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OUTLINE



 [Machine Learning is the] field of study that gives computers the 
ability to learn without being explicitly programmed. – Arthur 
Samuel, 1959

 A computer program is said to learn from experience E with 
respect to some task T and some performance measure P, if its 
performance on T, as measured by P, improves with experience E. 
– Tom Mitchell, 1997

 Machine Learning is the science (and art) of programming 
computers so they can learn from data
 Not enough to have lots of data, must be able to use data to solve a task
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WHAT IS ML?



 Traditional approach has complex rules and 
difficult to maintain

 Can inform humans of what was learned for 
new insight into a problem

 ML learns from data making code shorter, 
easier to maintain, and more accurate

 Can automatically be updated to changes
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WHY USE ML?



 Analyzing production line images to 
classify or detecting tumors in brain 
scans
 Chapter 14 – convolutional neural 

networks (CNNs)

 Visual representation of complex, high-
dimensional data
 Chapter 8 – data visualization and data 

reduction

 Intelligent bot for a game
 Chapter 18 – reinforcement learning (RL)

 Forecasting future company revenue
 Chapter 4, 5, 7, 10, 15, 16 – regression 

using classical (linear/polynomial 
regression, SVM, Random Forest or deep 
learning methods)

 News article classification, flagging 
offensive comments, long document 
summarization, chatbot creation
 Chapter 16 – natural language processing 

(NLP) 

 Making an app react to voice 
commands
 Chapter 15/16 – recurrent neural networks 

(RNNs), CNNs, Transformers

 Detecting credit card fraud, segmenting 
customers for marketing strategy
 Chapter 9 – anomaly detection, clustering

 Product recommendations based on 
past purchases
 Chapter 10 – ANN
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EXAMPLE APPLICATIONS



Broad categories:
 Training with human supervision (supervised, 

unsupervised, semi-supervised, and reinforcement 
learning)

 Learning incrementally or on the fly (online vs batch 
learning)

 Comparison with known data points or by finding 
patterns in training data to build predictive models 
(instance-based vs model-based learning)

Criteria are not exclusive and can be combined
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TYPES OF ML SYSTEMS



 Training with data and labels (desired solutions)

 Typical tasks
 Classification: determine data class
 Spam filter: data=emails, 

label={spam, not-spam}

 Regression: predict target numeric value
 Price of car: data=features 

(mileage, age, brand, etc.) label=price

 Important algorithms
 k-NN, linear and logistic regression, SVM, decision trees and 

random forests, neural networks
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SUPERVISED LEARNING



 Training with unlabeled data (no 
teacher)

 Important algorithms
 Clustering – discovering groups

 K-means, DBSCAN

 Visualization and dimensionality 
reduction – reduce feature dimension 
and maintain structure
 (Kernel) principle component analysis 

(PCA), LLE, t-SNE

 Anomaly/novelty detection – find 
unusual test data
 One-class SVM, isolation forest

 Association rule learning – find 
relations between features
 Apriori, Eclat
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UNSUPERVISED LEARNING



 Training with partially labeled 
data 
 Lots of unlabeled and few labeled 

instances

 Most are combination of 
unsupervised and supervised 
algorithms
 Deep belief networks (DBNs) are 

based on stacked unsupervised 
restricted Boltzmann machines 
(RBMs) that are fine-tuned using 
supervised learning techniques

 Example: Google Photos
 Given large personal photo library

 Automatically cluster photos into 
groups of people

 Supervision when specify name of 
group

 Need to merge and split groups to fine-
tune
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SEMI-SUPERVISED LEARNING



 Agent-based learning paradigm
 Agent – learning system that can 

observe environment, select and 
perform actions, and get rewards

 Rewards/penalties – “value” 
associated with actions

 Policy – strategy, action to choose 
which is learned to maximize 
reward over time

 Popular for robotics and game 
playing 
 E.g. DeepMind’s Q-Learning 

Atari Breakout or AlphaGo
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REINFORCEMENT LEARNING

https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=SUbqykXVx0A


 Learning uses all available data
 Offline learning – train then launched into production 

with no more training
 Often because of heavy time and resource requirements

 Can update model fairly easily by incorporating new 
data (say every 24 hours)

 Does not work in many situations
 Rapidly changing data – need to adapt more quickly
 Big data and computational restrictions – too costly to 

train, too large to batch, or not enough resources (mobile 
phone or Mars rover)
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BATCH LEARNING



 Incremental training by feeding data 
instances sequentially
 Use of mini-batch – small groupings of data

 Well-suited for streaming data or limited 
computing resources
 Can react/adapt quickly to changes 

autonomously

 Can discard samples after incorporating into 
model

 Out-of-core learning for large datasets that do 
not fit in memory

 Learning-rate – how fast to adapt to 
changing data
 High: quickly adapt, but forget old

