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NOTE

= Slides follow Geron’s Hands-On Machine Learning
with Scikit-Learn, Keras & TensorFlow

= Additional Deep Detections slides from Object
Detection with Deep Learning: A Review



https://arxiv.org/abs/1807.05511
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OUTLINE

= Biological Inspiration

= Convolutional Layers

" Pooling Layers

» CNN Architectures

= Object Detection Survey

= Semantic Segmentation Survey



EVOLUTION OF COMPUTER VISION

= (Classical vision

» Hand-crafted features and
algorithm based on expert
knowledge

= (Classical machine learning

= Hand-crafted features (pre-
processing) but ML for
classification

= Deep learning

= Both features and classification
are learned

= End-to-end training (from pixels
to output)

Hand-crafted Hand-crafted
Input features algorithm Output
(a) Traditional vision pipeline
.| Hand-crafted R Machine R
Input features | leaming ¢ ] Qutput
(b) Classic machine learning pipeline
Learned R Machine
Input features [ |  Learning :___’ Qutput

(c) Deep learning pipeline




DEEP CNN DOMINANCE IN CV
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2010 2011 2012 2013 2014 2014 2015 2016

Lin et al Sanchez &  Krizhevskyetal  Zeiler & Simonyan &  Szegedy etal He et al Shao et al
Perronnin {AlexNet) Fergus  Zisserman (VGG) (GoogleMet) (ResNet)

Li, Johnson, and Yeung, 2019
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Object detection accuracy improvements
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ARCHITECTURE OF THE VISUAL CORTEX

® Modern CV is inspired by human
vision (sensory modules)

® Hubel and Wiesel showed that
neurons in the visual cortex had a
small local receptive field
= Only reacted to stimuli in a limited
region of visual field (blue dashed circles)
= Lower-level neurons with simple
pattern response (e.g. lines of
specific orientation)

= Higher-level neurons with larger
receptive field and combination of
lower-level patterns

®  Neurons at higher-levels only connected to
few at lower-level




CONVOLUTIONAL NEURAL NETWORK

» Stacked neuron architecture enables detection of complex

patterns in any area of the visual field = convolutional
neural networks (CNNs)

® Led to LeNet-5 architecture by Yann LeCunn for
handwritten number recognition (MNIST)

® Fully connected layers and sigmoid activations

= Convolutional layers and pooling layers

®* Why not fully connected layers for images?

* Even small images have large number of pixels resulting in huge
networks

= CNNs solve this with partial connected layers and weight sharing



CONVOLUTIONAL LAYERS

® Neurons in the first layer are
not connected to every single

pixel in input image
= Connected to receptive field
= Stacked receptive field approach

® Hierarchical structure

= First layer — small low-level
features

= Higher-levels — assemble lower-
level features into higher-level
features

® Structure is common in real-world
images

Convolutional
layer 2

Convolutional
layer 1

Input layer



CONVOLUTIONAL LAYER CONNECTIONS

= Note: the actual operation
performed is cross-correlation _
(no-flipping) J
= Neuron (row, column) (i,j) is
connected to neurons in previous
layer within receptive tield
= Row [i,i+ f, — 1]
= f, - height of receptive field
= Column [j,j+ f,, — 1]
= f,, - width of receptive field
= Note: this is a causal filter though __
shown as symmetric | | L]
= Zero padding used to keep PR Zero padding
output /input layers of same size
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CONVOLUTIONAL LAYERS STRIDE

= Stride can be used to connect a
large input layer to smaller

Y —
output layer

= Change the spacing the of the "
receptive field '

= Dramatically reduce model s =2 7 R .

: - ¢ ’i % F—

computational complexity AN~
S d
( AHate ) \ /4\\ /1\\ i
" Height and width stride can be N’ N7 N7

different S, =2



FILTERS

= Filters = convolutional kernels

= Size of the kernel is the receptive
fleld fOI' the neuron Feature

map 1
i

Feature
map 2

. ‘Ww 0N INRRRRNAAN

= Feature map — output of the
“convolution” operation

= Highlights areas in an image that
activate the filter most

= For CNNs, the filters are not
defined manually!

