
http://www.ee.unlv.edu/~b1morris/ecg482

EE482/682: DSP APPLICATIONS
OVERVIEW OF ML AND NEURAL NETWORKS

1

Géron Chapter 1 + 10

http://www.ee.unlv.edu/~b1morris/ecg482

 Géron Chapter 1 – Machine Learning (ML) Landscape
 What is ML

 Why use ML

 Types of ML systems

 Challenges

 Géron Chapter 10 – Intro Artificial Neural Networks
(ANNs)
 Biological inspiration

 Perceptron

 Multilayer perceptron (MLP)

2

OUTLINE

 [Machine Learning is the] field of study that gives computers the
ability to learn without being explicitly programmed. – Arthur
Samuel, 1959

 A computer program is said to learn from experience E with
respect to some task T and some performance measure P, if its
performance on T, as measured by P, improves with experience E.
– Tom Mitchell, 1997

 Machine Learning is the science (and art) of programming
computers so they can learn from data
 Not enough to have lots of data, must be able to use data to solve a task

3

WHAT IS ML?

 Traditional approach has complex rules and
difficult to maintain

 Can inform humans of what was learned for
new insight into a problem

 ML learns from data making code shorter,
easier to maintain, and more accurate

 Can automatically be updated to changes

4

WHY USE ML?

 Analyzing production line images to
classify or detecting tumors in brain
scans
 Chapter 14 – convolutional neural

networks (CNNs)

 Visual representation of complex, high-
dimensional data
 Chapter 8 – data visualization and data

reduction

 Intelligent bot for a game
 Chapter 18 – reinforcement learning (RL)

 Forecasting future company revenue
 Chapter 4, 5, 7, 10, 15, 16 – regression

using classical (linear/polynomial
regression, SVM, Random Forest or deep
learning methods)

 News article classification, flagging
offensive comments, long document
summarization, chatbot creation
 Chapter 16 – natural language processing

(NLP)

 Making an app react to voice
commands
 Chapter 15/16 – recurrent neural networks

(RNNs), CNNs, Transformers

 Detecting credit card fraud, segmenting
customers for marketing strategy
 Chapter 9 – anomaly detection, clustering

 Product recommendations based on
past purchases
 Chapter 10 – ANN

5

EXAMPLE APPLICATIONS

Broad categories:
 Training with human supervision (supervised,

unsupervised, semi-supervised, and reinforcement
learning)

 Learning incrementally or on the fly (online vs batch
learning)

 Comparison with known data points or by finding
patterns in training data to build predictive models
(instance-based vs model-based learning)

Criteria are not exclusive and can be combined

6

TYPES OF ML SYSTEMS

 Training with data and labels (desired solutions)

 Typical tasks
 Classification: determine data class
 Spam filter: data=emails,

label={spam, not-spam}

 Regression: predict target numeric value
 Price of car: data=features

(mileage, age, brand, etc.) label=price

 Important algorithms
 k-NN, linear and logistic regression, SVM, decision trees and

random forests, neural networks

7

SUPERVISED LEARNING

 Training with unlabeled data (no
teacher)

 Important algorithms
 Clustering – discovering groups

 K-means, DBSCAN

 Visualization and dimensionality
reduction – reduce feature dimension
and maintain structure
 (Kernel) principle component analysis

(PCA), LLE, t-SNE

 Anomaly/novelty detection – find
unusual test data
 One-class SVM, isolation forest

 Association rule learning – find
relations between features
 Apriori, Eclat

8

UNSUPERVISED LEARNING

 Training with partially labeled
data
 Lots of unlabeled and few labeled

instances

 Most are combination of
unsupervised and supervised
algorithms
 Deep belief networks (DBNs) are

based on stacked unsupervised
restricted Boltzmann machines
(RBMs) that are fine-tuned using
supervised learning techniques

 Example: Google Photos
 Given large personal photo library

 Automatically cluster photos into
groups of people

 Supervision when specify name of
group

 Need to merge and split groups to fine-
tune

9

SEMI-SUPERVISED LEARNING

 Agent-based learning paradigm
 Agent – learning system that can

observe environment, select and
perform actions, and get rewards

 Rewards/penalties – “value”
associated with actions

 Policy – strategy, action to choose
which is learned to maximize
reward over time

 Popular for robotics and game
playing
 E.g. DeepMind’s Q-Learning

Atari Breakout or AlphaGo

10

REINFORCEMENT LEARNING

https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=SUbqykXVx0A

 Learning uses all available data
 Offline learning – train then launched into production

with no more training
 Often because of heavy time and resource requirements

 Can update model fairly easily by incorporating new
data (say every 24 hours)

 Does not work in many situations
 Rapidly changing data – need to adapt more quickly
 Big data and computational restrictions – too costly to

train, too large to batch, or not enough resources (mobile
phone or Mars rover)

11

BATCH LEARNING

 Incremental training by feeding data
instances sequentially
 Use of mini-batch – small groupings of data

 Well-suited for streaming data or limited
computing resources
 Can react/adapt quickly to changes

autonomously

 Can discard samples after incorporating into
model

 Out-of-core learning for large datasets that do
not fit in memory

 Learning-rate – how fast to adapt to
changing data
 High: quickly adapt, but forget old

 Low: less sensitive to noise/outliers but slower
to update (inertia)

 Major challenge: graceful degradation over
time
 How to handle bad data that comes in?