 Low: less sensitive to noise/outliers but slower 
to update (inertia)

 Major challenge: graceful degradation over 
time
 How to handle bad data that comes in?
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ONLINE LEARNING



System learns examples by-heart, then generalizes 
to new cases using a similarity measure

 Simple learning method (e.g k-NN)

 Needs to store instances (database)

 Define meaningful similarity measure
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INSTANCE-BASED LEARNING



 Build model of examples and use 
model to make predictions

 Need to choose a “model”

 Tune parameters for good fit
 Define utility/fitness function for 

goodness or cost function for badness 
of fit

 Data

 Linear model
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MODEL-BASED LEARNING



 “Bad Data”

 Insufficient quantity of data – not enough

 Non-representative data – biased data

 Poor quality data – errors, noise, outliers

 Irrelevant features – not measuring the right things

 “Bad Algorithms”

 Overfitting – overreliance on limited training data 

 Underfitting – not enough model capacity
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MAIN CHALLENGES OF ML



 ML still requires a lot of data to 
work properly 
 1000s or more (millions for 

image/speech)

 The Unreasonable Effectiveness of 
Data
 Given enough data, very different ML 

algorithms (including fairly simple) all 
perform similarly 

 “Reconsider trade-off between spending 
time and money on algorithm 
development versus spending it on 
corpus development”

 Has led to much of modern ML and 
computer vision  massive datasets

 Do we now have enough (too much) data?
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INSUFFICIENT QUANTITY OF TRAINING DATA



 Training data must be 
representative of test cases to 
generalize well

 Dashed blue old model using blue 
dots

 Solid line trained using also red 
squares

 Poor performance with old model

 Especially with poor and rich countries

 Sampling noise –
nonrepresentative sample data 
due to chance

 Sampling bias – training 
samples have systematic issue 
in collection which produces 
non-uniformity (or mis-
matching of underlying 
distribution)
 E.g. facial recognition systems 

performing poorly on darker skin 
tones
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NONREPRESENTITIVE TRAINING DATA



Data full of errors, outliers, and noise (e.g., due to 
poor-quality measurements)
 Will make it harder to detect underlying patterns and 

less likely to perform well

Data scientist spend significant time to cleaning up 
data
 Clear outliers – discard or manually fix errors

 Missing a few features – decide to ignore attribute, 
instances with “holes”, fill in missing value, or train 
multiple models (with/without missing features)
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POOR-QUALITY DATA



 Garbage in, garbage out
 Can only learn if features are relevant, not too much irrelevant info

 Feature engineering – process of determining a good set of 
features to train on
 Feature selection – select most useful features among all 

available/existing features

 Feature extraction – combining existing features to produce more 
useful ones

 Creating new features by gathering new data

 Classical ML uses “hand-crafted” features while deep 
learning has data-driven features
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IRRELEVANT FEATURES



 Overgeneralizing based on 
limited data

 Model is too complex relative to 
the amount of noisiness in the 
training data  modeling noise 

 Good performance on training but 
poor generalization (bad 
performance on test)

 Options to address problem
 Simplify model by selecting one 

with fewer parameters, reducing 
the number of features, or 
constraining model

 Gather more training data

 Reduce noise in training data 
(e.g., fix data errors and remove 
outliers)
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OVERFITTING THE TRAINING DATA

High degree polynomial with overfitting



 Constraining a model to make it simpler and reduce the risk of 
overfitting
 E.g. constrain parameters to limit search space

 Hyperparameter – parameter of a learning algorithm (not model) 
to control regularlization
 Constant set prior to training
 Not affected by the learning parameter itself

 Will have to tune (train) hyperparameters for best performance 
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REGULARLIZATION



Occurs when your model is too simple to learn the 
underlying structure of the data
 Data is more complex that your selected model

 Predictions will be poor, even on training data

Options to address the problem
 Select a more powerful model, with more parameters

 Use better features (feature engineering)

 Reduce the constraints on the model (e.g., reduce 
regularization hyperparameter)
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UNDERFITTING THE TRAINING DATA



 ML – making machines get better at a task by learning from 
data rather than explicitly coding rules

 ML comes in many flavors: un/supervised, batch/online, 
instance/model-based

 ML steps
 Select modeling approach
 Feed data to learning algorithm
 Tune parameters to fit model to training data

 ML systems do not perform well if:
 Training data is too small
 Data is too noisy or polluted with irrelevant features
 Model is too simple or too complex 
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BIG PICTURE



 Most important goal for ML is to generalize well
 Model should behave as expected to new unseen cases
 Evaluate and fine-tune models to be sure it works well

