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EE482/682: DSP APPLICATIONS
CNNS AND DEEP COMPUTER VISION

1

Géron Chapter 14

http://www.ee.unlv.edu/~b1morris/ee482


Slides follow Geron’s Hands-On Machine Learning 
with Scikit-Learn, Keras & TensorFlow

Additional Deep Detections slides from Object 
Detection with Deep Learning: A Review
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NOTE

https://arxiv.org/abs/1807.05511


Biological Inspiration

Convolutional Layers

Pooling Layers

CNN Architectures

Object Detection Survey

Semantic Segmentation Survey
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OUTLINE



 Classical vision
 Hand-crafted features and 

algorithm based on expert 
knowledge

 Classical machine learning
 Hand-crafted features (pre-

processing) but ML for 
classification

 Deep learning
 Both features and classification 

are learned

 End-to-end training (from pixels 
to output)
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EVOLUTION OF COMPUTER VISION
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DEEP CNN DOMINANCE IN CV

Zou et al., “Object Detection in 20 Years: A survey, 2019Li, Johnson, and Yeung, 2019



 Modern CV is inspired by human 
vision (sensory modules)

 Hubel and Wiesel showed that 
neurons in the visual cortex had a 
small local receptive field
 Only reacted to stimuli in a limited 

region of visual field (blue dashed circles)

 Lower-level neurons with simple 
pattern response (e.g. lines of 
specific orientation)

 Higher-level neurons with larger 
receptive field and combination of 
lower-level patterns

 Neurons at higher-levels only connected to 
few at lower-level 
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ARCHITECTURE OF THE VISUAL CORTEX



 Stacked neuron architecture enables detection of complex 
patterns in any area of the visual field → convolutional 
neural networks (CNNs)

 Led to LeNet-5 architecture by Yann LeCunn for 
handwritten number recognition (MNIST)
 Fully connected layers and sigmoid activations

 Convolutional layers and pooling layers

 Why not fully connected layers for images?
 Even small images have large number of pixels resulting in huge 

networks

 CNNs solve this with partial connected layers and weight sharing
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CONVOLUTIONAL NEURAL NETWORK



 Neurons in the first layer are 
not connected to every single 
pixel in input image
 Connected to receptive field

 Stacked receptive field approach

 Hierarchical structure
 First layer – small low-level 

features

 Higher-levels – assemble lower-
level features into higher-level 
features

 Structure is common in real-world 
images
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CONVOLUTIONAL LAYERS



 Note: the actual operation 
performed is cross-correlation 
(no-flipping)

 Neuron (row, column) 𝑖, 𝑗 is 
connected to neurons in previous 
layer within receptive field
 Row 𝑖, 𝑖 + 𝑓ℎ − 1

 𝑓ℎ - height of receptive field

 Column 𝑗, 𝑗 + 𝑓𝑤 − 1
 𝑓𝑤 - width of receptive field

 Note: this is a causal filter though 
shown as symmetric

 Zero padding used to keep 
output/input layers of same size
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CONVOLUTIONAL LAYER CONNECTIONS



 Stride can be used to connect a 
large input layer to smaller 
output layer

 Change the spacing the of the 
receptive field

 Dramatically reduce model 
computational complexity 
(squared)

 Height and width stride can be 
different
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CONVOLUTIONAL LAYERS STRIDE



 Filters = convolutional kernels

 Size of the kernel is the receptive 
field for the neuron

 Feature map – output of the 
“convolution” operation

 Highlights areas in an image that 
activate the filter most

 For CNNs, the filters are not 
defined manually!

 Learn most useful filters for a task

 Higher layers will learn to combine 
into more complex patterns
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FILTERS
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VISUALIZING WEIGHTS AND FEATURES

See Szeliski 2e, Ch 5.4.5



 Each convolution layer has 
multiple filters
 Stacked 3D output (1 feature map 

for each filter)

 Each neuron in a feature map 
shares the same parameters 
(weights and bias)

 Neurons in different feature maps 
use different parameters

 Neuron’s receptive field applies to 
all feature maps of previous layer

 Note input images often have 
multiple sublayers (channels)
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STACKING MULTIPLE FEATURE MAPS I



 Output of a neuron in a 
convolutional layer

 𝑧𝑖,𝑗,𝑘 - output of neuron in row 𝑖, 
column, 𝑗, in feature map 𝑘 of the 
convolutional layer 𝑙

