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Why FIR Filters?

- Always stable (finite)

- Linear phase property is guaranteed (even/odd
symmetry)

- Finite precision errors are less severe (no
feedback)

- FIR filtering is efficient for implementation

- Modern filter design is FIR design
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Filter Characteristics

- Remember the LTI system - Steady-state response
o Y(w) = Hw)X(w)

= Magnitude response
h |—>
x(n) —>| (n) y(m) C Y (@) = [H@)|X (@)
= Phase response

© Oy(w) = Py(w) +Px (w)
= Group delay

. d dw
° Trar%s¥ent response - Constant group delay for

= Rising-time — how fast output linear phase - no phase
can change (changing rate) distortion

= Settling-time — how long to = Linear phase filters
settle to stable value - dy(w) = —aw,or T — aw

> Overshoot — if output goes over - All frequencies delayed by
the desired value same amount

- Simple phase relationship
indicates a time shift by a

cy(m) =x(n—a)



Filter Types

|H(@)| [H(w) » Defined in terms of
1 ¢ magnitude response

» Note: only [0, 7] given
because with real filter
coefficients H(w) is even

S —

5 = n', > @ 5 p — » ®  symmetric across w = 0
i ¢ »  Remember this is 27
(a) Lowpass filter. (b) Highpass filter. periodic
|H(w)| |H(w)
t 1 » Bandstop with a narrow
band is called a notch
1) 1 —
; filter
R o ° Allpass filter has
e, o e e e e [H(w)l =1, Ve
(c) Bandpass filter. (d) Bandstop filter.

Figure 3.2 Magnitude responses of four different ideal filters



Filter Specifications

Defined by magnitude
response

1+ 6, .1 A,
. N . Y |
 Must give a tolerance scheme |, _ 5, > Xy b Ideal filter

= Cannot practically make ideal _ Actual filter
filters with sharp transitions
A,

* w,- passband edge frequency \
* ws- stopband edge frequency 0 O S A i N
* &, - passband ripple 0 f";an:i’go:’ 7

o A, = 2010gs 148, 1B l— Passband — i le— Stopband —|

p 1-68p

- §, - stopband attenuation

c 1-6,<|Hw)<1+6, 0sw<w
o A, = —20log,, 8, dB ’ ’ :

. |H(w)| < & W <wW<T



Linear Phase FIR Filters

- Systems have symmetry which
can be exploited

x(n) x(n-1) X(n—L/2+1)
- Even e oL e~ |
. bl = bL—l—l' [ = O, 1, ,L -1 I 2“1
e Odd x(n—L+1)
. bl = _bL—l—ll l = O) 1) "'IL - 1 z ‘ z 1r 'x(n—L/2)
‘l x(n—-L+2)
. b bL12-1
- Group delay is constant E Vo
L/2 Leven y(n)
o Td(a))=M= L—-1 L odd % )
2 0 Figure 3.5 Signal-flow diagram of symmetric FIR filter; L is an even number

- Less multiplications are
required because coefficients
are shared
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Design of FIR Filters

- Fourier series (windowing) method
> Find a desired impulse response from desired frequency response
* Hg(w) = Yr=_ o hg(n)e /"
* ham) = [*_H(w)e/*" dw
- Notice the impulse response is in general infinite
= Can make this finite only taking some of the samples (truncate)

. h(n) :{hd(n) —-M<n<M
0 else
= This can be made causal by shifting to the right by M samples

o by=h(l—M), 1=0,..,2M

- Notice that h(n) can be thought of as FS coefficients for H,; (w)
= More coefficients, better approximation



Examples

- Example 3.5 - Example 3.7

- Design a LP filter using - Design a LP filter with
windowing w, = 0.4 with L = 61.
< _L-1 _
° Hd(w)={(])- |w|l— Wc . M_T_3O
else .
- Use FT equation or in a Table by = 04sinc(0.4(1 - 30))
. - 1=0,1,..,60
of common pairs e T e
. wen we . wcen bath
hy(n) = sin —— = smc( - ) b
- Window the impulse response ol A A A T B,
and shift to make causal . foated e o el i o it
b= T e Fs Tt S I e
- e Ee= e
{ﬂsmc (2=2) o<i<L-1 Sl Bl il i |
m m i Ry i
0 else ; ; : ; ;
e o o e e
[ gl e Sl et i

