
http://www.ee.unlv.edu/~b1morris/ecg482

EE482/682: DSP APPLICATIONS
OVERVIEW OF ML AND NEURAL NETWORKS

1

Géron Chapter 1 + 10

http://www.ee.unlv.edu/~b1morris/ecg482

 Géron Chapter 1 – Machine Learning (ML) Landscape
 What is ML

 Why use ML

 Types of ML systems

 Challenges

 Géron Chapter 10 – Intro Artificial Neural Networks
(ANNs)
 Biological inspiration

 Perceptron

 Multilayer perceptron (MLP)

2

OUTLINE

 [Machine Learning is the] field of study that gives computers the
ability to learn without being explicitly programmed. – Arthur
Samuel, 1959

 A computer program is said to learn from experience E with
respect to some task T and some performance measure P, if its
performance on T, as measured by P, improves with experience E.
– Tom Mitchell, 1997

 Machine Learning is the science (and art) of programming
computers so they can learn from data
 Not enough to have lots of data, must be able to use data to solve a task

3

WHAT IS ML?

 Traditional approach has complex rules and
difficult to maintain

 Can inform humans of what was learned for
new insight into a problem

 ML learns from data making code shorter,
easier to maintain, and more accurate

 Can automatically be updated to changes

4

WHY USE ML?

 Analyzing production line images to
classify or detecting tumors in brain
scans
 Chapter 14 – convolutional neural

networks (CNNs)

 Visual representation of complex, high-
dimensional data
 Chapter 8 – data visualization and data

reduction

 Intelligent bot for a game
 Chapter 18 – reinforcement learning (RL)

 Forecasting future company revenue
 Chapter 4, 5, 7, 10, 15, 16 – regression

using classical (linear/polynomial
regression, SVM, Random Forest or deep
learning methods)

 News article classification, flagging
offensive comments, long document
summarization, chatbot creation
 Chapter 16 – natural language processing

(NLP)

 Making an app react to voice
commands
 Chapter 15/16 – recurrent neural networks

(RNNs), CNNs, Transformers

 Detecting credit card fraud, segmenting
customers for marketing strategy
 Chapter 9 – anomaly detection, clustering

 Product recommendations based on
past purchases
 Chapter 10 – ANN

5

EXAMPLE APPLICATIONS

Broad categories:
 Training with human supervision (supervised,

unsupervised, semi-supervised, and reinforcement
learning)

 Learning incrementally or on the fly (online vs batch
learning)

 Comparison with known data points or by finding
patterns in training data to build predictive models
(instance-based vs model-based learning)

Criteria are not exclusive and can be combined

6

TYPES OF ML SYSTEMS

 Training with data and labels (desired solutions)

 Typical tasks
 Classification: determine data class
 Spam filter: data=emails,

label={spam, not-spam}

 Regression: predict target numeric value
 Price of car: data=features

(mileage, age, brand, etc.) label=price

 Important algorithms
 k-NN, linear and logistic regression, SVM, decision trees and

random forests, neural networks

7

SUPERVISED LEARNING

 Training with unlabeled data (no
teacher)

 Important algorithms
 Clustering – discovering groups

 K-means, DBSCAN

 Visualization and dimensionality
reduction – reduce feature dimension
and maintain structure
 (Kernel) principle component analysis

(PCA), LLE, t-SNE

 Anomaly/novelty detection – find
unusual test data
 One-class SVM, isolation forest

 Association rule learning – find
relations between features
 Apriori, Eclat

8

UNSUPERVISED LEARNING

 Training with partially labeled
data
 Lots of unlabeled and few labeled

instances

 Most are combination of
unsupervised and supervised
algorithms
 Deep belief networks (DBNs) are

based on stacked unsupervised
restricted Boltzmann machines
(RBMs) that are fine-tuned using
supervised learning techniques

 Example: Google Photos
 Given large personal photo library

 Automatically cluster photos into
groups of people

 Supervision when specify name of
group

 Need to merge and split groups to fine-
tune

9

SEMI-SUPERVISED LEARNING

 Agent-based learning paradigm
 Agent – learning system that can

observe environment, select and
perform actions, and get rewards

 Rewards/penalties – “value”
associated with actions

 Policy – strategy, action to choose
which is learned to maximize
reward over time

 Popular for robotics and game
playing
 E.g. DeepMind’s Q-Learning

Atari Breakout or AlphaGo

10

REINFORCEMENT LEARNING

https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=SUbqykXVx0A

 Learning uses all available data
 Offline learning – train then launched into production

with no more training
 Often because of heavy time and resource requirements

 Can update model fairly easily by incorporating new
data (say every 24 hours)

 Does not work in many situations
 Rapidly changing data – need to adapt more quickly
 Big data and computational restrictions – too costly to

train, too large to batch, or not enough resources (mobile
phone or Mars rover)

11

BATCH LEARNING

 Incremental training by feeding data
instances sequentially
 Use of mini-batch – small groupings of data

 Well-suited for streaming data or limited
computing resources
 Can react/adapt quickly to changes

autonomously

 Can discard samples after incorporating into
model

 Out-of-core learning for large datasets that do
not fit in memory

 Learning-rate – how fast to adapt to
changing data
 High: quickly adapt, but forget old

 Low: less sensitive to noise/outliers but slower
to update (inertia)

 Major challenge: graceful degradation over
time
 How to handle bad data that comes in?