12

ONLINE LEARNING

System learns examples by-heart, then generalizes
to new cases using a similarity measure

 Simple learning method (e.g k-NN)

 Needs to store instances (database)

 Define meaningful similarity measure

13

INSTANCE-BASED LEARNING

 Build model of examples and use
model to make predictions

 Need to choose a “model”

 Tune parameters for good fit
 Define utility/fitness function for

goodness or cost function for badness
of fit

 Data

 Linear model

14

MODEL-BASED LEARNING

 “Bad Data”

 Insufficient quantity of data – not enough

 Non-representative data – biased data

 Poor quality data – errors, noise, outliers

 Irrelevant features – not measuring the right things

 “Bad Algorithms”

 Overfitting – overreliance on limited training data

 Underfitting – not enough model capacity

15

MAIN CHALLENGES OF ML

 ML still requires a lot of data to
work properly
 1000s or more (millions for

image/speech)

 The Unreasonable Effectiveness of
Data
 Given enough data, very different ML

algorithms (including fairly simple) all
perform similarly

 “Reconsider trade-off between spending
time and money on algorithm
development versus spending it on
corpus development”

 Has led to much of modern ML and
computer vision  massive datasets

 Do we now have enough (too much) data?

16

INSUFFICIENT QUANTITY OF TRAINING DATA

 Training data must be
representative of test cases to
generalize well

 Dashed blue old model using blue
dots

 Solid line trained using also red
squares

 Poor performance with old model

 Especially with poor and rich countries

 Sampling noise –
nonrepresentative sample data
due to chance

 Sampling bias – training
samples have systematic issue
in collection which produces
non-uniformity (or mis-
matching of underlying
distribution)
 E.g. facial recognition systems

performing poorly on darker skin
tones

17

NONREPRESENTITIVE TRAINING DATA

Data full of errors, outliers, and noise (e.g., due to
poor-quality measurements)
 Will make it harder to detect underlying patterns and

less likely to perform well

Data scientist spend significant time to cleaning up
data
 Clear outliers – discard or manually fix errors

 Missing a few features – decide to ignore attribute,
instances with “holes”, fill in missing value, or train
multiple models (with/without missing features)

18

POOR-QUALITY DATA

 Garbage in, garbage out
 Can only learn if features are relevant, not too much irrelevant info

 Feature engineering – process of determining a good set of
features to train on
 Feature selection – select most useful features among all

available/existing features

 Feature extraction – combining existing features to produce more
useful ones

 Creating new features by gathering new data

 Classical ML uses “hand-crafted” features while deep
learning has data-driven features

19

IRRELEVANT FEATURES

 Overgeneralizing based on
limited data

 Model is too complex relative to
the amount of noisiness in the
training data  modeling noise

 Good performance on training but
poor generalization (bad
performance on test)

 Options to address problem
 Simplify model by selecting one

with fewer parameters, reducing
the number of features, or
constraining model

 Gather more training data

 Reduce noise in training data
(e.g., fix data errors and remove
outliers)

20

OVERFITTING THE TRAINING DATA

High degree polynomial with overfitting

 Constraining a model to make it simpler and reduce the risk of
overfitting
 E.g. constrain parameters to limit search space

 Hyperparameter – parameter of a learning algorithm (not model)
to control regularlization
 Constant set prior to training
 Not affected by the learning parameter itself

 Will have to tune (train) hyperparameters for best performance

21

REGULARLIZATION

Occurs when your model is too simple to learn the
underlying structure of the data
 Data is more complex that your selected model

 Predictions will be poor, even on training data

Options to address the problem
 Select a more powerful model, with more parameters

 Use better features (feature engineering)

 Reduce the constraints on the model (e.g., reduce
regularization hyperparameter)

22

UNDERFITTING THE TRAINING DATA

 ML – making machines get better at a task by learning from
data rather than explicitly coding rules

 ML comes in many flavors: un/supervised, batch/online,
instance/model-based

 ML steps
 Select modeling approach
 Feed data to learning algorithm
 Tune parameters to fit model to training data

 ML systems do not perform well if:
 Training data is too small
 Data is too noisy or polluted with irrelevant features
 Model is too simple or too complex

