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EE482/682: DSP APPLICATIONS
OVERVIEW OF ML AND NEURAL NETWORKS
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Géron Chapter 1 + 10

http://www.ee.unlv.edu/~b1morris/ecg482


 Géron Chapter 1 – Machine Learning (ML) Landscape 
 What is ML

 Why use ML

 Types of ML systems

 Challenges

 Géron Chapter 10 – Intro Artificial Neural Networks 
(ANNs)
 Biological inspiration

 Perceptron

 Multilayer perceptron (MLP)
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OUTLINE



 [Machine Learning is the] field of study that gives computers the 
ability to learn without being explicitly programmed. – Arthur 
Samuel, 1959

 A computer program is said to learn from experience E with 
respect to some task T and some performance measure P, if its 
performance on T, as measured by P, improves with experience E. 
– Tom Mitchell, 1997

 Machine Learning is the science (and art) of programming 
computers so they can learn from data
 Not enough to have lots of data, must be able to use data to solve a task
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WHAT IS ML?



 Traditional approach has complex rules and 
difficult to maintain

 Can inform humans of what was learned for 
new insight into a problem

 ML learns from data making code shorter, 
easier to maintain, and more accurate

 Can automatically be updated to changes
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WHY USE ML?



 Analyzing production line images to 
classify or detecting tumors in brain 
scans
 Chapter 14 – convolutional neural 

networks (CNNs)

 Visual representation of complex, high-
dimensional data
 Chapter 8 – data visualization and data 

reduction

 Intelligent bot for a game
 Chapter 18 – reinforcement learning (RL)

 Forecasting future company revenue
 Chapter 4, 5, 7, 10, 15, 16 – regression 

using classical (linear/polynomial 
regression, SVM, Random Forest or deep 
learning methods)

 News article classification, flagging 
offensive comments, long document 
summarization, chatbot creation
 Chapter 16 – natural language processing 

(NLP) 

 Making an app react to voice 
commands
 Chapter 15/16 – recurrent neural networks 

(RNNs), CNNs, Transformers

 Detecting credit card fraud, segmenting 
customers for marketing strategy
 Chapter 9 – anomaly detection, clustering

 Product recommendations based on 
past purchases
 Chapter 10 – ANN
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EXAMPLE APPLICATIONS



Broad categories:
 Training with human supervision (supervised, 

unsupervised, semi-supervised, and reinforcement 
learning)

 Learning incrementally or on the fly (online vs batch 
learning)

 Comparison with known data points or by finding 
patterns in training data to build predictive models 
(instance-based vs model-based learning)

Criteria are not exclusive and can be combined
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TYPES OF ML SYSTEMS



 Training with data and labels (desired solutions)

 Typical tasks
 Classification: determine data class
 Spam filter: data=emails, 

label={spam, not-spam}

 Regression: predict target numeric value
 Price of car: data=features 

(mileage, age, brand, etc.) label=price

 Important algorithms
 k-NN, linear and logistic regression, SVM, decision trees and 

random forests, neural networks
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SUPERVISED LEARNING



 Training with unlabeled data (no 
teacher)

 Important algorithms
 Clustering – discovering groups

 K-means, DBSCAN

 Visualization and dimensionality 
reduction – reduce feature dimension 
and maintain structure
 (Kernel) principle component analysis 

(PCA), LLE, t-SNE

 Anomaly/novelty detection – find 
unusual test data
 One-class SVM, isolation forest

 Association rule learning – find 
relations between features
 Apriori, Eclat
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UNSUPERVISED LEARNING



 Training with partially labeled 
data 
 Lots of unlabeled and few labeled 

instances

 Most are combination of 
unsupervised and supervised 
algorithms
 Deep belief networks (DBNs) are 

based on stacked unsupervised 
restricted Boltzmann machines 
(RBMs) that are fine-tuned using 
supervised learning techniques