 𝑏𝑘 - bias term for feature map 𝑘 (in 
layer 𝑙)
 Tweaks overall brightness of feature map 

𝑘
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STACKING MULTIPLE FEATURE MAPS II

 𝑠ℎ , 𝑠𝑤 - vertical and horizontal 
strides

 𝑓ℎ , 𝑓𝑤 - height and width of receptive 
field (kernel)

 𝑓𝑛′ - number of feature maps in 
previous (lower layer)

 𝑥𝑖′,𝑗′,𝑘′ - output of neuron located in 
layer 𝑙 − 1, row 𝑖 ′, column 𝑗′, feature 
map 𝑘

 𝑤𝑢,𝑣,𝑘′,𝑘 - connection weight between 
any neuron in feature map 𝑘 of the 
layer 𝑙 and its input located at row 
𝑢, column 𝑣 (relative to the 
neuron’s receptive field), and feature 
map 𝑘′



 Though much smaller the fully connected networks, CNNs 
still use significant amount of RAM

 During training, the reverse pass of backpropagation 
requires all the intermediate values computed during the 
forward pass
 Need to have enough for all layers in the network
 Forward pass can release memory after each layer is computed 

(only two consecutive layers required)

 Out-of-memory error
 Reduce mini-batch size, increase stride, remove layers, change 

precision (16-bit vs 32-bit floats or use int), or distribute the CNN 
across devices
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MEMORY REQUIREMENTS



 Subsample input in order to 
reduce computational load, 
memory usage, and number of 
parameters (reduce risk of 
overfitting)

 Aggregate over the receptive field 
 Aggregate functions such as max 

(most popular) or mean
 Max tends to work better by 

preserving only the strongest feature 
→ cleaner signal, more invariance, 
less compute

 Stride gives downsampling
 Pooling kernel size can be even
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POOLING LAYERS

Max pooling layers (2x2 kernel, stride=2, no padding)



 Introduces some level of invariance 
to small translations
 Small image shifts result in same 

response

 Additionally small invariance to rotation 
and scale with max pool

 Max pool every few CNN layers for 
invariance at larger scale
 Useful when task should be invariant 

(e.g. image classification)

 Drawbacks
 Destructive – 2x2, stride 2 drops 75% of 

input values
 Invariance not always desirable (e.g. 

semantic segmentation should have 
equivariance)
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POOLING LAYERS INVARIANCE



 Typical CNN architecture
 Stack a few convolutional layers 

(each followed by ReLU layer for 
non-linearity)

 Pooling layer

 Repeat Conv + ReLU + Pool

 Top layers are regular 
feedforward neural network which 
is usually fully connected layers 
(+ReLUs)

 Final layer outputs the prediction 
(e.g. softmax for class 
probabilities)

 Input kernel can be larger since generally 
only 3 sublayers (RGB channels)

 Conv layers use stacked small 3x3 kernels 
since it is more computationally efficient 
and perform better than larger

 Number of filters increases at higher layers
 Few low-level patterns, but more ways to 

combine

 Double #filters after pooling (stride 2)

 Flatten conv output before fully connected 
dense layer
 Add dropout to avoid overfitting
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CNN ARCHITECTURES



 Variants of basic CNN 
architecture have been 
developed

 Benchmark with ImageNet 
Challenge
 Large scale with 1M images and 

1000 classes

 Much more complicated than any 
benchmark at the time (~2010)

 Dramatic drop in top-five error 
from 26% to 2.3% in 6 years
 Bigger is better
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ILSVRC IMAGENET CHALLENGE



 Network of Yann LeCun (1998) 
[NYU] designed for handwritten 
digit recognition (MNIST)

 Images normalized at input

 No padding → smaller size each 
layer

 Average pool has learnable 
coefficient and bias term

 Limited C3-S2 map connections

 Output square Euclidean distance

 Similar cross-entropy
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LENET-5

http://yann.lecun.com/exdb/lenet/index.html

http://yann.lecun.com/exdb/lenet/index.html


 2013 ImageNet winner
 17% top-5 error rate (26% for 2nd place)
 Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton [U Toronto]

 Similar to LeNet-5 but larger and 
deeper

 First to stack convolutional layers 
directly on top of one another (no 
pooling in between)

 To reduce overfitting
 50% dropout of layers F9 and F10

 Data augmentation

 Local response normalization used to 
inhibit neighboring feature maps
 Encourage different feature maps to 

specialize, push neighbors apart, and 
improve generalization
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ALEXNET