23

BIG PICTURE

 Most important goal for ML is to generalize well
 Model should behave as expected to new unseen cases
 Evaluate and fine-tune models to be sure it works well

 Split training into training and test sets
 Training data – used to train model
 Test data – test model on unseen data and measure the

error rate (generalization or out-of-sample error) to estimate
how well model performs

 Low training and test error is desired
 Low training error but high test error means the model is

overfitting

24

TESTING AND VALIDATION

 Must select a model with various # parameters (e.g. linear and
polynomial) and add regularization to avoid overfitting

 Can use test set for model generalization but not for regularization
parameter tuning (test set tuning)

 Use a validation (val or development or dev set) for holdout validation
 Subset of training data used specifically for model and hyper parameter tuning
 Train full model on train+val and get generalization error on test set

 Cross-validation (multiple train/val data splits) can be used for better
characterization with smaller datasets by averaging performance across
splits
 Val too small  imprecise model evaluations
 Val too large  not enough training data

25

HYPERPARAMETER TUNING AND MODEL SELECTION

 Data must be representative

 Don’t want to train on magazine/professional (web) images
if the use case are coming from user cell phones

 Makes sure val/test sets match use case

 Train-dev set is split of training data used to determine
if model is overfitting or if there is data mismatch

 Poor val performance  data mismatch

 Poor train-dev performance  overfit and need to simplify
model, add regularization, get more data, or clean data

26

DATA MISMATCH

 If you make absolutely no assumptions about the
data, then there is no reason to prefer one model
over any other – David Wolpert 1996

A priori, there is no model guaranteed to work
better
 Cannot test all possible models

 Must make reasonable assumptions about the data and
evaluate only a few reasonable models
 Simple tasks – linear models with regularization

 Complex tasks – neural networks

27

NO FREE LUNCH THEOREM

 Géron Chapter 1 – Machine Learning (ML) Landscape
 What is ML

 Why use ML

 Types of ML systems

 Challenges

 Géron Chapter 10 – Intro Artificial Neural Networks
(ANNs)
 Biological inspiration

 Perceptron

 Multilayer perceptron (MLP)

28

OUTLINE

 Artificial neural networks (ANNs) first introduced in 1943

 Excitement with ANNs waned in the 1960s

 1980s had renewed interest but was overtaken in the 1990s
with ML techniques such as SVM

 Since 2010s major renewed interest
 Huge quantities of data are available to train networks

 Major computing power increases for reduced training times (GPU
and cloud)

 Improved training algorithms

 Local optima issue rare

 Lots of funding in ANNs (Artificial Intelligence/Deep Learning)

29

FROM BIOLOGICAL TO ARTIFICIAL NEURONS

 Cell mostly found in animal brains
 Produce short electrical impulses

(action potentials, APs, or signals)
to make synapses release chemical
signals (neurotransmitters)

 When a neuron receives enough
neurotransmitters it fires its own
electrical pulses

 Individual neurons are simple but
arranged into vast networks of
billions
 Each neuron connected to thousands of

other neurons

 Neurons seem to be organized in
consecutive layers

30

BIOLOGICAL NEURONS

 Artificial neuron proposed by
McCulloch and Pitts
 Simple binary inputs and one

binary output

 Activates output when certain
number of inputs on/active

 Even with the simple model,
any logical proposition can be
computed

 Basic building block networks
can be combined for more
complex logical expressions

31

LOGICAL COMPUTATIONS WITH NEURONS

 Building block networks

 Implement basic logic functions

 Invented by Frank Rosenblatt in
1957

 Inputs/outputs are numbers
(instead of binary)

 Based on threshold logic unit (TLU)
or linear threshold unit

 Inputs associated with a weight
 TLU computes weighted sum of

input

 𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3

 Output after a step (threshold)
function
 Heavyside of sign function

 TLU can be used as a simple linear
binary classifier

32

THE PERCEPTRON I (TLU)

 Perceptron is a layer for TLU
 Fully connected (dense) layer –

all inputs connected to all
neurons

 Input neuron – pass value
through unchanged

 Bias neuron – always outputs 1

 Example: Multilabel classifier
 2 inputs 3 outputs

 Can classify into three binary
classes based on two input values

33

THE PERCEPTRON II

 Output of fully connected layer

ℎ𝑊,𝑏 𝑋 = 𝜙(𝑋𝑊 + 𝑏)
 𝑋 – matrix of input features

 𝑊 – weight matrix (all weights
between input and neurons)
 One row per input neuron

 One column per neuron layer

 𝑏 – bias (weights) vector

 𝜙 – activation function (e.g. step)

 Produces linear (non-complex)
decision boundary

 Perceptron training – reinforce
connections that reduce
prediction error

𝑤𝑖,𝑗
(𝑛𝑒𝑥𝑡 𝑠𝑡𝑒𝑝)

