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DFT Algorithm 

 The Fourier transform of an analogue 
signal x(t) is given by: 

   




 dtetxX tj

 The Discrete Fourier Transform (DFT) of 
a discrete-time signal x(nT) is given by: 
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 If we let: 
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DFT Algorithm 

   
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X(0)  = x[0]WN
0 + x[1]WN

0*1 +…+ x[N-1]WN
0*(N-1)  

X(1)  = x[0]WN
0 + x[1]WN

1*1 +…+ x[N-1]WN
1*(N-1)  

: 

X(k)  = x[0]WN
0 + x[1]WN

k*1 +…+ x[N-1]WN
k*(N-1)  

: 

X(N-1) = x[0]WN
0 + x[1]WN (N-1)*1 +…+ x[N-1]WN (N-1)(N-1)  

Note: For N samples of x we have N frequencies 
representing the signal. 

x[n]  = input 

X[k]  = frequency bins 

W = twiddle factors 
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Performance of the DFT Algorithm 

 The DFT requires N2 (NxN) complex 
multiplications:  

 Each X(k) requires N complex 
multiplications. 

 Therefore to evaluate all the values of the 
DFT ( X(0) to X(N-1) ) N2 multiplications are 
required. 

 The DFT also requires (N-1)*N complex 
additions: 

 Each X(k) requires N-1 additions. 

 Therefore to evaluate all the values of the 
DFT (N-1)*N additions are required. 
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Performance of the DFT Algorithm 
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 Can the number of computations required 
be reduced? 
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DFT  FFT 

 A large amount of work has been devoted 
to reducing the computation time of a 
DFT. 

 This has led to efficient algorithms which 
are known as the Fast Fourier Transform 
(FFT) algorithms. 
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DFT  FFT 

x[n] = x[0], x[1], …, x[N-1] 
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 Lets divide the sequence x[n] into even 
and odd sequences: 

 x[2n]  = x[0], x[2], …, x[N-2] 

 x[2n+1]  = x[1], x[3], …, x[N-1] 
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[2] 

 Equation 1 can be rewritten as: 

 Since: 
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 Then: 
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 The result is that an N-point DFT can be 
divided into two N/2 point DFT’s: 
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 Where Y(k) and Z(k) are the two N/2 
point DFTs operating on even and odd 
samples respectively: 

Two N/2-
point DFTs 
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DFT  FFT 

 Periodicity and symmetry of W can be 
exploited to simplify the DFT further: 

 Or: 
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: Symmetry 

: Periodicity 
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DFT  FFT 

 Symmetry and periodicity: 
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 Finally by exploiting the symmetry and 
periodicity, Equation 3 can be written as: 

[4] 
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 Y(k) and WN
k Z(k) only need to be 

calculated once and used for both 
equations. 

 Note: the calculation is reduced from 0 to 
N-1 to 0 to (N/2 - 1). 
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DFT  FFT 

 Y(k) and Z(k) can also be divided into N/4 
point DFTs using the same process shown 
above: 
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 The process continues until we reach 2 
point DFTs. 
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DFT  FFT 

 Illustration of the first decimation in time 
FFT. 
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W1 



Dr. Naim Dahnoun, Bristol University,  (c) Texas Instruments 2004 Chapter 19, Slide 18 

FFT Implementation 

 To efficiently implement the FFT 
algorithm a few observations are made: 

 Each stage has the same number of 
butterflies (number of butterflies = N/2, N is 
number of points). 

 The number of DFT groups per stage is equal 
to (N/2stage). 

 The difference between the upper and lower 
leg is equal to 2stage-1. 

 The number of butterflies in the group is 
equal to 2stage-1. 
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FFT Implementation 
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 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 

Example: 8 point FFT 



Dr. Naim Dahnoun, Bristol University,  (c) Texas Instruments 2004 Chapter 19, Slide 20 

FFT Implementation 
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 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 

Example: 8 point FFT 

(1) Number of stages: 
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FFT Implementation 
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 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 

Example: 8 point FFT 

(1) Number of stages: 

 Nstages = 1 

Stage 1 
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Example: 8 point FFT 

(1) Number of stages: 

 Nstages = 2 

FFT Implementation 
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 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 

Stage 2 Stage 1 
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Example: 8 point FFT 

(1) Number of stages: 

 Nstages = 3 

FFT Implementation 
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 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 

Stage 2 Stage 3 Stage 1 
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Example: 8 point FFT 

(1) Number of stages: 

 Nstages = 3 

(2) Blocks/stage: 