 Split training into training and test sets
 Training data – used to train model 
 Test data – test model on unseen data and measure the 

error rate (generalization or out-of-sample error) to estimate 
how well model performs

 Low training and test error is desired
 Low training error but high test error means the model is 

overfitting

24

TESTING AND VALIDATION



 Must select a model with various # parameters (e.g. linear and 
polynomial) and add regularization to avoid overfitting

 Can use test set for model generalization but not for regularization 
parameter tuning (test set tuning)

 Use a validation (val or development or dev set) for holdout validation
 Subset of training data used specifically for model and hyper parameter tuning
 Train full model on train+val and get generalization error on test set

 Cross-validation (multiple train/val data splits) can be used for better 
characterization with smaller datasets by averaging performance across 
splits
 Val too small  imprecise model evaluations
 Val too large  not enough training data
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HYPERPARAMETER TUNING AND MODEL SELECTION



 Data must be representative 

 Don’t want to train on magazine/professional (web) images 
if the use case are coming from user cell phones

 Makes sure val/test sets match use case

 Train-dev set is split of training data used to determine 
if model is overfitting or if there is data mismatch

 Poor val performance  data mismatch

 Poor train-dev performance  overfit and need to simplify 
model, add regularization, get more data, or clean data
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DATA MISMATCH



 If you make absolutely no assumptions about the 
data, then there is no reason to prefer one model 
over any other – David Wolpert 1996

A priori, there is no model guaranteed to work 
better
 Cannot test all possible models

 Must make reasonable assumptions about the data and 
evaluate only a few reasonable models
 Simple tasks – linear models with regularization

 Complex tasks – neural networks
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OUTLINE



 Artificial neural networks (ANNs) first introduced in 1943

 Excitement with ANNs waned in the 1960s

 1980s had renewed interest but was overtaken in the 1990s 
with ML techniques such as SVM

 Since 2010s major renewed interest 
 Huge quantities of data are available to train networks

 Major computing power increases for reduced training times (GPU 
and cloud)

 Improved training algorithms

 Local optima issue rare

 Lots of funding in ANNs (Artificial Intelligence/Deep Learning)
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FROM BIOLOGICAL TO ARTIFICIAL NEURONS



 Cell mostly found in animal brains
 Produce short electrical impulses 

(action potentials, APs, or signals) 
to make synapses release chemical 
signals (neurotransmitters)

 When a neuron receives enough 
neurotransmitters it fires its own 
electrical pulses

 Individual neurons are simple but 
arranged into vast networks of 
billions
 Each neuron connected to thousands of 

other neurons

 Neurons seem to be organized in 
consecutive layers
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BIOLOGICAL NEURONS



 Artificial neuron proposed by 
McCulloch and Pitts
 Simple binary inputs and one 

binary output

 Activates output when certain 
number of inputs on/active

 Even with the simple model, 
any logical proposition can be 
computed

 Basic building block networks 
can be combined for more 
complex logical expressions
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LOGICAL COMPUTATIONS WITH NEURONS

 Building block networks

 Implement basic logic functions



 Invented by Frank Rosenblatt in 
1957

 Inputs/outputs are numbers 
(instead of binary)

 Based on threshold logic unit (TLU) 
or linear threshold unit

 Inputs associated with a weight
 TLU computes weighted sum of 

input

 𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3

 Output after a step (threshold) 
function
 Heavyside of sign function

 TLU can be used as a simple linear 
binary classifier
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THE PERCEPTRON I (TLU)



 Perceptron is a layer for TLU 
 Fully connected (dense) layer –

all inputs connected to all 
neurons

 Input neuron – pass value 
through unchanged

 Bias neuron – always outputs 1

 Example: Multilabel classifier
 2 inputs 3 outputs

 Can classify into three binary 
classes based on two input values
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THE PERCEPTRON II



 Output of fully connected layer

ℎ𝑊,𝑏 𝑋 = 𝜙(𝑋𝑊 + 𝑏)
 𝑋 – matrix of input features

 𝑊 – weight matrix (all weights 
between input and neurons)
 One row per input neuron

 One column per neuron layer

 𝑏 – bias (weights) vector 

 𝜙 – activation function (e.g. step)

 Produces linear (non-complex) 
decision boundary

 Perceptron training – reinforce 
connections that reduce 
prediction error 

𝑤𝑖,𝑗
(𝑛𝑒𝑥𝑡 𝑠𝑡𝑒𝑝)