= 𝑤𝑖,𝑗 + 𝜂 𝑦𝑗 − 𝑦𝑗 𝑥𝑖

 𝑤𝑖,𝑗 - connection weight between
ith input and jth output neuron

 𝑥𝑖 - ith input value

 𝑦𝑗 - perceptron output of jth
neuron

 𝑦𝑗 - target (ground truth) output
of jth neuron

 𝜂 – learning rate

34

THE PERCEPTRON III

 Stack TLU layers for more
complicated functions

 Input layer - passthrough

 Hidden layer – intermediate TLU
layer

 Output layer – final fully
connected TLU layer

 Lower layers – closer to input

 Upper layers – closer to output

 Deep neural network (DNN)
has many hidden layers

35

MULTILAYER PERCEPTRON (MLP)

Effective method to train a MLP developed in 1986

 Gradient Descent method with efficient gradient
computation technique

 Single forward-backward pass through network to
compute gradient of network error for all model
parameters

 Can update all connection weights and bias terms

Backpropagation uses reverse-mode autodiff to
automatically compute gradients (Appendix D)

36

BACKPROPAGATION I

 Process full dataset each epoch
 Use mini-batch at each iteration – larger more efficient and more stable gradient

but requires more memory

 Mini-batch of input is sent through the MLP in a forward pass (from input
to output prediction)
 All intermediate results (from hidden layers) are saved for backward pass

 Measure current network prediction error
 Use of loss function to define error metric

 Compute contribution of each connection to the total error
 Performed backward from output through hidden layers back to input using the

chain rule

 Perform Gradient Descent step to adjust all connection weights
 Using the error gradients from the backward pass

37

BACKPROPAGATION II

 Cannot use step for activation
since it has no gradient
information

 Sigmoid (logistic) function

 𝜎 𝑧 = 1/(1 + exp −𝑧)

 S-shaped between [0, 1]

 Hyperbolic tangent function

 tanh 𝑧 = 2𝜎 2𝑧 − 1

 Output between [-1,1] helps speed
convergence

 Rectified Linear Unit function

 𝑅𝑒𝐿𝑈 𝑧 = max(0, 𝑧)

 Not differentiable, but works well
and fast so popular

38

ACTIVATION FUNCTIONS

Activation functions
add non-linearity!

 Single output neuron
 Mulivariate regression requires an

output neuron for each output
dimension

 2: (x,y) for center of object

 4: (x,y,h,w) for a bounding box around
object

 Output activation
 No activation – no limits on output

range of value

 ReLU or softplus (smooth ReLU) –
positive output only

 Scaled sigmoid/tanh – fixed output
range

 Loss function

 Mean squared error (L2 norm)

 Mean absolute error (L1 norm)
when there are a lot of outliers

 Huber loss is a combination

 Regression MLP summary

39

REGRESSION MLPs

Single class (binary) – single output neuron

 Output between [0,1] using sigmoid

 Estimate probability of positive class (confidence)

Multilabel binary – output neuron for every binary
classification

 Output between [0,1] using sigmoid

 Output probabilities do not sum to one

 Combinational output space

40

CLASSIFICATION MLPs I

 Multiclass classification – multiple
possible classes (e.g. number 0-9)
 Each input instance can only belong to a

single class (>2)

 One output neuron per class

 Softmax activation on the full output
layer (Chapter 4 pg 148)

 𝑝𝑘 = 𝜎 𝑠 𝑥
𝑘
=

exp 𝑠𝑘 𝑥

 𝑗 exp(𝑠𝑗 𝑥)

 𝑠𝑘 𝑥 = 𝜃 𝑘 𝑇
𝑥

 Estimated probabilities between [0,1] and
sum to 1

 Cross entropy loss

 𝐽 𝜃 = −
1

𝑚
 𝑖 𝑘 𝑦𝑘

(𝑖)
log 𝑝𝑘

𝑖

 Penalizes models with low probability
estimate for the ground truth class

 Classification summary

41

CLASSIFICATION MLPs II

 Many hyperparameters must be tweaked for good model performance
 Grid search can evaluate different hyperparameter combinations  slow

 Book gives other libraries for hyperparam optimization

 These typically explore more in good hyperparameter space

 Number of hidden layers  deeper is better
 Transfer learning – reuse lower layers from network trained on large dataset (good

initialization and avoid cost of learning from scratch)

 Number of neurons per hidden layers  use fixed size
 Activation function  ReLU works well
 Learning rate – very important parameter, need learning schedule
 Optimizer – more than just mini-batch gradient descent (e.g. Adam)
 Batch size – significant impact on model performance and training time

 Large batch – efficiently process for reduced training time  maximize for GPU with
learning rate warm-up (schedule)

 Small batch – more stable early in learning and good generalization

42

FINE-TUNING HYPERPARAMETERS

