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Outline 

• Review IIR Design 

• Implementation Considerations 

• Stability 

• Coefficient Quantization 

• Roundoff Effects 

• Cascade Pairing and Ordering 
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IIR Design 

• Reuse well studied analog filter design 
techniques (books and tables for design) 

• Need to map between analog design and a digital 
design 

▫ Mapping between s-plane and z-plane 
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IIR Filter Design 

• IIR transfer function 

 

 

 

• Need to find coefficients 𝑎𝑙 , 𝑏𝑙 
▫ Impulse invariance – sample impulse response 

 Have to deal with aliasing 

▫ Bilinear transform  

 Match magnitude response 

 “Warp” frequencies to prevent aliasing 
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𝐻 𝑧 =
 𝑏𝑙𝑧

−𝑙𝐿−1
𝑙=0

1 +  𝑎𝑙𝑧
−𝑙𝑀

𝑙=0

 



Bilinear Transform Design 

• Convert digital filter into an “equivalent” analog filter 

▫ Use bilinear “warping” 

• Design analog filter using IIR design techniques  

• Map analog filter into digital 

▫ Use bilinear transform 
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Bilinear Design Steps 
1. Convert digital filter into an 

“equivalent” analog filter 

▫ Pre-warp using  

 Ω =
2

𝑇
tan

𝜔

2
 

2. Design analog filter using 
IIR design techniques  

▫ Butterworth, Chebyshev, 
Elliptical  

3. Map analog filter into digital 

▫ 𝐻 𝑧 = 𝐻 𝑠  
𝑠=

2

𝑇

1−𝑧−1

1+𝑧−1
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Direct Form I 
• Straight-forward 

implementation of diff. eq. 

▫ 𝑏𝑙 - feed forward coefficients 

 From 𝑥(𝑛) terms 

▫ 𝑎𝑙 - feedback coefficients  

 From 𝑦 𝑛  terms 

 

• Requires 𝐿 +𝑀  coefficients 
and delays 
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Direct Form II 
• Notice that we can decompose 

the transfer function 

▫ 𝐻 𝑧 = 𝐻1 𝑧 𝐻2(𝑧) 

 Section to implement zeros 
section to implement poles 

 

• Can switch order of operations 

▫ 𝐻 𝑧 = 𝐻2 𝑧 𝐻1(𝑝) 

▫ This allows sharing of delays 
and saving in memory 
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Cascade (Factored) Form 
• Factor transfer function and decompose into smaller sub-systems 

▫ 𝐻 𝑧 = 𝐻1 𝑧 𝐻2 𝑧 …𝐻𝐾 𝑧  

 

 

 

• Make each subsystem second order 

▫ Complex conjugate roots have real coefficients 

▫ Limit the order of subsystem (numerical effects) 
 Effects limited to single subsystem stage 

 Change in a single coefficient affects all poles in DF 

 

 

 

 

 

 

• Preferred over DF because of numerical stability 
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Parallel (Partial Fraction) Form 
• Decompose transfer function 

using a partial fraction 
expansion 

▫ 𝐻 𝑧 = 𝐻1 𝑧 + 𝐻2 𝑧 + …+
𝐻𝐾 𝑧  

 𝐻𝑘 𝑧 =
𝑏0𝑘+𝑏1𝑘𝑧

−1

1+𝑎1𝑘𝑧
−1+𝑎2𝑘𝑧

−2 

• Be sure to remember that PFE 
requires numerator order less 
than denominator 

▫ Use polynomial long division 
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Matlab Filter Design 
• Realization tools: 

• Finding polynomial roots 

▫ roots.m 

▫ tf2zp.m 

• Cascade form 

▫ 𝐻 𝑧 =

𝐺 
𝑏0𝑘+𝑏1𝑘𝑧

−1+𝑏2𝑘𝑧
−2

1+𝑎1𝑘𝑧
−1+𝑎2𝑘𝑧

−2
𝐾
𝑘=1  

▫ zp2sos.m 

• Parallel form 

▫ Residuez.m 

 

• Filter design tools: 

• Order estimation tool 

▫ butterord.m 

• Coefficient tool 

▫ butter.m 

• Frequency transforms 

▫ lp2hp.m, lp2bp.m, 

lp2bs.m 

 