= 𝑤𝑖,𝑗 + 𝜂 𝑦𝑗 −  𝑦𝑗 𝑥𝑖

 𝑤𝑖,𝑗 - connection weight between 
ith input and jth output neuron

 𝑥𝑖 - ith input value

  𝑦𝑗 - perceptron output of jth
neuron

 𝑦𝑗 - target (ground truth) output 
of jth neuron

 𝜂 – learning rate
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THE PERCEPTRON III



 Stack TLU layers for more 
complicated functions

 Input layer - passthrough

 Hidden layer – intermediate TLU 
layer

 Output layer – final fully 
connected TLU layer

 Lower layers – closer to input

 Upper layers – closer to output

 Deep neural network (DNN) 
has many hidden layers
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MULTILAYER PERCEPTRON (MLP)



Effective method to train a MLP developed in 1986

 Gradient Descent method with efficient gradient 
computation technique

 Single forward-backward pass through network to 
compute gradient of network error for all model 
parameters

 Can update all connection weights and bias terms

Backpropagation uses reverse-mode autodiff to 
automatically compute gradients (Appendix D)
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BACKPROPAGATION I



 Process full dataset each epoch
 Use mini-batch at each iteration – larger more efficient and more stable gradient 

but requires more memory

 Mini-batch of input is sent through the MLP in a forward pass (from input 
to output prediction)
 All intermediate results (from hidden layers) are saved for backward pass

 Measure current network prediction error
 Use of loss function to define error metric

 Compute contribution of each connection to the total error
 Performed backward from output through hidden layers back to input using the 

chain rule

 Perform Gradient Descent step to adjust all connection weights
 Using the error gradients from the backward pass
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BACKPROPAGATION II



 Cannot use step for activation 
since it has no gradient 
information

 Sigmoid (logistic) function

 𝜎 𝑧 = 1/(1 + exp −𝑧 )

 S-shaped between [0, 1]

 Hyperbolic tangent function

 tanh 𝑧 = 2𝜎 2𝑧 − 1

 Output between [-1,1] helps speed 
convergence

 Rectified Linear Unit function

 𝑅𝑒𝐿𝑈 𝑧 = max(0, 𝑧)

 Not differentiable, but works well 
and fast so popular
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ACTIVATION FUNCTIONS

Activation functions 
add non-linearity!



 Single output neuron
 Mulivariate regression requires an 

output neuron for each output 
dimension 

 2: (x,y) for center of object 

 4: (x,y,h,w) for a bounding box around 
object

 Output activation 
 No activation – no limits on output 

range of value

 ReLU or softplus (smooth ReLU) –
positive output only

 Scaled sigmoid/tanh – fixed output 
range

 Loss function

 Mean squared error (L2 norm)

 Mean absolute error (L1 norm) 
when there are a lot of outliers

 Huber loss is a combination

 Regression MLP summary
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REGRESSION MLPs



Single class (binary) – single output neuron

 Output between [0,1] using sigmoid 

 Estimate probability of positive class (confidence)

Multilabel binary – output neuron for every binary 
classification

 Output between [0,1] using sigmoid

 Output probabilities do not sum to one

 Combinational output space
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CLASSIFICATION MLPs I



 Multiclass classification – multiple 
possible classes (e.g. number 0-9)
 Each input instance can only belong to a 

single class (>2)

 One output neuron per class

 Softmax activation on the full output 
layer (Chapter 4 pg 148)

  𝑝𝑘 = 𝜎 𝑠 𝑥
𝑘
=

exp 𝑠𝑘 𝑥

 𝑗 exp(𝑠𝑗 𝑥 )

 𝑠𝑘 𝑥 = 𝜃 𝑘 𝑇
𝑥

 Estimated probabilities between [0,1] and 
sum to 1

 Cross entropy loss

 𝐽 𝜃 = −
1

𝑚
 𝑖  𝑘 𝑦𝑘

(𝑖)
log  𝑝𝑘

𝑖

 Penalizes models with low probability 
estimate for the ground truth class

 Classification summary
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CLASSIFICATION MLPs II



 Many hyperparameters must be tweaked for good model performance
 Grid search can evaluate different hyperparameter combinations  slow

 Book gives other libraries for hyperparam optimization

 These typically explore more in good hyperparameter space

 Number of hidden layers  deeper is better
 Transfer learning – reuse lower layers from network trained on large dataset (good 

initialization and avoid cost of learning from scratch)

 Number of neurons per hidden layers  use fixed size 
 Activation function  ReLU works well
 Learning rate – very important parameter, need learning schedule
 Optimizer – more than just mini-batch gradient descent (e.g. Adam)
 Batch size – significant impact on model performance and training time

 Large batch – efficiently process for reduced training time  maximize for GPU with 
learning rate warm-up (schedule)

 Small batch – more stable early in learning and good generalization
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FINE-TUNING HYPERPARAMETERS


