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- Analog Filter Characteristics
- Frequency Transforms
- Design of IIR Filters

- Realizations of IIR Filters
» Direct, Cascade, Parallel
- Implementation Considerations
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lIR Design

- Reuse well studied analog filter design
techniques (books and tables for design)

- Need to map between analog design and a digital
design
» Mapping between s-plane and z-plane
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Analog Basics

- Laplace transform

0.0)

= X(s) = J__x(t)estdt
- Complex s-plane
= s =0+ jQ
- Complex number with ¢ and Q real
s j) —1Imaginary axis
- Fourier transform for ¢ = 0
= When region of convergence contains the j( axis
- Convolution relationship
> y(t) = x(t) * h(t) » Y(s) = X(s)H(s)
C H(s) = 35 = [, h()e ™t dt
- Stability constraint requires poles to be in the left
half s-plane



Mapping Properties

- z-transform from Laplace by change of variable
0 gz = 5T = 0T oJQT — |Z|eja)
- |z| = €T, w=QT
- This mapping is not unique
o —/T < Q <m/T - unit circle
= 2m multiples as well

J'ff lzZl=1  Im[2]
wlT

7
7

%0’<0/§ o>0

s-plane z-plane

Figure 4.1 Mapping properties between the s-plane and the z-plane

> Left half s-plane mapped inside unit circle
= Right half s-plane mapped outside unit circle



Filter Characteristics

- Designed to meet a given/desired magnitude
response

 Trade-off between :
= Phase response

= Roll-off rate — how steep is the transition between
pass and stopband (transition width)



Butterworth Filter

- All-pole approximation to idea filter
e 1H(Q)|? = 1
HOP =
» |[H(0)| =1
o [H(Qy)| = 1/V2
- -3dB @ Q,
- Has flat magnitude response in pass and stopband (no ripple)

« Slow monotonic transition band
= Generally needs larger L

|H(Q)|
&
1

» ()

Figure 4.2 Magnitude response of Butterworth lowpass filter
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Chebyshev Filter

Steeper roll-off at cutoff
frequency than Butterworth

= Allows certain number of

ripples in either passband or IH(@)!
stopband 1 e _
- Type I — equiripple in 1~dp
passband, monotonic in
stopband
= All-pole filter % s .0
- Type II — equiripple in gt G
stopband, monotinic in H(Q)|
passband ) S
> Poles and zeros 1~
- Generally better magnitude
response than Butterworth but
at cost of poorer phase % . I
b ’

response
Figure 4.3 Magnitude responses of Chebyshev type I (top) and type II lowpass filters



9
Elliptic Filter

- Sharpest passband to stopband transition
- Equiripple in both pass and stopbands
- Phase response is highly unlinear in passband

= Should only be used in situations where phase is not
important to design

IH(Q)|

'y

Figure 4.4 Magnitude response of elliptic lowpass filter



Frequency Transforms N

° 1 wp 1 TABLE7.1  TRANSFORMATIONS FROM A LOWPASS DIGITAL FILTER PROTOTYPE
DeSIgn 10 ass fllter and OF CUTOFF FREQUENCY 65 TO HIGHPASS, BANDPASS, AND BANDSTOP FILTERS

transform from LP to another

typ e (HP, BP, BS) Filter Type Transformations Associated Design Formulas
= sin ( glgﬂ)
. . —_ 3 - = —
- Define mapping Lowpass R — sin (%2322
wp = desired cutoff frequency
® H(Z) —_ Hlp(Z)|Z_1=G(Z_1) o
] . L cos (—,—” _w”)
= Replace Z71 in LP filter with  mignpass e I te e ()
G ( 7~ 1) . wp = desired cutoffhfrequellcy'
cos (_“’PZ*Z"”pl )
. =2 2ok —1 k=1 e w
- 0 — frequency in LP Bandpass  z-l= % Bt G .y
) kL -2 Zak -1 k = cot (%)tan (7”)
° w — frequency 111 Nnew wpy = desired lower cutoff frequency
trans forme d fil ter wp2 = desired upper cutoff frequency
2
=1 _ -~ 1+k 1+k 22 5 :
Bandstop Z 0= _}%:_2 = ]—Zf-;:‘l i —— (wpz _ w@p| )tan (fzg_)

wpy = desired lower cutoff frequency
wp2 = desired upper cutoff frequency
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lIR Filter Design

» IIR transter function

- Need to find coefficients a;, b,
= Impulse invariance — sample impulse response
- Have to deal with aliasing
= Bilinear transform

