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Adaptive Filtering

- FIR and IIR filters are designed for linear time-
invariant signals

- How can we handle signals when the
characteristics are unknown or changing?

- Need ways to update filter coefficients
automatically and continually
= Track time-varying signals and systems
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Random Processes

- Real-world signals are time varying and have
randomness in nature
= E.g. speech, music, noise

- Need to characterize a signal even if full
deterministic mathematical definition does not
exist

- Random process — sequence of random
variables
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Autocorrelation

- Specifies statistical relationship of signal at
different time lags (n — k)
° Tax(n, k) = E[x(n), x(k)]
> Similarity of observations as a function of the time
lag between them
- Mathematical tool for detecting signals
= Repeating patterns (noise in sinusoid)
s Measuring time-delay between signals
- Radar, sonar, lidar
= Estimation of impulse response
= Ktc.
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Wide Sense Stationary (WSS) Process

- Random process statistics do not change with time
- Mean independent of time
> Elx(n)] = m,
- Autocorrelation only depends only on time lag
> Tex(k) = Elx(n + k)x(n)]
- WSS autocorrelation properties
= Even function

* Tx(—k) = 1y (k)
= Bounded by 0 time lag
° |Txx(k)| < rxx(o) — E[xz(n)]
- Zero mean process: E[x?(n)] = o
» Cross-correlation

* Tey(k) = E[x(n + k)y(n)]
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Expected Value

- Value of random variable “expected” if random
variable process repeated infinite number of
times
= Weighted average of all possible values

- Expectation operator

© E[]1= [ f()dx
= f(x) — probability density function of random
variable X
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White Noise

- v(n) with zero mean and variance o
- Very popular random signal
= Typical noise model
- Autocorrelation
° Ty (k) = 0-35(1{)
= Statistically uncorrelated except at zero time lag
« Power spectrum
° Pp(w) =05, |o|l<m
= Uniformly distributed over entire frequency range
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Example 6.2

- Second-order FIR filter with white noise input
o y(n) =x(n) +ax(n —1) + bx(n — 2)
+ Mean
Ely(n)] = E[x(n) + ax(n — 1) + bx(n — 2)]
o Ely(n)] = E[x(n)] + aE[x(n — 1)] + bE[x(n — 2)]
E[yn)]=04+a-0+b-0=0
- Autocorrelation
° 1yy(k) = E[y(n + k)y(n)]
o (k) = E (x(n+k)+ax(n+k—1)+bx(n+k—2))-
yy (x(n) + ax(n — 1) + bx(n — 2))
° Tyy(k) = E[x(n + k)x(n)] + E[lax(n + k)x(n — 1)] +
- ryy(k) = rxx(k) + arxx(k - 1) + -

(14+a*+b*of k=0
] _ (a + ab)c? k=+1
YW =1 k=t2

. 0 else
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Practical Estimation

- Practical applications have finite length
sequences

0 Sample mean
Z Zox(n)
0 Sample autocorrelation
° Tx (k) = —ZN 5T x(n+ k)x(n)
> Only produces a good estimate of lags < 10% of N

« Use Matlab (mean.m, xcorr.m, etc.) to
calculate
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Adaptive Filters

- Signal characteristics in practical applications are
time varying and/or unknown

- Must modify filter coefficients adaptively in an
automated fashion to meet objectives

- Example: Channel equalization

» High-speed data communication via media channel
(e.g. wireless network)

= Channel equalization compensates for channel
distortion (e.g. path from wifi router and computer)

= Channel must be continually tracked and
characterized to compensate for distortion (e.g.
moving around a room)
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General Adaptive Filter

« Two components
= Digital filter — defined by coefficients

= Adaptive algorithm — automatically update filter
coefficients (weights)

d(n)
. - +
XI:ﬂ:l ‘ Dlgltal jfl:n} _ + E‘[ﬂ] X

ilter N_/

-------

Adaptive
algorithm [

- Adaption occurs by comparing filtered signal y(n)
with a desired (reference) signal d(n)

= Minimize error e(n) using a cost function (e.g. mean-
square error)

= Continually lower error and get y(n) closer to d(n)
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FIR Adaptive Filter
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Figure 6.2 Block diagram of time-varying FIR filter for adaptive filtering

cy(n) = Y dw(m)x(n = 1)
> Notice time-varying weights
- In vector form
= y(n) = w'(mx(n) = x" (Mwn)
= x(n) = [x(n),x(n—1),...,.x(n—L+ D]’
= w(n) = [wo(m),wy(n), ..., w,_; (M]"
- Error signal
=e(n) =dm) —yn) =dmn) —w' (m)x(n)




. 1
Performance Function

- Use mean-square error (MSE) cost function

- ¢(n) = E[e*(n)]
» &(n) = E[d*(m)] — 2p"w(n) + w' (n)Rw(n)
P = Eld(n)x(n)] = [de(O),de(l), e Tax (L — 1)]T
= R — autocorrelation matrix
* R = E[x(n)x"(n)]

re(0) () re(l= )]
re(1) re(0) ven Te(L—2) (6.22)

| ra(L—=1) ra(l—2) ... r«(0)

- Toeplitz matrix — symmetric across main diagonal



Steepest Descent Optimization

Esror surface

- Error function is a quadratic

surface
o &(n) = E[d*(n)] — 2p"w(n) +
wl (n)Rw(n)

- Therefore gradient decent
search techniques can be used

» Gradient points in direction
of greatest change

- Iterative optimization to “step”
toward the bottom of error
surface

= win+1) =w) — %Vf(n)

Figure 6.4 Fxamples of error surface (top) and error contours (bottom), L=2
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LMS Algorithm

- Practical applications do not
have knowledge of d(n), x(n)

> Cannot directly compute
MSE and gradient

= Stochastic gradient algorithm

- Use instantaneous squared
error to estimate MSE

> é(n) = e%(n)
« Gradient estimate
> V&(n) = 2[Ve(n)]e(n)
- e(n) =dmn) —wl(n)xn)
o« Vé(n) = —2x(n)e(n)
- Steepest descent algorithm
o wn+1) =w) + ux(n)e(n)

- LMS Steps
1. SetL,u,and w(0)
= L — filter length
= — step size (small e.g. 0.01)
= w(0) — initial filter weights
2. Compute filter output
> y(n) = w'(m)x(n)
3. Compute error signal
> e(n) =d(n) —ymn)
4. Update weight vector

* wi(n+1) =wn)+ux(n—Den),
[=01,..L—1

- Notice this requires a reference
signal