12

ONLINE LEARNING

System learns examples by-heart, then generalizes
to new cases using a similarity measure

 Simple learning method (e.g k-NN)

 Needs to store instances (database)

 Define meaningful similarity measure

13

INSTANCE-BASED LEARNING

 Build model of examples and use
model to make predictions

 Need to choose a “model”

 Tune parameters for good fit
 Define utility/fitness function for

goodness or cost function for badness
of fit

 Data

 Linear model

14

MODEL-BASED LEARNING

 “Bad Data”

 Insufficient quantity of data – not enough

 Non-representative data – biased data

 Poor quality data – errors, noise, outliers

 Irrelevant features – not measuring the right things

 “Bad Algorithms”

 Overfitting – overreliance on limited training data

 Underfitting – not enough model capacity

15

MAIN CHALLENGES OF ML

 ML still requires a lot of data to
work properly
 1000s or more (millions for

image/speech)

 The Unreasonable Effectiveness of
Data
 Given enough data, very different ML

algorithms (including fairly simple) all
perform similarly

 “Reconsider trade-off between spending
time and money on algorithm
development versus spending it on
corpus development”

 Has led to much of modern ML and
computer vision massive datasets

 Do we now have enough (too much) data?

16

INSUFFICIENT QUANTITY OF TRAINING DATA

 Training data must be
representative of test cases to
generalize well

 Dashed blue old model using blue
dots

 Solid line trained using also red
squares

 Poor performance with old model

 Especially with poor and rich countries

 Sampling noise –
nonrepresentative sample data
due to chance

 Sampling bias – training
samples have systematic issue
in collection which produces
non-uniformity (or mis-
matching of underlying
distribution)
 E.g. facial recognition systems

performing poorly on darker skin
tones

17

NONREPRESENTITIVE TRAINING DATA

Data full of errors, outliers, and noise (e.g., due to
poor-quality measurements)
 Will make it harder to detect underlying patterns and

less likely to perform well

Data scientist spend significant time to cleaning up
data
 Clear outliers – discard or manually fix errors

 Missing a few features – decide to ignore attribute,
instances with “holes”, fill in missing value, or train
multiple models (with/without missing features)

18

POOR-QUALITY DATA

 Garbage in, garbage out
 Can only learn if features are relevant, not too much irrelevant info

 Feature engineering – process of determining a good set of
features to train on
 Feature selection – select most useful features among all

available/existing features

 Feature extraction – combining existing features to produce more
useful ones

 Creating new features by gathering new data

 Classical ML uses “hand-crafted” features while deep
learning has data-driven features

19

IRRELEVANT FEATURES

 Overgeneralizing based on
limited data

 Model is too complex relative to
the amount of noisiness in the
training data modeling noise

 Good performance on training but
poor generalization (bad
performance on test)

 Options to address problem
 Simplify model by selecting one

with fewer parameters, reducing
the number of features, or
constraining model

 Gather more training data

 Reduce noise in training data
(e.g., fix data errors and remove
outliers)

20

OVERFITTING THE TRAINING DATA

High degree polynomial with overfitting

 Constraining a model to make it simpler and reduce the risk of
overfitting
 E.g. constrain parameters to limit search space

 Hyperparameter – parameter of a learning algorithm (not model)
to control regularlization
 Constant set prior to training
 Not affected by the learning parameter itself

 Will have to tune (train) hyperparameters for best performance

21

REGULARLIZATION

Occurs when your model is too simple to learn the
underlying structure of the data
 Data is more complex that your selected model

 Predictions will be poor, even on training data

Options to address the problem
 Select a more powerful model, with more parameters

 Use better features (feature engineering)

 Reduce the constraints on the model (e.g., reduce
regularization hyperparameter)

22

UNDERFITTING THE TRAINING DATA

 ML – making machines get better at a task by learning from
data rather than explicitly coding rules

 ML comes in many flavors: un/supervised, batch/online,
instance/model-based

 ML steps
 Select modeling approach
 Feed data to learning algorithm
 Tune parameters to fit model to training data

 ML systems do not perform well if:
 Training data is too small
 Data is too noisy or polluted with irrelevant features
 Model is too simple or too complex