 Stage 1: 

FFT Implementation 
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 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 

Stage 2 Stage 3 Stage 1 



Dr. Naim Dahnoun, Bristol University,  (c) Texas Instruments 2004 Chapter 19, Slide 25 

Example: 8 point FFT 

(1) Number of stages: 

 Nstages = 3 

(2) Blocks/stage: 

 Stage 1: Nblocks = 1 

FFT Implementation 
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 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 

Stage 2 Stage 3 Stage 1 

Block 1 
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Example: 8 point FFT 

(1) Number of stages: 

 Nstages = 3 

(2) Blocks/stage: 

 Stage 1: Nblocks = 2 

FFT Implementation 
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 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 

Stage 2 Stage 3 Stage 1 

Block 1 

Block 2 
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Example: 8 point FFT 

(1) Number of stages: 

 Nstages = 3 

(2) Blocks/stage: 

 Stage 1: Nblocks = 3 

FFT Implementation 
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 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 

Stage 2 Stage 3 Stage 1 

Block 1 

Block 2 

Block 3 
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Example: 8 point FFT 

(1) Number of stages: 

 Nstages = 3 

(2) Blocks/stage: 

 Stage 1: Nblocks = 4 

FFT Implementation 

W0 -1 

W0 -1 

W0 -1 

W0 -1 

W2 -1 

W0 

-1 W0 

W2 -1 

-1 W0 

W1 -1 

W0 

W3 -1 

-1 W2 

-1 

 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 

Stage 2 Stage 3 Stage 1 

Block 1 

Block 2 

Block 3 

Block 4 
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Example: 8 point FFT 

(1) Number of stages: 

 Nstages = 3 

(2) Blocks/stage: 

 Stage 1: Nblocks = 4 

 Stage 2: Nblocks = 1 

FFT Implementation 

W0 -1 
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W0 
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W2 -1 
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 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 

Stage 2 Stage 3 Stage 1 

Block 1 
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Example: 8 point FFT 

(1) Number of stages: 

 Nstages = 3 

(2) Blocks/stage: 

 Stage 1: Nblocks = 4 

 Stage 2: Nblocks = 2 

FFT Implementation 
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 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 

Stage 2 Stage 3 Stage 1 

Block 1 

Block 2 
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Example: 8 point FFT 

(1) Number of stages: 

 Nstages = 3 

(2) Blocks/stage: 

 Stage 1: Nblocks = 4 

 Stage 2: Nblocks = 2 

 Stage 3: Nblocks = 1 

FFT Implementation 

W0 -1 

W0 -1 

W0 -1 

W0 -1 

W2 -1 
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W2 -1 
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-1 

 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 

Stage 2 Stage 3 Stage 1 

Block 1 
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Example: 8 point FFT 

(1) Number of stages: 

 Nstages = 3 

(2) Blocks/stage: 

 Stage 1: Nblocks = 4 

 Stage 2: Nblocks = 2 

 Stage 3: Nblocks = 1 

(3) B’flies/block: 

 Stage 1: 

 

FFT Implementation 
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 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 

Stage 2 Stage 3 Stage 1 
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Example: 8 point FFT 

(1) Number of stages: 

 Nstages = 3 

(2) Blocks/stage: 

 Stage 1: Nblocks = 4 

 Stage 2: Nblocks = 2 

 Stage 3: Nblocks = 1 

(3) B’flies/block: 

 Stage 1: Nbtf = 1 

FFT Implementation 
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Stage 2 Stage 3 Stage 1 

 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 
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Example: 8 point FFT 

(1) Number of stages: 

 Nstages = 3 

(2) Blocks/stage: 

 Stage 1: Nblocks = 4 

 Stage 2: Nblocks = 2 

 Stage 3: Nblocks = 1 

(3) B’flies/block: 

 Stage 1: Nbtf = 1 

 Stage 2: Nbtf = 1 

FFT Implementation 

W0 -1 

W0 -1 

W0 -1 

W0 -1 

W2 -1 

W0 

-1 W0 

W2 -1 

-1 W0 

W1 -1 

W0 

W3 -1 

-1 W2 

-1 

Stage 2 Stage 3 Stage 1 

 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 
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Example: 8 point FFT 

(1) Number of stages: 

 Nstages = 3 

(2) Blocks/stage: 

 Stage 1: Nblocks = 4 

 Stage 2: Nblocks = 2 

 Stage 3: Nblocks = 1 

(3) B’flies/block: 

