n
: : samples
MNarrowband
LMS . output
Figure 69 Adaptive prodictor with the LMS algorithm » Broadband output: noise
component

- Narrowband output: signal of
interest (high correlation)

Example 6.9

. Fs = 1000;
. f0 = 150;
e L =64;

e N=256;

e A=sqrt(2);

© w0=2*%pi*f0/Fs; L5)

. n = [0:N-1];

* sn = A*sin(wO*n); 1t

« vn = 0.1*(rand(1,N)-0.5) *sqrt (12) W

© % = snt+vn o 0.5 R

. d = [0, x(2:256)]; 'g

© mu = 0.001; = ol

« h = adaptfilt.lms(L,mu); E H

« [y,e]l = filter(h,x,d) 4154‘

o hl=figure; “'

+ hold all; 1H

o plot(n,x,'-"',"'"linewidth', 2);

o plot(n,y,'-."'", 'linewidth', 2); 15- ! r r r r
o plot(n,e,'-=-"', 'linewidth', 2); 50 100 150 200 250
* axis([1 N -inf inf]); Time index, n

o xlabel ('Time index, n');
. ylabel ("Amplitude') ;
* legend('x[n]', 'yIn]', 'eln]');

Noise Cancellation

- Remove (cancel) noise - Flip idea of reference and
components embedded in a input signals
primary signal - Reference signal: primary
= E.g. background noise in signal + noise
speech signal - Close to primary source
= Input signal: noise signal
Pimary s * Far from primary source to
i ~ 2 measure noise
source .

7

= Adaptive filter tracks
correlated noise
Reference

L sensor i - Error signal is the desired
RotNcR : cleaned primary signal

......

Figure 6.11 Basic concept of adaptive noise canceling

Example 6.10

. Fs = 1000;
o f0 = 110;
. L = 3;

¢ N = 128;
« w0 = 2*pi*f0/Fs;

. pz = [0.1, 0.3, 0.2]1; % Define noise path 1
o n = [0:N-17; $ Time index _d[n]_noisy signal
. sd = 12357; rng(sd); % Set seed value e s[n]prhnany
+ sn = 0.5*sin(w0*n); % Sine sequence k """ e[n] - output
. xn = 2.5*(rand (1,N)-0.5); % Zero-mean white (15. i A |
noise LI]] i b tof
. xpn = filter(pz, 1, xn); % Generate x' (n) () i I !
+ dn = sn+xpn; % Sinewave embedded S - ! ! i
in white noise = 0 i ! i
° g- i ! ! i
« mu = 0.025; % Step size mu < | ! ‘!
« h = adaptfilt.lms(L,mu); % LMS algorithm F i i \[! i!
. [y,e] = filter (h,xn,dn); % Adaptive f { \ l q
filtering -0.5 | i/
L] v b
. hl=figure;
. hold all; 1k : : . ; ; .
. plot(n,dn,'-"', 'linewidth', 2); 20 40 60 80 100 120
. plot(n,sn,'-.', 'linewidth', 2); Thneindex,n
. plot(n,e,'--', 'linewidth', 2);

. axis([1 N -inf inf]);
. xlabel ('Time index, n');
. ylabel ('Amplitude');

. legend('d[n] - noisy signal', 's[n] primary',
'e[n] - output');

Inverse Modeling

- Method to estimate the inverse - Reference signal: a known

of an unknown system training signal

> E.g. a communication - Input signal: training signal
channel is unknown but its after going through unknown
distortion needs to be system
corrected

Figure 6.14 An adaptive channel equalizer as an example of inverse modeling