 Example: Google Photos
 Given large personal photo library

 Automatically cluster photos into 
groups of people

 Supervision when specify name of 
group

 Need to merge and split groups to fine-
tune
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SEMI-SUPERVISED LEARNING



 Agent-based learning paradigm
 Agent – learning system that can 

observe environment, select and 
perform actions, and get rewards

 Rewards/penalties – “value” 
associated with actions

 Policy – strategy, action to choose 
which is learned to maximize 
reward over time

 Popular for robotics and game 
playing 
 E.g. DeepMind’s Q-Learning 

Atari Breakout or AlphaGo
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REINFORCEMENT LEARNING

https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=SUbqykXVx0A


 Learning uses all available data
 Offline learning – train then launched into production 

with no more training
 Often because of heavy time and resource requirements

 Can update model fairly easily by incorporating new 
data (say every 24 hours)

 Does not work in many situations
 Rapidly changing data – need to adapt more quickly
 Big data and computational restrictions – too costly to 

train, too large to batch, or not enough resources (mobile 
phone or Mars rover)
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BATCH LEARNING



 Incremental training by feeding data 
instances sequentially
 Use of mini-batch – small groupings of data

 Well-suited for streaming data or limited 
computing resources
 Can react/adapt quickly to changes 

autonomously

 Can discard samples after incorporating into 
model

 Out-of-core learning for large datasets that do 
not fit in memory

 Learning-rate – how fast to adapt to 
changing data
 High: quickly adapt, but forget old

 Low: less sensitive to noise/outliers but slower 
to update (inertia)

 Major challenge: graceful degradation over 
time
 How to handle bad data that comes in?
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ONLINE LEARNING



System learns examples by-heart, then generalizes 
to new cases using a similarity measure

 Simple learning method (e.g k-NN)

 Needs to store instances (database)

 Define meaningful similarity measure
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INSTANCE-BASED LEARNING



 Build model of examples and use 
model to make predictions

 Need to choose a “model”

 Tune parameters for good fit
 Define utility/fitness function for 

goodness or cost function for badness 
of fit

 Data

 Linear model
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MODEL-BASED LEARNING



 “Bad Data”

 Insufficient quantity of data – not enough

 Non-representative data – biased data

 Poor quality data – errors, noise, outliers

 Irrelevant features – not measuring the right things

 “Bad Algorithms”

 Overfitting – overreliance on limited training data 

 Underfitting – not enough model capacity
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MAIN CHALLENGES OF ML



 ML still requires a lot of data to 
work properly 
 1000s or more (millions for 

image/speech)

 The Unreasonable Effectiveness of 
Data
 Given enough data, very different ML 

algorithms (including fairly simple) all 
perform similarly 

 “Reconsider trade-off between spending 
time and money on algorithm 
development versus spending it on 
corpus development”

 Has led to much of modern ML and 
computer vision  massive datasets

 Do we now have enough (too much) data?
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INSUFFICIENT QUANTITY OF TRAINING DATA



 Training data must be 
representative of test cases to 
generalize well

 Dashed blue old model using blue 
dots

 Solid line trained using also red 
squares

 Poor performance with old model

 Especially with poor and rich countries

 Sampling noise –
nonrepresentative sample data 
due to chance

 Sampling bias – training 
samples have systematic issue 
in collection which produces 
non-uniformity (or mis-
matching of underlying 
distribution)
 E.g. facial recognition systems 

performing poorly on darker skin 
tones
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NONREPRESENTITIVE TRAINING DATA



Data full of errors, outliers, and noise (e.g., due to 
poor-quality measurements)
 Will make it harder to detect underlying patterns and 

less likely to perform well

Data scientist spend significant time to cleaning up 
data
 Clear outliers – discard or manually fix errors

 Missing a few features – decide to ignore attribute, 
instances with “holes”, fill in missing value, or train 
multiple models (with/without missing features)
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POOR-QUALITY DATA



 Garbage in, garbage out
 Can only learn if features are relevant, not too much irrelevant info