 Stage 1: Nbtf = 1 

 Stage 2: Nbtf = 2 

FFT Implementation 

W0 -1 

W0 -1 

W0 -1 

W0 -1 

W2 -1 

W0 

-1 W0 

W2 -1 

-1 W0 

W1 -1 

W0 

W3 -1 

-1 W2 

-1 

Stage 2 Stage 3 Stage 1 

 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 
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Example: 8 point FFT 

(1) Number of stages: 

 Nstages = 3 

(2) Blocks/stage: 

 Stage 1: Nblocks = 4 

 Stage 2: Nblocks = 2 

 Stage 3: Nblocks = 1 

(3) B’flies/block: 

 Stage 1: Nbtf = 1 

 Stage 2: Nbtf = 2 

 Stage 3: Nbtf = 1 

FFT Implementation 

W0 -1 

W0 -1 

W0 -1 

W0 -1 

W2 -1 

W0 

-1 W0 

W2 -1 

-1 W0 

W1 -1 

W0 

W3 -1 

-1 W2 

-1 

Stage 2 Stage 3 Stage 1 

 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 
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Example: 8 point FFT 

(1) Number of stages: 

 Nstages = 3 

(2) Blocks/stage: 

 Stage 1: Nblocks = 4 

 Stage 2: Nblocks = 2 

 Stage 3: Nblocks = 1 

(3) B’flies/block: 

 Stage 1: Nbtf = 1 

 Stage 2: Nbtf = 2 

 Stage 3: Nbtf = 2 

FFT Implementation 

W0 -1 

W0 -1 

W0 -1 

W0 -1 

W2 -1 

W0 

-1 W0 

W2 -1 

-1 W0 

W1 -1 

W0 

W3 -1 

-1 W2 

-1 

Stage 2 Stage 3 Stage 1 

 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 
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Example: 8 point FFT 

(1) Number of stages: 

 Nstages = 3 

(2) Blocks/stage: 

 Stage 1: Nblocks = 4 

 Stage 2: Nblocks = 2 

 Stage 3: Nblocks = 1 

(3) B’flies/block: 

 Stage 1: Nbtf = 1 

 Stage 2: Nbtf = 2 

 Stage 3: Nbtf = 3 

FFT Implementation 

W0 -1 

W0 -1 

W0 -1 

W0 -1 

W2 -1 

W0 

-1 W0 

W2 -1 

-1 W0 

W1 -1 

W0 

W3 -1 

-1 W2 

-1 

Stage 2 Stage 3 Stage 1 

 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 
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Example: 8 point FFT 

(1) Number of stages: 

 Nstages = 3 

(2) Blocks/stage: 

 Stage 1: Nblocks = 4 

 Stage 2: Nblocks = 2 

 Stage 3: Nblocks = 1 

(3) B’flies/block: 

 Stage 1: Nbtf = 1 

 Stage 2: Nbtf = 2 

 Stage 3: Nbtf = 4 

FFT Implementation 

W0 -1 

W0 -1 

W0 -1 

W0 -1 

W2 -1 

W0 

-1 W0 

W2 -1 

-1 W0 

W1 -1 

W0 

W3 -1 

-1 W2 

-1 

Stage 2 Stage 3 Stage 1 

 Decimation in time FFT: 

 Number of stages = log2N 

 Number of blocks/stage = N/2stage 

 Number of butterflies/block = 2stage-1 



Dr. Naim Dahnoun, Bristol University,  (c) Texas Instruments 2004 Chapter 19, Slide 40 

FFT Implementation 

W0 -1 

W0 -1 

W0 -1 

W0 -1 

W2 -1 

W0 

-1 W0 

W2 -1 

-1 W0 

W1 -1 

W0 

W3 -1 

-1 W2 

-1 

Stage 2 Stage 3 Stage 1 

Twiddle Factor Index N/2 = 4 

Start Index 0 0 0 

Input Index 1 2 4 
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FFT Implementation 

Twiddle Factor Index N/2 = 4 4 /2 = 2 

Start Index 0 0 0 

Input Index 1 2 4 

W0 -1 

W0 -1 

W0 -1 

W0 -1 

W2 -1 

W0 

-1 W0 

W2 -1 

-1 W0 

W1 -1 

W0 

W3 -1 

-1 W2 

-1 

Stage 2 Stage 3 Stage 1 
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FFT Implementation 