= Horizontal filter

ﬂi . P
e R
e TR

2 —

= [earn most useful filters for a task

= Higher layers will learn to combine
into more complex patterns
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STACKING MULTIPLE FEATURE MAPS 1

= Fach convolution layer has / | Convolutional
1 1 1 1 fll I Feature // o layer 2
uitiple fitters (E] v )
= Stacked 3D output (1 feature map , =
. ma 4 c
for each filter) ? Pl A
ilters
= Fach neuron in a feature map s
shares the same parameters iy /| Convolutional
(weights and bias) —4.N sty L
= Neurons in different feature maps AT M2 7
use different parameters L RIS

= Neuron’s receptive field applies to
all feature maps of previous layer

Input layer

= Note input images often have
multiple sublayers (channels)




STACKING MULTIPLE FEATURE MAPS II

= Qutput of a neuron in a
convolutional layer

Jn—=1 fuw—1 fn’_l

Zijk = br + E E 5 Tir ket X Wy k' k
u=0 v=0 k=0
i =1 X s, +u
§ = X 8y + v

" Z; ik - output of neuron in row i,
Co{umn, J, in feature map k of the
convolutional layer [

= b, - bias term for feature map k (in
layer 1)

= Tweaks overall brightness of feature map

k

" 5,,S,, - vertical and horizontal
strides

" fn,fw - height and width of receptive
field (kernel)

= f_r - number of feature maps in
previous (lower layer)

X;1 it k- output of neuron located in
layer | — 1, row i’, column j', feature
map k

" W,k g - connection weight between
any neuron in feature map k of the
layer [ and its input located at row
u, column v (relative to the
neuron’s receptive field), and feature
map k'
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MEMORY REQUIREMENTS

®* Though much smaller the tully connected networks, CNNs
still use significant amount of RAM

®* During training, the reverse pass of backpropagation
requires all the intermediate values computed during the
forward pass
= Need to have enough for all layers in the network

» Forward pass can release memory after each layer is computed
(only two consecutive layers required)

® Qut-of-memory error

= Reduce mini-batch size, increase stride, remove layers, change
precision (16-bit vs 32-bit floats or use int), or distribute the CNN
across devices




POOLING LAYERS

= Subsample input in order to
reduce computational load,
memory usage, and number of
parameters (reduce risk of
overfitting)

= Aggregate over the receptive field

= Agegregate functions such as max
(most popular) or mean

= Max tends to work better by Max pooling layers (2x2 kernel, stride— : 1o dig)
preserving only the strongest feature max pooling
—> cleaner signal, more invariance, 20{30
112| 37
le.ss cor.npute | ——Tr
= Stride gives downsampling 8 12| 2] 0
= Pooling kernel size can be even 34|70| 37| 4 |\ _3verage pooling
112100{ 25 | 12 e

79| 20



POOLING LAYERS INVARIANCE

® Introduces some level of invariance
to small translations

= Small image shifts result in same
response

= Additionally small invariance to rotation
and scale with max pool

= Max pool every few CNN layers for

" MaxPool2D

e

.

MaxPool2D |

" MaxPool2D

invariance at larger scale

m Useful when task should be invariant

(e.g. image classification) - L

= Drawbacks ]

= Destructive — 2x2, stride 2 drops 75% of

input values

= Invariance not always desirable (e.g. — —
semantic segmentation should have A
equivariance)




CNN ARCHITECTURES

= Typical CNN architecture .
= Stack a few convolutional layers ] % %—E E E"
(eaCh fOIIOwed by ReLU layer for : Convolution Pooling Convolution Pooling Fully connected
non-linearity) et
= Pooling layer = Input kernel can (be larger since )generally
ly 3 sublayers (RGB channels
= Repeat Conv + ReLU + Pool o Y
P + + = (Conv layers use stacked small 3x3 kernels
= Top layers are regular since it is more computationally efficient
feedforward neural network which and perform better than larger
is usually fully connected layers = Number of filters increases at higher layers
( +ReLLU S) = E‘Oerzlvbli%vg—level patterns, but more ways to
= Final layer outputs the prediction = Double #filters after pooling (stride 2)
(e. g. softmax for class = Flatten conv output before fully connected

dense layer

robabilities
p ) = Add dropout to avoid overfitting



ILSVRC IMAGENET CHALLENGE

= Variants of basic CNN
architecture have been
developed

®* Benchmark with ImageNet
Challenge

= Large scale with 1M images and
1000 classes

30 282

|152 layers| | 152 layers] | 152 layerd

16.4

11.7 19 jayers| |22 layers]

m#l: i

® Much more complicated than any
benChmark aJt t he time ( - 20 1 O) 2010 2011 2012 2013 2015 2016 2017  Human
Lin et al Sanchez&  Krizhevsky et al hao et al Huetal  Russakovskyetal