 Feature engineering – process of determining a good set of 
features to train on
 Feature selection – select most useful features among all 

available/existing features

 Feature extraction – combining existing features to produce more 
useful ones

 Creating new features by gathering new data

 Classical ML uses “hand-crafted” features while deep 
learning has data-driven features
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IRRELEVANT FEATURES



 Overgeneralizing based on 
limited data

 Model is too complex relative to 
the amount of noisiness in the 
training data  modeling noise 

 Good performance on training but 
poor generalization (bad 
performance on test)

 Options to address problem
 Simplify model by selecting one 

with fewer parameters, reducing 
the number of features, or 
constraining model

 Gather more training data

 Reduce noise in training data 
(e.g., fix data errors and remove 
outliers)
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OVERFITTING THE TRAINING DATA

High degree polynomial with overfitting



 Constraining a model to make it simpler and reduce the risk of 
overfitting
 E.g. constrain parameters to limit search space

 Hyperparameter – parameter of a learning algorithm (not model) 
to control regularlization
 Constant set prior to training
 Not affected by the learning parameter itself

 Will have to tune (train) hyperparameters for best performance 
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REGULARLIZATION



Occurs when your model is too simple to learn the 
underlying structure of the data
 Data is more complex that your selected model

 Predictions will be poor, even on training data

Options to address the problem
 Select a more powerful model, with more parameters

 Use better features (feature engineering)

 Reduce the constraints on the model (e.g., reduce 
regularization hyperparameter)

22

UNDERFITTING THE TRAINING DATA



 ML – making machines get better at a task by learning from 
data rather than explicitly coding rules

 ML comes in many flavors: un/supervised, batch/online, 
instance/model-based

 ML steps
 Select modeling approach
 Feed data to learning algorithm
 Tune parameters to fit model to training data

 ML systems do not perform well if:
 Training data is too small
 Data is too noisy or polluted with irrelevant features
 Model is too simple or too complex 
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BIG PICTURE



 Most important goal for ML is to generalize well
 Model should behave as expected to new unseen cases
 Evaluate and fine-tune models to be sure it works well

 Split training into training and test sets
 Training data – used to train model 
 Test data – test model on unseen data and measure the 

error rate (generalization or out-of-sample error) to estimate 
how well model performs

 Low training and test error is desired
 Low training error but high test error means the model is 

overfitting
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TESTING AND VALIDATION



 Must select a model with various # parameters (e.g. linear and 
polynomial) and add regularization to avoid overfitting

 Can use test set for model generalization but not for regularization 
parameter tuning (test set tuning)

 Use a validation (val or development or dev set) for holdout validation
 Subset of training data used specifically for model and hyper parameter tuning
 Train full model on train+val and get generalization error on test set

 Cross-validation (multiple train/val data splits) can be used for better 
characterization with smaller datasets by averaging performance across 
splits
 Val too small  imprecise model evaluations
 Val too large  not enough training data
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HYPERPARAMETER TUNING AND MODEL SELECTION



 Data must be representative 

 Don’t want to train on magazine/professional (web) images 
if the use case are coming from user cell phones

 Makes sure val/test sets match use case

 Train-dev set is split of training data used to determine 
if model is overfitting or if there is data mismatch

 Poor val performance  data mismatch

 Poor train-dev performance  overfit and need to simplify 
model, add regularization, get more data, or clean data
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DATA MISMATCH



 If you make absolutely no assumptions about the 
data, then there is no reason to prefer one model 
over any other – David Wolpert 1996

A priori, there is no model guaranteed to work 
better
 Cannot test all possible models

 Must make reasonable assumptions about the data and 
evaluate only a few reasonable models
 Simple tasks – linear models with regularization

 Complex tasks – neural networks
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NO FREE LUNCH THEOREM



 Géron Chapter 1 – Machine Learning (ML) Landscape 
 What is ML

 Why use ML

 Types of ML systems

 Challenges

 Géron Chapter 10 – Intro Artificial Neural Networks 
(ANNs)
 Biological inspiration