Twiddle Factor Index N/2 = 4 4 /2 = 2 2 /2 = 1 

Start Index 0 0 0 

Input Index 1 2 4 

W0 -1 

W0 -1 

W0 -1 

W0 -1 

W2 -1 

W0 

-1 W0 

W2 -1 

-1 W0 

W1 -1 

W0 

W3 -1 

-1 W2 

-1 

Stage 2 Stage 3 Stage 1 
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FFT Implementation 

Start Index 0 

Input Index 1 

Twiddle Factor Index N/2 = 4 4 /2 = 2 2 /2 = 1 

Indicies Used W0 W0 

W2 

 

W0 

W1 

W2 

W3 

 

0 

2 

0 

4 

W0 -1 

W0 -1 

W0 -1 

W0 -1 

W2 -1 

W0 

-1 W0 

W2 -1 

-1 W0 

W1 -1 

W0 

W3 -1 

-1 W2 

-1 

Stage 2 Stage 3 Stage 1 



FFT Decimation in Frequency 

• Similar divide and conquer strategy 

▫ Decimate in frequency domain  

• 𝑋 2𝑘 =  𝑥 𝑛 𝑊𝑁
2𝑛𝑘𝑁−1

𝑛=0  

• 𝑋 2𝑘 =  𝑥 𝑛 𝑊𝑁/2
𝑛𝑘𝑁/2−1

𝑛=0 +  𝑥 𝑛 𝑊𝑁/2
𝑛𝑘𝑁−1

𝑛=𝑁/2  

▫ Divide into first half and second half of sequence 

• 𝑋 2𝑘 =

 𝑥 𝑛 𝑊𝑁/2
𝑛𝑘𝑁/2−1

𝑛=0 + 𝑥 𝑛 +
𝑁

2
𝑊
𝑁/2

𝑛+
𝑁

2
𝑘𝑁/2−1

𝑛=0  

• Simplifying with twidle properties 

▫ 𝑋 2𝑘 =  𝑥 𝑛 + 𝑥 𝑛 +
𝑁

2
𝑊𝑁/2
𝑛𝑘𝑁/2−1

𝑛=0  

▫ 𝑋 2𝑘 + 1 =  𝑊𝑁
𝑛 𝑥 𝑛 − 𝑥 𝑛 +

𝑁

2
𝑊𝑁/2
𝑛𝑘𝑁/2−1

𝑛=0  
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FFT Decimation in Frequency Structure 

• Stage structure 

 

 

 

 

 

 

 

 

 

• Bit reversal happens at output 
instead of input 

• Full structure 
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Inverse FFT 

• 𝑥 𝑛 =
1

𝑁
 𝑋(𝑘)𝑁−1
𝑘=0 𝑊𝑁

−𝑘𝑛 

• Notice this is the DFT with a scale factor and 
change in twidle sign 

• Can compute using the FFT with minor 
modifications 

▫ 𝑥∗ 𝑛 =
1

𝑁
 𝑋∗(𝑘)𝑁−1
𝑘=0 𝑊𝑁

𝑘𝑛 

 Conjugate coefficients, compute FFT with scale 
factor, conjugate result 

 For real signals, no final conjugate needed 

▫ Can complex conjugate twidle factors and use in 
butterfly structure 
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FFT Example 
• Example 5.10 

• Sine wave with 𝑓 = 50 Hz 

▫ 𝑥 𝑛 = sin
2𝜋𝑓𝑛

𝑓𝑠
 

 𝑛 = 0,1, … , 128 

 𝑓𝑠 = 256 Hz 

 

• Frequency resolution of DFT? 

▫ Δ = 𝑓𝑠/𝑁 =
256

128
= 2 Hz 

• Location of peak 

▫ 50 = 𝑘Δ → 𝑘 =
50

2
= 25 
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Spectral Leakage and Resolution 
• Notice that a DFT is like windowing 

a signal to finite length 
▫ Longer window lengths (more 

samples) the closer DFT 𝑋(𝑘) 
approximates DTFT 𝑋 𝜔  

• Convolution relationship 

▫ 𝑥𝑁 𝑛 = 𝑤 𝑛 𝑥 𝑛  

▫ 𝑋𝑁 𝑘 = 𝑊 𝑘 ∗ 𝑋 𝑘  

• Corruption of spectrum due to 
window properties 
(mainlobe/sidelobe) 
▫ Sidelobes result in spurious peaks 

in computed spectrum known as 
spectral leakage 

 Obviously, want to use smoother 
windows to minimize these effects 

▫ Spectral smearing is the loss in 
sharpness due to convolution 
which depends on mainlobe width 

• Example 5.15 
▫ Two close sinusoids smeared 

together 

 