N Dramatic drop in top_five error Perronnin  (AlexNet]  Fergus  Zisserman (VGG) (GoogLeNet : :nemen (SENet)
from 26% to 2.3% in 6 years

= Bigger is better




LENET-5

= Network of Yann LeCun (1998)
INYU]| designed for handwritten
digit recognition (MNIST)

| Images normalized at lnput Table 14-1. LeNet-5 architecture

Layer Type Maps Size Kernel size Stride Activation
= No padding > smaller size each Ot Ryomeced — 0 - - R
F6 Fully connected - 84 - - tanh
layer (5  Comvolution 120 1x1  5x5 1 tanh
5 Avg pooling 16 S5x5  2x2 2 tanh
o Average pOOl has learnable (3 Convolution 16  10x10 5x5 1 tanh
. » . 52 Avg pooling b Mx14 2x12 yi tanh
COfolClent a’nd blaS term (1 Convolution 6 28x28 5x5 1 tanh
= Limited C3-S2 map connections S L e
0 Output square Fuclidean distance http://vann.lecun.com /exdb /lenet /index.html]

= Similar cross-entropy


http://yann.lecun.com/exdb/lenet/index.html

ALEXNET

= 2013 ImageNet winner
= 17% top-5 error rate (26% for 24 place)

= Alex Krizhevsky, Ilya Sutskever, and
Geoffrey Hinton |U Toronto|

= Similar to LeNet-5 but larger and
deeper

= First to stack convolutional layers
directly on top of one another (no
pooling in between)

= To reduce overtfitting
= 50% dropout of layers F9 and F10
= Data augmentation

= Local response normalization used to
inhibit neighboring feature maps
= Encourage different feature maps to

specialize, push neighbors apart, and
improve generalization

Table 14-2. AlexNet architecture

Layer Type Maps  Size Kernel size Stride Padding Activation
Qut  Fully connected - 1,000 - - - Softmax
F10  Fully connected - 4,096 - - - RelU

Fo Fully connected — 4,096 - - - RelU

58 Max pooling 256 6x6 Ix3 2 valid -

(7 Convolution 256 Bx13 33 1 same  RellU

(6 Convolution 384 13x13  3x3 1 same  RelU

(5 Convolution 384 1Bx13  3x%3 1 same  RelU
54 Max pooling 256 Bx13  3x3 2 valid -

a Convolution 256 27 x21  5x5 1 same  RelU

52 Max pooling 9 %21 33 2 valid -

4 Convolution 96 5555 MxM 4 valid Rell

In Input

3 (RGB) 227 %227 -

ZF Net is an AlexNet variant with tweaked hyperparameters



DROPOUT

= Popular technique from Hinton 2012
and Srivastava et al. 2014

= 1-2% accuracy boost (even SOTA)

= At each training step, a neuron has a
probability of being ignored (dropped
out)

"  Neuron can be active during next training step

= Dropout rate generally between 10-50%

® 20-30% for recurrent neural networks
= 40-50% for CNNs

= Forces networks to diversify

" Neurons cannot co-adapt with neighbors

Dropped

= (Cannot rely only an a few input neurons

" Less sensitive to slights changes in input
= " Average of many networks



DATA AUGMENTATION

= Artificially increase training
dataset size by generating
realistic variants of training
instances

= Ideally, shouldn’t be able to
distinguish real from augmented
example

» Reduces overfitting
(regularization technique)

= Common augmentations
= Small shifts, rotation, resize (scaling)

= Horizontal flip — orientation
inV ari ance Figure 14-12. Generating new training instances from existing ones

= Vary contrast — lighting condition
invariance



GOOGLENET (INCEPTION)

2014 ILSVRC Winner

= <7% top-b error rate
= Christian Szegedy et al. [Google]

®  Current versions Inception-v3 and Inception-v4
(Googl.eNet + ResNet)

Much deeper architecture than previous
CNN (large stack)

= Much fewer parameters (6M vs. 60M AlexNet)
Inception layers for parameter efficiency

Use of 1x1 convolutions as a bottleneck
layers

Local response normalization to learn a
wide variety of features

Classification task with multiple (max) pool
to reduce size (avg. final 7x7 map)