• Useful exploration tool 

▫ fvtool.m 

• Useful design tool 

▫ fdatool.m 

• Useful processing tool 

▫ sptool.m 
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Stability 
• (Causal) IIR filters are stable if all poles are within the 

unit circle 

▫  𝑝𝑚 < 1 
▫ We will not consider marginally stable (single pole on unit 

circle) 
• Consider poles of  2nd order filter (used in cascade and 

parallel forms) 

▫ 𝐴 𝑧 = 1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2 
• Factor 

▫ 𝐴 𝑧 = (1 − 𝑝1𝑧
−1)(1 − 𝑝2𝑧

−1) 

▫ 𝐴 𝑧 = 1 − 𝑝1 + 𝑝2 𝑧
−1 + 𝑝1𝑝2𝑧

−2 
• Because poles must be inside  

the unit circle 

▫ 𝑎2 = 𝑝1𝑝2 < 1 

▫ 𝑎1 < 1 + 𝑎2 
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Coefficient Quantization 

• Using fixed word lengths results in a quantized 
approximation of a filter 

▫ 𝐻′ 𝑧 =
 𝑏𝑘

′ 𝑧−𝑘𝐿−1
𝑘=0

1+ 𝑎𝑘
′ 𝑧−𝑘𝑀

𝑘=1
 

• This can cause a mismatch from desired system 
𝐻 𝑧  

• Poles that are close to the unit circle may move 
outside and cause instability 

▫ This is exacerbated with higher order systems 
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Rounding Effects 

• Using 𝐵 bit architecture, products require 2𝐵 bits 

▫ Must be rounded into smaller 𝐵 bit container 

• This results in noise error terms 

▫ Can be simply modeled as additive term 

• The order of cascade sections influences power of 
noise at output 

▫ How should sections be paired and ordered? 

• Need to optimize SQNR 

▫ Trade-off with probability of arithmetic overflow 

▫ Need to use scaling factors to prevent overflow 

▫ Optimality when signal level is maximized without 
overflow 
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Cascade Ordering and Pairing 
• Good results are obtained 

using simple rules 

• Cascade ordering and pairing 
algorithm 

1. Pair pole closest to unit 
circle with zero that is 
closest in z-plane 

▫ Minimize the chance of 
overflow 

2. Apply 1 repeatedly until all 
poles and zeros are paired 

3. Resulting 2nd -order sections 
can be ordered in two 
alternative ways 

▫ Increasing closeness to unit 
circle 

▫ Decreasing closeness to unit 
circle 
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Figure 6.67   Output noise power spectrum for 123 ordering (solid 

line) and 321 ordering (dashed line) of 2nd-order sections. 

OS 



Recursive Resonator 
• Filter with frequency response 

dominated at a single peak 

▫ Use complex-conjugate pole 
pair inside unit circle 

• 𝐻 𝑧 =
𝐴

(1−𝑟𝑝𝑒
𝑗𝜔0𝑧−1)(1−𝑟𝑝𝑒

−𝑗𝜔0𝑧−1)
 

• 𝐻(𝑧) =
𝐴

1−2𝑟𝑝 cos 𝜔0 𝑧
−1+𝑟𝑝

2𝑧−2
 

▫ 𝐴 – normalization constant 
for unity gain at 𝜔0  

▫ 0 < 𝑟𝑝 < 1 

• Close to unit circle 

▫ Bandwidth ≅ 2(1 − 𝑟𝑝) 

▫ Closer to 𝑟𝑝 = 1, more peaked 
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Parametric Equalizer 
• Add nearby zeros to the 

resonator 
▫ At same angle as poles 𝜔0 

▫ Similar radius  

• Pole and zero counter balance 
one another 

• 𝑟𝑧 < 𝑟𝑝 

▫ Pole dominates because it is 
closer to unit circle 

▫ Generates peak at 𝜔 = 𝜔0 
 Provides boost to freq 

• 𝑟𝑧 > 𝑟𝑝 

▫ Zero dominates pole 

▫ Generates dip at 𝜔 = 𝜔0 
 Cuts freq 

• Bandwidth still determined by 
𝑟𝑝 

 

• Ex 4.18 
▫ Create equalizer by changing 

gain at given frequency 
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