ZF Net is an AlexNet variant with tweaked hyperparameters



 Popular technique from Hinton 2012 
and Srivastava et al. 2014
 1-2% accuracy boost (even SOTA)

 At each training step, a neuron has a 
probability of being ignored (dropped 
out)
 Neuron can be active during next training step

 Dropout rate generally between 10-50%
 20-30% for recurrent neural networks

 40-50% for CNNs

 Forces networks to diversify
 Neurons cannot co-adapt with neighbors

 Cannot rely only an a few input neurons

 Less sensitive to slights changes in input

 ~Average of many networks
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DROPOUT



 Artificially increase training 
dataset size by generating 
realistic variants of training 
instances
 Ideally, shouldn’t be able to 

distinguish real from augmented 
example

 Reduces overfitting 
(regularization technique)

 Common augmentations
 Small shifts, rotation, resize (scaling)
 Horizontal flip – orientation 

invariance
 Vary contrast – lighting condition 

invariance
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DATA AUGMENTATION



 2014 ILSVRC Winner
 <7% top-5 error rate

 Christian Szegedy et al. [Google]

 Current versions Inception-v3 and Inception-v4 
(GoogLeNet + ResNet)

 Much deeper architecture than previous 
CNN (large stack)
 Much fewer parameters (6M vs. 60M AlexNet)

 Inception layers for parameter efficiency
 Use of 1x1 convolutions as a bottleneck 

layers

 Local response normalization to learn a 
wide variety of features

 Classification task with multiple (max) pool 
to reduce size (avg. final 7x7 map)
 No need for multiple fully connected (FC) layers 

to save parameters
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GOOGLENET (INCEPTION)



 Parallel convolutions
 3x3+1(S) = 3x3 kernel, stride 1, “same” padding

 All use ReLU activation

 2nd convolution layer
 Different kernel size for patterns at different 

scale

 Stacked conv for more complex patterns than 
single linear convolution

 Depth concat
 All layers have the same outputs size

 Stack 2nd layer outputs depthwise

 1x1 bottleneck layers
 Fewer output than input dimension

 Fewer parameters, faster training, improved 
generalization 

 Not spatial but depth patterns
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INCEPTION MODULE



 2014 ILSVRC runner-up

 Simonyan and Zisserman [Oxford]

 Classical architecture

 Stacked 2-3 conv + pool layers

 Variants of 16 or 19 conv layers

 3 FC classification layers

 Used many 3x3 filters
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VGGNET



 2015 ILSVRC winner
 <3.6% top-5 error rate

 Kaiming He et. Al [Microsoft]

 Deeper with fewer parameters
 152 layer winner

 Variants of 34, 50, and 101 layers

 Skip (shortcut) connections
 Signal passed into up one layer and a further 

layers ahead

 Build network on residual units (RUs)

 Batch normalization (pg 338)
 Better gradient conditioning (vanishing 

gradient)

 Standardize inputs then rescales and offsets 

 Acts as a regularizer (e.g. no need for dropout)
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RESNET



 Signal feeding layer is also 
added to the output of a layer 
higher in the stack

 Instead of modeling function 
ℎ(𝑥), it models 𝑓 𝑥 = ℎ 𝑥 −
𝑥

 Faster weight update (0 
initialization)

 Regular networks output 0

 Skip connection copies input 
(identity function)
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RESIDUAL LEARNING I



 Skip connection bypass layer 
blocking
 Input signal can propagate to 

higher levels

 Can train layers even if lower 
layers have not started learning 
yet

 Feature map size and depth 
change
 Skip connection prevents direct 

addition after resize

 1x1 convolution, stride 2, and 
output matched kernel size
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RESIDUAL LEARNING II



 GoogLeNet variant
 Combines GoogLeNet + ResNet

 Inception modules replaced with 
depthwise separable convolution 
layer

 Chollet 2016 (Keras author)

 Separable convolution layer
 Separate spatial and depth 

 1 spatial filter per input channel

 Use on layers with many feature 
channels (not on input/early layers)

 Fewer parameters, less memory, 
fewer computations, and generally 
perform better
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XCEPTION



 2018 ILSVRC winner
 Squeeze-and-Excitation Network

 2.25% top-5 error rate
 Built on Inception (SE-Inception) and 

ResNets (SE-ResNet)