23

BIG PICTURE

 Most important goal for ML is to generalize well
 Model should behave as expected to new unseen cases
 Evaluate and fine-tune models to be sure it works well

 Split training into training and test sets
 Training data – used to train model
 Test data – test model on unseen data and measure the

error rate (generalization or out-of-sample error) to estimate
how well model performs

 Low training and test error is desired
 Low training error but high test error means the model is

overfitting

24

TESTING AND VALIDATION

 Must select a model with various # parameters (e.g. linear and
polynomial) and add regularization to avoid overfitting

 Can use test set for model generalization but not for regularization
parameter tuning (test set tuning)

 Use a validation (val or development or dev set) for holdout validation
 Subset of training data used specifically for model and hyper parameter tuning
 Train full model on train+val and get generalization error on test set

 Cross-validation (multiple train/val data splits) can be used for better
characterization with smaller datasets by averaging performance across
splits
 Val too small imprecise model evaluations
 Val too large not enough training data

25

HYPERPARAMETER TUNING AND MODEL SELECTION

 Data must be representative

 Don’t want to train on magazine/professional (web) images
if the use case are coming from user cell phones

 Makes sure val/test sets match use case

 Train-dev set is split of training data used to determine
if model is overfitting or if there is data mismatch

 Poor val performance data mismatch

 Poor train-dev performance overfit and need to simplify
model, add regularization, get more data, or clean data

26

DATA MISMATCH

 If you make absolutely no assumptions about the
data, then there is no reason to prefer one model
over any other – David Wolpert 1996

A priori, there is no model guaranteed to work
better
 Cannot test all possible models

 Must make reasonable assumptions about the data and
evaluate only a few reasonable models
 Simple tasks – linear models with regularization

 Complex tasks – neural networks

27

NO FREE LUNCH THEOREM

 Géron Chapter 1 – Machine Learning (ML) Landscape
 What is ML

 Why use ML

 Types of ML systems

 Challenges

 Géron Chapter 10 – Intro Artificial Neural Networks
(ANNs)
 Biological inspiration

 Perceptron

 Multilayer perceptron (MLP)

28

OUTLINE

 Artificial neural networks (ANNs) first introduced in 1943

 Excitement with ANNs waned in the 1960s

 1980s had renewed interest but was overtaken in the 1990s
with ML techniques such as SVM

 Since 2010s major renewed interest
 Huge quantities of data are available to train networks

 Major computing power increases for reduced training times (GPU
and cloud)

 Improved training algorithms

 Local optima issue rare

 Lots of funding in ANNs (Artificial Intelligence/Deep Learning)

29

FROM BIOLOGICAL TO ARTIFICIAL NEURONS

 Cell mostly found in animal brains
 Produce short electrical impulses

(action potentials, APs, or signals)
to make synapses release chemical
signals (neurotransmitters)

 When a neuron receives enough
neurotransmitters it fires its own
electrical pulses

 Individual neurons are simple but
arranged into vast networks of
billions
 Each neuron connected to thousands of

other neurons

 Neurons seem to be organized in
consecutive layers

30

BIOLOGICAL NEURONS

 Artificial neuron proposed by
McCulloch and Pitts
 Simple binary inputs and one

binary output

 Activates output when certain
number of inputs on/active

 Even with the simple model,
any logical proposition can be
computed

 Basic building block networks
can be combined for more
complex logical expressions

31

LOGICAL COMPUTATIONS WITH NEURONS

 Building block networks

 Implement basic logic functions

 Invented by Frank Rosenblatt in
1957

 Inputs/outputs are numbers
(instead of binary)

 Based on threshold logic unit (TLU)
or linear threshold unit

 Inputs associated with a weight
 TLU computes weighted sum of

input

 𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3

 Output after a step (threshold)
function
 Heavyside of sign function

 TLU can be used as a simple linear
binary classifier

32

THE PERCEPTRON I (TLU)

 Perceptron is a layer for TLU
 Fully connected (dense) layer –

all inputs connected to all
neurons

 Input neuron – pass value
through unchanged

 Bias neuron – always outputs 1

 Example: Multilabel classifier
 2 inputs 3 outputs

 Can classify into three binary
classes based on two input values

33

THE PERCEPTRON II

 Output of fully connected layer

ℎ𝑊,𝑏 𝑋 = 𝜙(𝑋𝑊 + 𝑏)
 𝑋 – matrix of input features

 𝑊 – weight matrix (all weights
between input and neurons)
 One row per input neuron

 One column per neuron layer

 𝑏 – bias (weights) vector

 𝜙 – activation function (e.g. step)

 Produces linear (non-complex)
decision boundary

 Perceptron training – reinforce
connections that reduce
prediction error

𝑤𝑖,𝑗
(𝑛𝑒𝑥𝑡 𝑠𝑡𝑒𝑝)