 

 

 

 

 

 

 

 

 

 

 

• To avoid smearing: 
▫ Frequency separation should be 

greater than freq resolution 

▫ 𝑁 >
2𝜋

Δ𝜔
,  𝑁 > 𝑓𝑠/Δ𝑓 
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Power Spectral Density 
• Parseval’s theorem 

• 𝐸 =

 𝑥 𝑛 2 =
1

𝑁
 𝑋 𝑘 2𝑁−1
𝑘=0

𝑁−1
𝑛=0  

▫ 𝑋 𝑘 2 - power spectrum or 
periodogram 

• Power spectral density (PSD, or 
power density spectrum or 
power spectrum) is used to 
measure average power over 
frequencies 

• Computed for time-varying 
signal by using a sliding window 
technique 
▫ Short-time Fourier transform 

▫ Grab 𝑁 samples and compute 
FFT 
 Must have overlap and use 

windows 

• Spectrogram 
▫ Each short FFT is arranged as a 

column in a matrix to give the 
time-varying properties of the 
signal 

▫ Viewed as an image 
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Fast FFT Convolution 

• Linear convolution is multiplication in frequency 
domain 

▫ Must take FFT of signal and filter, multiply, and 
iFFT 

▫ Operations in frequency domain can be much 
faster for large filters 

▫ Requires zero-padding because of circular 
convolution 

• Typically, will do block processing 

▫ Segment a signal and process each segment 
individually before recombining  
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Ex: FFT Effect of N 
• Take FFT of cosine 

using different N 
values 

 
n = [0:29]; 

x = cos(2*pi*n/10); 

N1 = 64; 

N2 = 128; 

N3 = 256; 

X1 = abs(fft(x,N1)); 

X2 = abs(fft(x,N2)); 

X3 = abs(fft(x,N3)); 

F1 = [0 : N1 - 1]/N1; 

F2 = [0 : N2 - 1]/N2; 

F3 = [0 : N3 - 1]/N3; 

subplot(3,1,1) 

plot(F1,X1,'-x'),title('N = 

64'),axis([0 1 0 20]) 

subplot(3,1,2) 

plot(F2,X2,'-x'),title('N = 

128'),axis([0 1 0 20]) 

subplot(3,1,3) 

plot(F3,X3,'-x'),title('N = 

256'),axis([0 1 0 20]) 

• Transforms all 
have the same 
shape 

• Difference is the 
number of samples 
used to 
approximate the 
shape 

 

• Notice the 
sinusoid frequency 
is not always well 
represented 
▫ Depends on 

frequency 
resolution 
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Ex: FFT Effect of Number of Samples 

• Select a large value of 
N and vary the 
number of samples of 
the signal 

 
n = [0:29]; 

x1 = cos(2*pi*n/10); % 3 periods 

x2 = [x1 x1]; % 6 periods 

x3 = [x1 x1 x1]; % 9 periods 

N = 2048; 

X1 = abs(fft(x1,N)); 

X2 = abs(fft(x2,N)); 

X3 = abs(fft(x3,N)); 

F = [0:N-1]/N; 

subplot(3,1,1) 

plot(F,X1),title('3 

periods'),axis([0 1 0 50]) 

subplot(3,1,2) 

plot(F,X2),title('6 

periods'),axis([0 1 0 50]) 

subplot(3,1,3) 

plot(F,X3),title('9 

periods'),axis([0 1 0 50]) 

• Transforms all have 
the same shape 
▫ Looks like sinc 

functions 

• More samples 
makes the sinc look 
more impulse-like 

 

• FFT with large N 
but fewer samples 
does zero-padding 
▫ E.g. taking length 

N signal and 
windowing with 
box 

▫ Multiplication in 
time is 
convolution in 
frequency 
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Spectrum Analysis with FFT and Matlab 

• FFT does not directly give 
spectrum 

▫ Dependent on the number of 
signal samples  

▫ Dependent on the number of 
points in the FFT 

• FFT contains info between 
[0, 𝑓𝑠] 

▫ Spectrum must be below 𝑓𝑠/2 

• Symmetric across 𝑓 = 0 axis 

▫ −
𝑓𝑠

2
,
𝑓𝑠

2
 

▫ Use fftshift.m in Matlab 

n = [0:149]; 

x1 = cos(2*pi*n/10); 

N = 2048; 

X = abs(fft(x1,N)); 

X = fftshift(X); 

F = [-N/2:N/2-1]/N; 

plot(F,X), 

xlabel('frequency / f s') 
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