 SE block
 Global average pool: mean of each 

feature map

 “Squeeze” (bottleneck)
 Dramatically reduce number of maps for low 

dimensional embedding of feature 
distribution

 Force SE block to learn general 
representations of feature combinations

 Output: recalibration vector (boost 
normally co-occurring features)
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SENET



 Analyze output of attached 
unit to learn features that are 
usually most active together 
(depth search)

 Recognizes features that 
respond together (mouth, nose, 
eyes) and boosts features that 
are missing/low response (e.g. 
eyes)

 Recalibration steps solves 
ambiguity when feature is 
confused with something else 
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SE BLOCK



 Don’t implement models from 
scratch by hand, use existing 
implementations

 Known as backbone network

 Models pretrained on ImageNet

 Good general features

 Models expect specific size and 
pre-processing (e.g. normalization)

 Only requires a few lines of 
code

 Transfer learning

 Utilize strong backbone and 
adjust last layers for a specific 
task

 Useful when not working with 
ImageNet classes (all the time) 
and with limited training data

 Initialize network with 
ImageNet weights and only 
train higher layers (e.g. 
classification or minimal conv)
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PRETRAINED MODELS AND TRANSFER LEARNING



Recognition/Classification

Object Detection

Semantic Segmentation
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REMINDER: RECOGNITION TASKS



 Classification – identify the image 
class

 Localization – provide a bounding 
box for the image class
 Expressed as a regression task [x, y, 

w, h]
 Assumption of a single object per 

image
 Much of the work is in labeling the 

data with bounding boxes
 Many tools exist (e.g. VGG Image 

Annotator, LabelImg, OpenLabeler, 
ImgLab, LabelBox, Suervisely)

 Evaluated with intersection over 
union (IoU) the overlap
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CLASSIFICATION AND LOCALIZATION



 Task of classifying and 
localizing multiple objects in 
an image

 Early attempts used a sliding 
window
 Run classification CNN over each 

window in the image

 Need search at scale (multiple 
passes)

 Get multiple responses to same 
object → NMS
 Objectness score to remove responses

 Merge responses with high IoU
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OBJECT DETECTION



 Introduced by Long CVPR 
2015 for semantic segmentation

 Replace dense classification 
with convolutional layers
 Same number of operations but 

with different output tensor shape

 Allows processing input of any 
size (unlike dense layer with fixed 
input size)

 For larger image, equivalent to 
sliding CNN across image in 
blocks
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FULLY CONVOLUTIONAL NETWORKS



 Fast(er) R-CNN
 Apply FCN approach with region proposals 
 Fast R-CNN uses Selective Search
 Faster R-CNN uses a small region proposal network to predict bounding boxes

 YOLO (you only look once) – major shift in approach with a single CNN 
pass
 Divide image into cells and predict 5 bounding boxes per cell
 Predicts bbox offset rather than absolute location (smaller range)
 Use of anchor boxes (bounding box priors) as prototypical object dimensions
 Trained with images of different scale → detect different scale

 SSD (single shot detector) 
 Better accuracy than YOLO
 Use of MultiBox with decreasing convolutional layers for detection scales
 More bounding box predictions than YOLO
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OBJECT DETECTION ARCHITECTURES



 Each pixel is classified according to 
the class of the object it belongs
 Different objects of same class are not 

distinguished (panoptic segmentation)

 Traditional CNNs lose spatial 
resolution due to layer stride
 Need to “upsample” coarse feature map

 Use transposed convolutional layer

 Add skip connections for better 
resolution

 Instance segmentation – each object 
is distinguished from each other
 Mask R-CNN, Kaiming He 2017 as 

extension of Faster R-CNN to produce 
pixel mask for each bounding box
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SEMANTIC SEGMENTATION



OBJECT DETECTION
OBJECT DETECTION WITH DEEP LEARNING: A REVIEW
ZHAO, ZHENG, XU, AND WU, T-NNLS 2019
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 Fundamental computer vision 
problem

 Categorize not just the whole image 
but delineate (with bounding boxes) 
where various objects are located 
(object localization)
 Localization is viewed as a bounding box 

regression task

 Provides a semantic understanding 
of images (video)

 Related tasks: image classification, 
human behavior analysis, face 
recognition, autonomous driving
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OBJECT DETECTION OVERVIEW
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DEEP CNN DOMINANCE IN DETECTION

Zou et al., “Object Detection in 20 Years: A survey, 2019



 Deep learning dominance:

 Large scale annotated training 
datasets

 Fast development of high 
performance parallel computing 
(GPUs)

 Advances in network structures

 Initialization: pre-training

 Overfitting: Dropout and data 
augmentation

 Efficiency: batch normalization

 Architectures: AlexNet, Inception, 
ResNet

 CNN advantages:

 Hierarchical feature 
representation 

 Deeper architecture for increased 
expressive capability

 Can jointly optimize several 
related tasks (multi-task learning)

 Classical CV can be recast as 
high-D data transform problems
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DEEP LEARNING AND CNNS



Locate and classify all objects (of interest) in an 
image

 Label each object with a rectangular bounding box

 Have a measure of confidence in detection

Two major approaches:

 Two-stage: i) generate region proposals and ii) classify 
each proposal into different object categories

 One-stage: detection as a regression or classification to 
get both categories and locations directly at once
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GENERIC OBJECT DETECTION
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OBJECT DETECTION MILESTONES

Zou et al., “Object Detection in 20 Years: A survey, 2019



Viola Jones cascade detector

 Viola and Jones, 1999

Histogram of Oriented Gradients (HOG) detector

 Dalal and Triggs, 2005

Deformable Part-based Model (DPM)

 Felzenszwalb, 2008 
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TRADITIONAL DETECTOR REVIEW



 Real-time face detection with sliding window for position 
and scale

 Integral image: speeded up Haar-like feature 
computation (speeded up filtering)

 Feature selection: Adaboost to automatically select a 
small but useful set of features (application driven 
filters)

 Detection cascades: multi-stage detector to avoid heavy 
computation on background windows but on faces
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VIOLA JONES



 Designed for pedestrian detection

 Improvement over SIFT and shape contexts
 Balances feature invariance (translation, scale, illumination) 

and nonlinearity (different object categories)

 Descriptor computed on dense grid of uniformly spaced 
cells 

 Used overlapping local contrast normalization over 
blocks

 Resizes input image while keeping detection window 
fixed for scale 
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HOG



 Extension of HOG and was winner of VOC 07-09
 Divide and conquer detection – object built from smaller 

parts to detect (bike has wheels, body, etc.)
 Use of a star-model for connections – a root filter and part-

filters
 Important contributions:
 Extended with mixture models for more real-world variation 

(e.g. bike from front or side) 
 Hard negative mining – create negative examples on the 

margin
 Bounding box regression
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DPM



 Region proposal based frameworks
 “Coarse-to-fine” process somehow similar to human brain –

scan full scene and then focus on region of interest

 Approaches
 Overfeat – sliding window 

 Region CNN (R-CNN)

 Spatial Pyramid Pooling Networks (SPPNet)

 Fast R-CNN

 Faster R-CNN

 Feature pyramid network (FPN)
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TWO-STAGE DETECTOR MILESTONES



 Use selective search (Uijlings
2011) to generate a small set of 
potential object regions

 Bottom-up grouping and saliency 
for proposals of various size

 Rescale proposals to fixed size 
and evaluate ImageNet 
pretrained CNN for feature 
extraction

 Multi-class linear SVM for 
classification
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R-CNN (GIRSHICK 2013)

 Advantages: significant 
performance boost on VOC07

 Shortcomings: Redundant 
feature computations on 
overlapping regions make this 
slow 



 Spatial pyramid pooling (SPP) 
layer enables a CNN to 
generate a fixed-length 
representation regardless of 
image size/ROI without 
rescaling

 Feature maps computed once 
for entire image and fixed-
length representation can be 
made of arbitrary region

 Use conv5 layer for SPP layer

 Advantage: 20x faster than R-
CNN without accuracy loss

 Shortcomings: Training is still 
multi-stage and only FC layers 
are trained
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SPPNET (HE 2014)



 Simultaneously train detector and 
bounding box regressor

 No need for linear SVM layers

 Like SPPNet, image is only 
processed with convolutions once

 RoI pooling layer to generate fixed-
length feature vector

 FC layers branch to outputs:

 Softmax class probabilities 

 Refined bounding box positions

 Optimized jointly with multitask 
loss (classification + localization)

 Advantages: Increased VOC 
mAP from by 11.5% from R-
CNN

 Shortcomings: speed still 
limited by region proposals
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FAST R-CNN (GIRSHICK 2015)