= 𝑤𝑖,𝑗 + 𝜂 𝑦𝑗 − 𝑦𝑗 𝑥𝑖

 𝑤𝑖,𝑗 - connection weight between
ith input and jth output neuron

 𝑥𝑖 - ith input value

 𝑦𝑗 - perceptron output of jth
neuron

 𝑦𝑗 - target (ground truth) output
of jth neuron

 𝜂 – learning rate

34

THE PERCEPTRON III

 Stack TLU layers for more
complicated functions

 Input layer - passthrough

 Hidden layer – intermediate TLU
layer

 Output layer – final fully
connected TLU layer

 Lower layers – closer to input

 Upper layers – closer to output

 Deep neural network (DNN)
has many hidden layers

35

MULTILAYER PERCEPTRON (MLP)

Effective method to train a MLP developed in 1986

 Gradient Descent method with efficient gradient
computation technique

 Single forward-backward pass through network to
compute gradient of network error for all model
parameters

 Can update all connection weights and bias terms

Backpropagation uses reverse-mode autodiff to
automatically compute gradients (Appendix D)

36

BACKPROPAGATION I

 Process full dataset each epoch
 Use mini-batch at each iteration – larger more efficient and more stable gradient

but requires more memory

 Mini-batch of input is sent through the MLP in a forward pass (from input
to output prediction)
 All intermediate results (from hidden layers) are saved for backward pass

 Measure current network prediction error
 Use of loss function to define error metric

 Compute contribution of each connection to the total error
 Performed backward from output through hidden layers back to input using the

chain rule

 Perform Gradient Descent step to adjust all connection weights
 Using the error gradients from the backward pass

37

BACKPROPAGATION II

 Cannot use step for activation
since it has no gradient
information

 Sigmoid (logistic) function

 𝜎 𝑧 = 1/(1 + exp −𝑧)

 S-shaped between [0, 1]

 Hyperbolic tangent function

 tanh 𝑧 = 2𝜎 2𝑧 − 1

 Output between [-1,1] helps speed
convergence

 Rectified Linear Unit function

 𝑅𝑒𝐿𝑈 𝑧 = max(0, 𝑧)

 Not differentiable, but works well
and fast so popular

38

ACTIVATION FUNCTIONS

Activation functions
add non-linearity!

 Single output neuron
 Mulivariate regression requires an

output neuron for each output
dimension

 2: (x,y) for center of object

 4: (x,y,h,w) for a bounding box around
object

 Output activation
 No activation – no limits on output

range of value

 ReLU or softplus (smooth ReLU) –
positive output only

 Scaled sigmoid/tanh – fixed output
range

 Loss function

 Mean squared error (L2 norm)

 Mean absolute error (L1 norm)
when there are a lot of outliers

 Huber loss is a combination

 Regression MLP summary

39

REGRESSION MLPs

Single class (binary) – single output neuron

 Output between [0,1] using sigmoid

 Estimate probability of positive class (confidence)

Multilabel binary – output neuron for every binary
classification

 Output between [0,1] using sigmoid

 Output probabilities do not sum to one

 Combinational output space

40

CLASSIFICATION MLPs I

 Multiclass classification – multiple
possible classes (e.g. number 0-9)
 Each input instance can only belong to a

single class (>2)

 One output neuron per class

 Softmax activation on the full output
layer (Chapter 4 pg 148)

 𝑝𝑘 = 𝜎 𝑠 𝑥
𝑘
=

exp 𝑠𝑘 𝑥

 𝑗 exp(𝑠𝑗 𝑥)

 𝑠𝑘 𝑥 = 𝜃 𝑘 𝑇
𝑥

 Estimated probabilities between [0,1] and
sum to 1

 Cross entropy loss

 𝐽 𝜃 = −
1

𝑚
 𝑖 𝑘 𝑦𝑘

(𝑖)
log 𝑝𝑘

𝑖

 Penalizes models with low probability
estimate for the ground truth class

 Classification summary

41

CLASSIFICATION MLPs II

 Many hyperparameters must be tweaked for good model performance
 Grid search can evaluate different hyperparameter combinations slow

 Book gives other libraries for hyperparam optimization

 These typically explore more in good hyperparameter space

 Number of hidden layers deeper is better
 Transfer learning – reuse lower layers from network trained on large dataset (good

initialization and avoid cost of learning from scratch)

 Number of neurons per hidden layers use fixed size
 Activation function ReLU works well
 Learning rate – very important parameter, need learning schedule
 Optimizer – more than just mini-batch gradient descent (e.g. Adam)
 Batch size – significant impact on model performance and training time

 Large batch – efficiently process for reduced training time maximize for GPU with
learning rate warm-up (schedule)

 Small batch – more stable early in learning and good generalization

42

FINE-TUNING HYPERPARAMETERS