0
-1 -08 -06 -04 -02 0 02 04 06 08 1
Normalized frequency

Figure 3.10 Magnitude response of lowpass filter designed by Fourier series method
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Windowing Approximation Accuracy

- Notice the rippling effect known as Gibbs
phenomenon

- Windowing is equivalent to multiplication in time
domain
> h(n) = hg(m)w(n)
= Rectangular window

(1 —-M<n<M
"0=lo e -
- Multiplication in time is convolution in frequency
domain

© H() = 5-Ha(@) * W(w)

(2M+1))

sin
. W(w) - (sinzg
2




Windowing in Frequency Domain

¢ H() = 5-Hg(w) * W(w)

= Ideal frequency response is W(ei@-)
smoothed by window DTFT /k/ A
I : [
1\ |« Hale?) |
| |
| |
i | :
sin (w(M + 1)/2) T ———— ~—
sin (0/2) (M =1) w T P> 6

Peak sidelobe

l

2w 2w T 2w w

TM+1) | M+1)

—> Aoy, Mainlobe
width

Figure 7.28 Magnitude of the Fourier transform
of a rectangular window (M = 7).
(b)
Figure 7.27 (@) Convolution process implied by truncation of the ideal
impulse response. (b) Typical approximation resulting from windowing the
ideal impulse response.
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Rectangular Window

. ((2M+1)
C W =2
sm?
- This window spectrum has
ripples which causes ripples in
H(w) at sharp transitions

= Can’t make perfectly sharp

edges
-1 -08 -06 -04 -~0.2 0 0.2 0.4 0.6 0.8 1

- Mainlobe — centered at w = 0 Normalized fequency
> Care about width I S S 0

- Sidelobes — all other ripples
= Care about height

- Gibbs phenomenon can be
managed by smoothing the

Magnitude (dB)

Magnitude (dB)

-1 -08 -06 -04 -~02 ] 02 04 0.6 0.8 1

WindOW edgeS Normalized frequency
H Results in 10W€I‘ Sid@lObe Figure 3.11 Magnitude responses of the rectangular windows for M =8 (top) and M =20 (bottom).
height and increased mainlobe
width

= Larger transition width at
discontinuity but less ringing
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Windowing Design Considerations

N W)

© H(W) = - Ha(@) * W(w)

- Ideal frequency response is
smoothed by window DTFT

« The quality of the FIR

Peak Sidelobe

approximation is dependent on Af
two factors : i g
> The width of the main lobe - — A e — Malacos ™

H The peak Side'l()be amplitude Fig. 9-2. The DTFT of a typical window, which is characterized by the width of its main lobe, A,

and the peak amplitude of its side lobes, A, relative to the amplitude of W (e/*) at w = 0.

- Want narrow main-lobe with * Increasing length of window the
small side lobe amplitude decreases the width of the
= More impulse-like mainlobe _
= Cannot optimize both at the » Decreases width of the
same time transition band
+ Peak sidelobe amplitude is
R ractically independent of
f=C . ength only depends on shape of
* N —length of filter window
* See Shaum’s DSP notes = Decrease in sidelobe amplitude

results in greater mainlobe
width



Window Functions

- Many windows have been designed to trade oft
mainlobe width and sidelobe height

> All have smooth transitions at edge of window

Table 9-1 Some Common Windows

1 0<n<N 1
Rectangular | w(n) =
0 else 0 s
|
05-05cos(2"—") 0<n<N B
Hanning' w(n) = N oy \
0 else = J
L \
2mn z 04 /! %
—_— = o, F - -
Hamming w(n) = 04 -0.46cos( N ) bRt = Y / Rectangular —\;— 3
0 else = P Bartlett — '
: 0.2 Hanning —
4 .
042 -0 SCOS(g—ﬂ—n- + 0.08 cos(-—n—’l) 0<n<N Hamming
Blackman w(n) = N N . Blackman —
0
0 else I L I i I
0 3 10 15 20 25

11n the literature, this window is also called a Hann window or a von Hann window. Weight number, n



Window Performance

Table 9-2 The Peak Side-Lobe Amplitude of Some Common Windows and the Approximate
Transition Width and Stopband Attenuation of an Nth-Order Low-Pass Filter
Designed Using the Given Window.