 Perceptron

 Multilayer perceptron (MLP)
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OUTLINE



 Artificial neural networks (ANNs) first introduced in 1943

 Excitement with ANNs waned in the 1960s

 1980s had renewed interest but was overtaken in the 1990s 
with ML techniques such as SVM

 Since 2010s major renewed interest 
 Huge quantities of data are available to train networks

 Major computing power increases for reduced training times (GPU 
and cloud)

 Improved training algorithms

 Local optima issue rare

 Lots of funding in ANNs (Artificial Intelligence/Deep Learning)
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FROM BIOLOGICAL TO ARTIFICIAL NEURONS



 Cell mostly found in animal brains
 Produce short electrical impulses 

(action potentials, APs, or signals) 
to make synapses release chemical 
signals (neurotransmitters)

 When a neuron receives enough 
neurotransmitters it fires its own 
electrical pulses

 Individual neurons are simple but 
arranged into vast networks of 
billions
 Each neuron connected to thousands of 

other neurons

 Neurons seem to be organized in 
consecutive layers
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BIOLOGICAL NEURONS



 Artificial neuron proposed by 
McCulloch and Pitts
 Simple binary inputs and one 

binary output

 Activates output when certain 
number of inputs on/active

 Even with the simple model, 
any logical proposition can be 
computed

 Basic building block networks 
can be combined for more 
complex logical expressions
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LOGICAL COMPUTATIONS WITH NEURONS

 Building block networks

 Implement basic logic functions



 Invented by Frank Rosenblatt in 
1957

 Inputs/outputs are numbers 
(instead of binary)

 Based on threshold logic unit (TLU) 
or linear threshold unit

 Inputs associated with a weight
 TLU computes weighted sum of 

input

 𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3

 Output after a step (threshold) 
function
 Heavyside of sign function

 TLU can be used as a simple linear 
binary classifier
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THE PERCEPTRON I (TLU)



 Perceptron is a layer for TLU 
 Fully connected (dense) layer –

all inputs connected to all 
neurons

 Input neuron – pass value 
through unchanged

 Bias neuron – always outputs 1

 Example: Multilabel classifier
 2 inputs 3 outputs

 Can classify into three binary 
classes based on two input values
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THE PERCEPTRON II



 Output of fully connected layer

ℎ𝑊,𝑏 𝑋 = 𝜙(𝑋𝑊 + 𝑏)
 𝑋 – matrix of input features

 𝑊 – weight matrix (all weights 
between input and neurons)
 One row per input neuron

 One column per neuron layer

 𝑏 – bias (weights) vector 

 𝜙 – activation function (e.g. step)

 Produces linear (non-complex) 
decision boundary

 Perceptron training – reinforce 
connections that reduce 
prediction error 

𝑤𝑖,𝑗
(𝑛𝑒𝑥𝑡 𝑠𝑡𝑒𝑝)

= 𝑤𝑖,𝑗 + 𝜂 𝑦𝑗 −  𝑦𝑗 𝑥𝑖

 𝑤𝑖,𝑗 - connection weight between 
ith input and jth output neuron

 𝑥𝑖 - ith input value

  𝑦𝑗 - perceptron output of jth
neuron

 𝑦𝑗 - target (ground truth) output 
of jth neuron

 𝜂 – learning rate
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THE PERCEPTRON III



 Stack TLU layers for more 
complicated functions

 Input layer - passthrough

 Hidden layer – intermediate TLU 
layer

 Output layer – final fully 
connected TLU layer

 Lower layers – closer to input

 Upper layers – closer to output

 Deep neural network (DNN) 
has many hidden layers
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MULTILAYER PERCEPTRON (MLP)



Effective method to train a MLP developed in 1986

 Gradient Descent method with efficient gradient 
computation technique

 Single forward-backward pass through network to 
compute gradient of network error for all model 
parameters