=  No need for multiple fully connected (FC) layers
to save parameters

¢

Max pool

112 288 64 64

Softmax

Fully connected

192, 3x3 + 2(S) b 144 32 1000 units
Local response 128 256 64 64 Dropout
normalization 128 24 40%
Convolution 160 224 64 64 Global avg pool
192, 3x3 + 1(S) b 112 24 1024
Convolution 192 208 48 64 384 384 128 128
64, 1x1 + 1(S) > 96 16 <> 192 48
Local response Max pool 256 320 128 128
normalization 480, 3x3 + 2(S) 160 32
Max pool 128 192 96 64 Max pool
64, 3x3 + 2(S) b 128 32 832, 3x3 + 2(S)
Convolution 64 128 32 32 256 320 128 128
64, 7x7 + 2(S) 96 16 160 32

Input

}

t

}

Cb = inception module




INCEPTION MODULE

Parallel convolutions

3x3+1(S) = 3x3 kernel, stride 1, “same” padding
All use ReLLU activation

2nd convolution layer

Different kernel size for patterns at different
scale

Stacked conv for more complex patterns than
single linear convolution

Depth concat

All layers have the same outputs size
Stack 2" layer outputs depthwise

1x1 bottleneck layers

Fewer output than input dimension

Fewer parameters, faster training, improved
generalization

Not spatial but depth patterns

Depth
concat

N

Convolution Convolution Convolution Convolution
1x1 + 1(S) 3x3 + 1(S) 5x5 + 1(S) 1x1 + 1(S)
Convolution Convolution Max pool

1x1 + 1(S)

1x1 + 1(S)

3%3+1(S)




VGGNET

= 2014 ILSVRC runner-up °'°°*D‘

block 2

(- P

_p‘\

= Simonyan and Zisserman [Oxford] | o R B T
= (Classical architecture : =
= Stacked 2-3 conv + pool layers - oL [(; [\ R R IY > Ou
= Variants of 16 or 19 conv layers P e MY wonc s ol
= 3 FC classification layers @

| | 1
» Used many 3x3 filters & [» L =

I
‘ ’ Recurrent

Dense Convolution Recurrent Sequences Flatten Reshape

FUE SAAS

Zero Average
Dropout Batchnorm Noise Pad Pool Pool Upsample

(b)




RESNET

= 2015 ILSVRC winner

m <3.6% top-5 error rate
= Kaiming He et. Al [Microsoft]

= Deeper with fewer parameters i
. Soft ," Convolution
=  Variants of 34, 50, and 101 layers Fully connected y Convolution A
. _ 1000 units 128, 3x3 + 1(S)
[ Sklp (ShOI'tCU.t) connections Global avg pool | / ; Convolution ReLU
" Signal passed into up one layer and a further 10 fo 12§, 3x3 +1(8) Skip
onvolution Batch
layers ahead —— Deep! —— V| 128, 3x3 +2(S) Sorveiio Norm
=  Build network on residual units (RUs) 62°;:‘3"ﬁ“1°("s) 64, 3%3 + 1(S) BN +
: : Max pool \ ’ : Convolution RelLU
[ | ' Convolution
Batch normalization (pg 338) 64,3x3+2(S) | \ 5 B9 1) 64, 3x3 + 1(S)
= Better gradient conditioning (vanishing Convolution Convolution _ _
gradient) 64, 7x7 + 2(S) \‘\ 6‘(1:-, 3x3l+t1(S) | Residual unit
\ onvolution
= Standardize inputs then rescales and offsets Input "\l 64, 3x3+1(S)

= Acts as a regularizer (e.g. no need for dropout) 4
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RESIDUAL LEARNING 1

= Signal feeding layer is also
added to the output of a layer

higher in the stack h(x)
® Instead of modeling function hix) i

h(x), it models f(x) = h(x) — r - _ P -

X Layer 2 % Layer 2

4 h(x) = 4 fx) = h(X) - X

= Faster weight update (0 - 4 —

initialization) - S

= Regular networks output 0 Input Input

= Skip connection copies input
(identity function)