 Generate object proposals with a 
CNN model
 First end-to-end and near real-time 

deep learning detector

 Introduced region proposal 
network (RPN)
 Nearly cost-free region proposals as 

opposed to selective search
 Produces object boundaries and 

scores for all positions simultaneously
 Sliding window across conv layer

 Use of reference boxes (anchors) 
that match popular object 
dimensions
 Later regressed for final bbox

 Advantages: trained end-to-end (all 
layers) and high 5 fps on GPU with 
SOTA VOC results

 Shortcomings: long training time, 
poor performance on extreme 
scales/shapes, object regions rather 
than instances
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FASTER R-CNN (REN 2015)



 Handle wide scale variation 
through use of image pyramid
 Deeper CNN layers useful for 

category recognition but poor for 
localization

 Top-down architecture with 
lateral connections to share high 
level features with higher 
resolution of lower layers
 Avoid expensive explicit image 

pyramid computation

 General approach for efficient 
multi-scale representation
 Extensively used in semantic 

segmentation
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FPN (LIN 2017)



End-to-end regression/classification methods

 Single step to produce detections

Approaches

 MultiBox

 AttentionNet

 Grid-based object detector (G-CNN)

 You Only Look Once (YOLO)

 Single Shot Multi-box Detector (SSD)

56

ONE-STAGE DETECTOR MILESTONES



 First one-stage detector
 Extremely fast by abandoning 

proposal detection + verification 
approach

 Divides an image into regions 
and predicts bounding boxes 
and probabilities for all regions 
simultaneously
 Each grid region predicts objects 

centered within that grid cell

 𝐵 bounding boxes are predicted 
with associated confidence score

 Advantages:
 Extremely fast (45-155 fps VOC)

 Shortcomings:
 Poorer localization than two-stage 

detectors

 Difficulty with small scale objects
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YOLO (REDMOND 2015)



 Customized CNN architecture 
from scratch
 Inception-like modules

 Divide image into 𝑆 × 𝑆 grid

 Each grid cell predicts an 
object centered with the cell
 Local search with relative 

coordinates (scale for image size)

 𝐵 bounding boxes predicted for 
each cell with confidence

 Conditional class probabilities 
predicted for each of the 𝐶

 Training loss
 Bounding box localization

 Box center relative to grid

 Normalized height/width relative to 
image size

 Confidence score 

 Classification error
 Only when object is in cell

 Upgrades (v2, v3, etc.)
 Batch normalization

 Anchor boxes

 Dimension cluster 

 Multi-scale training

58

YOLO II



 Multi-reference and multi-
resolution detection technique
 Detects at different scales at 

different layers of network
 Better handles small objects

 Inspired by anchors of MultiBox, 
RPN, and multi-scale 
representation 

 Add feature layers at the end of 
standard backbone (VGG16)
 Predict offsets to default bounding 

boxes of different scales and aspect 
ratios and confidences

 Final detection after NMS on multi-
scale refined boxes

 Advantages:
 Fast (59 fps) while more accurate 

than YOLO

 Shortcomings:
 Still issues with small objects 

(better backbone e.g. ResNet101)
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SSD (LIU 2015)



 MultiBox (Szegedy 2014)
 Inception-like structure to reduce 

dimensionality but not spatial resolution 
(height x width)

 Confidence loss to measure objectiveness 
of bounding box (categorical cross-entry)

 Location loss to measure how far a 
predicted bounding box (L2 but SSD 
uses smooth L1)

 Used anchors to get good prediction 
starting point for regression
 11 priors/feature map = 1420 

anchors/image for images at multiple 
scales and sizes

 SSD extended idea to each cell in feature 
map to avoid explicit anchor pre-train 
(6/cell)

 Hard negative mining - 3:1 ratio 
of neg:pos train examples
 Need to keep low IoU predictions

 Data augmentation – random 
flipping and patches of original 
image at different IoU ratios

 Non-maximum suppression 
(NMS) – discard low confidence 
and IoU

 80% of time is spent on base 
VGG16
 Can improve speed/performance 

with better backbone
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SSD II



 Multi-task learning – learn better representation from 
multiple correlated tasks
 Train conv layers for e.g. region proposal, classification, and 

segmentation
 Multi-scale representation – combine activations from 

multiple layers with skip-layer connections
 Provide semantic information of different spatial resolutions

 Contextual modeling – exploit features from surround
 Provide features from different support regions/resolutions 

which help with occlusion and local similarities (e.g. tennis 
ball versus lemon when a racket is nearby)
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TECHNIQUES FOR BASE IMPROVEMENT