 Can update all connection weights and bias terms

Backpropagation uses reverse-mode autodiff to 
automatically compute gradients (Appendix D)
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BACKPROPAGATION I



 Process full dataset each epoch
 Use mini-batch at each iteration – larger more efficient and more stable gradient 

but requires more memory

 Mini-batch of input is sent through the MLP in a forward pass (from input 
to output prediction)
 All intermediate results (from hidden layers) are saved for backward pass

 Measure current network prediction error
 Use of loss function to define error metric

 Compute contribution of each connection to the total error
 Performed backward from output through hidden layers back to input using the 

chain rule

 Perform Gradient Descent step to adjust all connection weights
 Using the error gradients from the backward pass
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BACKPROPAGATION II



 Cannot use step for activation 
since it has no gradient 
information

 Sigmoid (logistic) function

 𝜎 𝑧 = 1/(1 + exp −𝑧 )

 S-shaped between [0, 1]

 Hyperbolic tangent function

 tanh 𝑧 = 2𝜎 2𝑧 − 1

 Output between [-1,1] helps speed 
convergence

 Rectified Linear Unit function

 𝑅𝑒𝐿𝑈 𝑧 = max(0, 𝑧)

 Not differentiable, but works well 
and fast so popular
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ACTIVATION FUNCTIONS

Activation functions 
add non-linearity!



 Single output neuron
 Mulivariate regression requires an 

output neuron for each output 
dimension 

 2: (x,y) for center of object 

 4: (x,y,h,w) for a bounding box around 
object

 Output activation 
 No activation – no limits on output 

range of value

 ReLU or softplus (smooth ReLU) –
positive output only

 Scaled sigmoid/tanh – fixed output 
range

 Loss function

 Mean squared error (L2 norm)

 Mean absolute error (L1 norm) 
when there are a lot of outliers

 Huber loss is a combination

 Regression MLP summary
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REGRESSION MLPs



Single class (binary) – single output neuron

 Output between [0,1] using sigmoid 

 Estimate probability of positive class (confidence)

Multilabel binary – output neuron for every binary 
classification

 Output between [0,1] using sigmoid

 Output probabilities do not sum to one

 Combinational output space
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CLASSIFICATION MLPs I



 Multiclass classification – multiple 
possible classes (e.g. number 0-9)
 Each input instance can only belong to a 

single class (>2)

 One output neuron per class

 Softmax activation on the full output 
layer (Chapter 4 pg 148)

  𝑝𝑘 = 𝜎 𝑠 𝑥
𝑘
=

exp 𝑠𝑘 𝑥

 𝑗 exp(𝑠𝑗 𝑥 )

 𝑠𝑘 𝑥 = 𝜃 𝑘 𝑇
𝑥

 Estimated probabilities between [0,1] and 
sum to 1

 Cross entropy loss

 𝐽 𝜃 = −
1

𝑚
 𝑖  𝑘 𝑦𝑘

(𝑖)
log  𝑝𝑘

𝑖

 Penalizes models with low probability 
estimate for the ground truth class

 Classification summary
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CLASSIFICATION MLPs II



 Many hyperparameters must be tweaked for good model performance
 Grid search can evaluate different hyperparameter combinations  slow

 Book gives other libraries for hyperparam optimization

 These typically explore more in good hyperparameter space

 Number of hidden layers  deeper is better
 Transfer learning – reuse lower layers from network trained on large dataset (good 

initialization and avoid cost of learning from scratch)

 Number of neurons per hidden layers  use fixed size 
 Activation function  ReLU works well
 Learning rate – very important parameter, need learning schedule
 Optimizer – more than just mini-batch gradient descent (e.g. Adam)
 Batch size – significant impact on model performance and training time

 Large batch – efficiently process for reduced training time  maximize for GPU with 
learning rate warm-up (schedule)

 Small batch – more stable early in learning and good generalization
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FINE-TUNING HYPERPARAMETERS