Window Side-Lobe Amplitude (dB) Transition Width (Af) Stopband Attenuation (dB)
Rectangular -13 0.9/N =21
Hanning =31 3.1/N —44
Hamming —41 3.3/N -53
Blackman -57 55/N -74

20 T T T T 1] T T T T el
D —
20 - 0.8
m £
o 0T : 0.6
- e
2 60 - o
& 204 |
o - — n
2 80 " Rectangular 5 Rectangular
Bartlett — = Bartlett
-100 _ 0.2 Hanning —
Hanning — )
L Hamming Hamming
1120 / Blackman —
Blackman — 04 | | | | —=ny
-140 ] ] ] |
0 S000 10000 15000 20000 0 5 :_I.D 15 20 25
Frequency (Hz) Weight number, n

http://www.labbookpages.co.uk/audio/firWindowing.html
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FIR Designh Steps

. 05 T T
1. Select window type to satisfy = O e e
stopband attenuation T 02
: = 0.1
requirements TR - l . . - RN
2. Determine window size L 0.1
.. . 0 5 10 15 20
based on transition width Weight number, n
3. Calculate window values . 2‘,(_,
. € 0.9 Window
4. Calculate impulse response = 0% I weights 3 :
of desired filter g o8 2 :
> Truncate to fixed length L % E - o
. = Yot 1
> Shift to make causal %, : " . .
. . igh ber,
5. Calculate final filter Weldnt number. n
coefficients as product of 05—
. . £ |_Final filter weights
window and desired =
response T 02
= 0.1
o b, = hy[l — Mw[l] Y IS SN MRS S—
-0.1
0 5 10 15 20

Weight number, n
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Upsampling/Interpolation

- Increase the sampling rate of a A

signal by factor L ‘
- Accomplished by inserting i

zeros into a sequence and then ;

lowpass filtering TN l

= Zero insertion is upsampling o

= LP filtering is interpolation
« xy(n) =

{x (3) n=0%L+2L,..

L
0 e lS e Hy(e)
» Resulting signal has more L

samples but gaps between | | | ] ]
= = 7 T 27 w=QOT;
values '

- LP filter using gain U and
cutoff = w/U

= Gain of L to “spread” sample /N

energy to neighbor zeros '

™3

w=QT,

Figure 4.24 Frequency-domain illustration of interpolation.
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Downsampling/Decimation

Reduce the sampling rate of a
signal by factor D

Accomplished by dropping

Q

samples
xg(n) = x(nD)
Remember bandwidth is

—a —wy

controlled by sampling rate
> Both sampling rate and

bandwidth decrease by factor

D

= This may result in aliasing of
the signal

(d)

X(e/) = Hy(e™)X(e/?)

PR T

Avoid aliasing by pre-filtering
signal with LP filter with cutoff
= /M before decimation

(e

1
T m
3

7=
M
)

27

0}
Figure 4.21 (a)—(c) Downsampling with aliasing. (d)—(f) Downsampling

with prefiltering to avoid aliasing.

27

0=QT,
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Arbitrary Sample Rate Conversion

- Conversion to arbitrary sample rate is possible

s R=U/D
- Must find appropriate upsample factor U and
downsample factor D

- First perform interpolation followed by decimation
= Minimize reduction in signal bandwidth
* No fear of aliasing in upsample

= Downsampling first could result in loss of high
frequency content

- Can combine interpolation LP filter with LP for
decimation
= Cuttoff should be minimum of either operation

- Use Matlab interp.m, decimate.m, and
upfindn.m/resample.m