- Match magnitude response
- “Warp” frequencies to prevent aliasing



Bilinear Transform Design

- Convert digital filter into an “equivalent” analog filter
= Use bilinear “warping”

- Design analog filter using IIR design techniques

- Map analog filter into digital
= Use bilinear transform

Bilinear
form .
Digital fiter | """ | Analog filter
specifications| & — Q specifications
Analog filter
design
Bilinear
Digital filter | _transform | Anajog filter
H(z) W« H(s)

Figure 4.5 Digital IIR filter design using the bilinear transform



Bilinear Transformation

- Mapping from s-plane to z-plane
2 (z—1 2 (1-z71
T T (z-l-_l) T (1+z‘1)
- Frequency mapping
> Q=Z2tan (9)
T 2

o, @ = 2arctan (%)
- Entire jw-axis is squished into [—n/T, /T] to prevent aliasing
= Unique mapping

= Highly non-linear which requires “pre-warp” in design
[eh)

o d

z
2

QT

------------------------- —?r

Figure 4.6 Frequency warping of bilinear transform defined by (4.27)



Bilinear Design Steps

1. Convert digital filter into an id .
“equivalent” analog filter ,'
= Pre-warp using ,:'
2 w sredcrpedl I
0= () ey |
2. Design analog filter using al ol )
IIR design techniques A
> Butterworth, Chebyshev, / ,
I / Q=% tan (2)
Elliptical e | PP T, \2
~ ’/’ |
3. Map analog filter into digital :v‘ _T‘T: —————— S0
= & [
° H(z) = H(S)|  ,1-1 I T e
S=7(1+ —1) "
’ |
| |
Fa'ne
m i
A
I\
I\
: \l S
0 al al)\-/ \7lr (0]




Bilinear Design Example

Example 4.2

Design filter using bilinear transform
= H(s) =1/(s+ 1)

= Bandwith 10000 Hz

- f, = 8000 Hz

- Parameters

o w, = 2m(1000/8000) = 0.257
1. Pre-warp

o Q. = %tan(O.lZSn) =
2. Scale frequency (normalize scale)

~ s 0.8284
H(s) = H (Q_c) ~ sT+0.8284
3. Bilinear transform
_0.2929(1+z71)
H(z) = 1-0.4141z~1

0.8284




|

lIR Filter Realizations

- Different forms or structures can implement an
IIR filter

= All are equivalent mathematically (infinite
precision)

- Different practical behavior when considering
numerical effects

« Want structures to minimize error



Direct Form |

- Straight-forward - Requires (L + M) coefficients
implementation of diff. eq. and delays

b, - feed forward coefficients
- From x(n) terms
> q; - feedback coefficients

* From y(n) terms OS 3e
b v[n]
> ol > ol > O—»—0
y[n]
A A Yz
b] a
> ) ¢ = »y[n-1]
A A Yz
b a
;2 \I) cl, :2 <|Jy [n—2]
| | [
| | [
| | [
by_1 | ' aN-1 |
> < y[n-N+1]
& 71
by ay
x[n - N] > < y[n - N] OS 3e



Direct Form ||

- Notice that we can decompose - Can switch order of operations
the transfer function > H(z) = Hy(2)Hy(p)
o H(z) = H(z)H,(2) > This allows sharing of delays
* Section to implement zeros and saving in memory

section to implement poles

4 y[n]

|

[

[ b |

- aN‘— 1 bl\i -1 '
H,(2) H,(2) 1

Figure 4.7 Direct-form I realization of second-order IIR filter <

OS 3e



Cascade (Factored) Form

- Factor transfer function and decompose into smaller sub-systems
° H(z) = H(2)H,(2) ... H¢(2)

x(ny by y(n)
H, () H,(z2) - Hy (D) —

Figure 4.10 Cascade realization of digital filter

- Make each subsystem second order
> Complex conjugate roots have real coefficients

> Limit the order of subsystem (numerical effects)
- Effects limited to single subsystem stage
- Change in a single coefficient affects all poles in DF

wiln] yiln] wa[n] y2[n] ws[n] y3ln]




Parallel (Partial Fraction) Form

- Decompose transfer function
using a partial fraction
expansion

VCQ

€01 y1[n]
* H(z) = H(2) + Hy(2) + ...+ d [ ;
HK(Z) ,
. Hy(z) = —Doktbuz

1+a gz " 1+ayz=2

» Be sure to remember that PFE
requires numerator order less
than denominator

= Use polynomial long division

o [ yln]