For more complete overview, see recent surveys

Object Detection with Deep Learning: A Review

Object Detection in 20 Years: A Survey
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IMAGE SEGMENTATION 
EVOLUTION OF IMAGE SEGMENTATION USING DEEP CONVOLUTIONAL NEURAL 
NETWORKS: A SURVEY, SULTANA, SUFIAN, AND DUTTA, KBS 2020
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 Segmentation – CV task of segregating 
an image into multiple regions 
according to different properties of 
pixels (e.g. color, intensity, texture)
 Typically a low-level task that relies on 

spatial information (neighborhood)

 Semantic segmentation – associate a 
class label for every pixel in an image

 Instance segmentation – mask 
(segment) each instance of an object in 
an image independently

 Panoptic segmentation – combination 
of semantic segmentation and instance 
segmentation
 Label both class and separate instances 

(detection)
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SEGMENTATION TASKS



 Pixel level class labels

 Have relied heavily on CNNs 
since 2012

 Popular approaches:

 Fully convolutional network

 Dilated/atrous convolution

 Top-down/bottom-up approach

 Global context

 Receptive field enlargement and 
multi-scale context
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SEMANTIC SEGMENTATION



 Fully convolutional network (FCN) 
was proposed for semantic 
segmentation

 Use standard CNN backbone but 
remove dense FC layers
 Use of 1x1 convolution instead

 Produces a class presence heatmap in 
low-resolution

 Bilinear interpolation used to 
upsample coarse output to pixel 
resolution

 Skip connections (deep jet) to 
combine final prediction layer with 
higher res/feature-rich lower layers
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FCN [LONG 2017]



 Context is important for 
segmentation but Traditional 
convolution is expensive for larger 
field-of-view (kernel size)

 Atrous convolution introduces a 
dilation rate 
 Trade-off context vs localization

 Traditional CNN loses resolution 
while atrous can keep it
 Larger feature map is better for 

segmentation (less interpolation)

 However, isolates pixel from context

 Key architectures: DilatedNet and 
DeepLab (CRF for fine details)
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DILATED/ATROUS CONVOLUTION

source
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 Encoder-decoder architecture
 Convolution encodes image features
 Deconvolutional network to decode 

features into pixels/labels

 Deconvolution (transposed convolution) 
reconstructs spatial resolution
 Upscaling convolution operation

 Both encoder and decoder extract 
features

 Generally lose fine-grained information 
in encoding process
 Skip connections utilized to pass higher-

resolution features

 Key architectures: Deconvnet, U-Net, 
SegNet, FC-DenseNet, HRNet

 conv de-conv
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TOP-DOWN/BOTTOM-UP APPROACH

source

https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d


 Most segmentation relies on just 
local information but global context 
is important
 Add global features or global context 

information

 Global features
 Global average pool (final layers)
 Large convolution kernels

 Context 
 Use of class mapping

 Helps resolve inaccuracies but lacks 
scaling information of multiscale 
objects

 Key architectures: ParseNet, GCN, 
EncNet
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GLOBAL CONTEXT



 Use of feature pyramid 
techniques for multi-resolution 
representation
 Atrous Special Pooling Pyramid 

(ASPP)

 Pyramid pooling module

 Provides better localization

 Helps incorporate scale 
information of objects for fine-
grained segmentation

 Key architectures: DeepLabv2, 
DeepLabv3, PSPNet, Gated-
SCNN
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RECEPTIVE FIELD ENLARGEMENT AND 
MULTI-SCALE CONTEXT



 Each instance of a particular object 
is masked independently

 Task is intertwined with object 
detection
 Detection gives bounding box while 

instance segmentation further refines 
with mask

 General approach is to give 
proposals of objects/masks and 
refine

 Mask R-CNN as example
 Faster R-CNN extension
 RPN for object proposals – classification 

and bounding box regression

 Separate segmentation network for each 
ROI
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INSTANCE SEGMENTATION



 Combination of instance 
segmentation and semantic 
segmentation

 Newer segmentation task

 General approach: 

 Heads for semantic segmentation

 Head for instance segmentation 

 Panoptic head to combine

 Key architectures: OANet, 
UPSNet, Multitask Network
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PANOPTIC SEGMENTATION



For more complete overview, see recent surveys

Evolution of Image Segmentation using Deep 
Convolutional Neural Network: A Survey

 Image Segmentation Using Deep Learning: A 
Survey
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