RESIDUAL LEARNING II

= Skip connection bypass layer 4 -
. T
blocking
= Input signal can propagate to %
higher levels ,':': =
= Can train layers even if lower ' X  Residua
. = P n
layers have not started learning el e
-7 T~ l’——" )
1 _ Layer blocking
» Feature map size and depth X = potrorpagation .
Change = Layer not learning — |
= Skip connection prevents direct
addition after resize / Ret
" 1x1 convolution, stride 2., and o COnvomao:’ Comotion E:
output matched kernel size 128, 1+ 25) | |7 Convoluin |7 RelU

-..-...
—



XCEPTION

» GoogLeNet variant
» Combines GoogLeNet + ResNet

= Inception modules replaced with [ N
] : Feature Q Regular convolutional
depthwise separable convolution mep1 | 1 R o
layer mop2 T 2 only filters (1x1)

= Chollet 2016 (Keras author)

= Separable convolution layer
= Separate spatial and depth

/" Spatial-only filters
(1 per input channel)

= ] spatial filter per input channel

= Use on layers with many feature
channels (not on input/early layers)

= Fewer parameters, less memory,
fewer computations, and generally
perform better



SENET

= 2018 ILSVRC winner

= Squeeze-and-Excitation Network
= 2.25% top-5 error rate

= Built on Inception (SE-Inception) and
ResNets (SE-ResNet)

= SE block

= (Global average pool: mean of each
feature map

= “Squeeze” (bottleneck)

® Dramatically reduce number of maps for low
dimensional embedding of feature
distribution

= Force SE block to learn general
representations of feature combinations

= Qutput: recalibration vector (boost
normally co-occurring features)

SE block

Inception module

/HH

SE block

p

Residual unit

! —]

A

Dense

<— Sigmoid

Dense

Global avg pool

RelLU

A
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= Analyze output of attached
unit to learn features that are
usually most active together
(depth search)

= Recognizes features that | ‘ | |
respond together (mouth, nose, /;D" >

eyes) and boosts features that = | SE block [ (00) .

. . eature maps 1.0 Recalibrated
are missing/low response (e.g. 1o]  feature maps
eyes) 53

= Recalibration steps solves
ambiguity when feature is
confused with something else



PRETRAINED MODELS AND TRANSFER LEARNING

®* Don’t implement models from = Transfer learning

scratch by hand, use existing = Utilize strong backbone and
implementations adjust last layers for a specific
task

= Known as backbone network
= Usetul when not working with

ImageNet classes (all the time)
and with limited training data

®» Models pretrained on ImageNet
® (Good general features

» Models expect specific size and
pre-processing (e.g. normalization) ™ Initialize network with

® Only requires a few lines of ImageNet weights and only
code train higher layers (e.g.
classification or minimal conv)
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REMINDER: RECOGNITION TASKS

= Recognition /Classification
= Object Detection

® Semantic Segmentation




CLASSIFICATION AND LOCALIZATION

= (Classification — identify the image
class
= Localization — provide a bounding
box for the image class
= Expressed as a regression task [x, y,
w, h]
= Assumption of a single object per
image
= Much of the work is in labeling the
data with bounding boxes

= Many tools exist (e.g. VGG Image
Annotator, Labellmé penLabeler
ImgLab, LabelBox uervisely)
= Evaluated with intersection over
union (IoU) the overlap




OBJECT DETECTION

= Task of classifying and
localizing multiple objects in
an lmage

= Farly attempts used a sliding
window

= Run classification CNN over each
window in the image

= Need search at scale (multiple
passes)

® Get multiple responses to same
object = NMS

= (Objectness score to remove responses

= Merge responses with high IoU



FULLY CONVOLUTIONAL NETWORKS
® Introduced by Long CVPR

2015 for semantic segmentation g fontore % o
= Replace dense classification maps maps
with convolutional layers Convolution Convolution
. 10, 7x7 + 1(V) 10, 7x7 + 1(V)
= Same number of operations but L | tx1a
with different output tensor shape £—7 feature % e
= Allows processing input of any [ T | maps
size (unlike dense layer with fixed E= cnw — — CONN —

input size)

» For larger image, equivalent to

sliding CNN across image in
blocks

224 x 224
image




OBJECT DETECTION ARCHITECTURES

= Fast(er) R-CNN
= Apply FCN approach with region proposals
= Fast R-CNN uses Selective Search
= Faster R-CNN uses a small region proposal network to predict bounding boxes

= YOLO (you only look once) — major shift in approach with a single CNN
pass

= Divide image into cells and predict 5 bounding boxes per cell
= Predicts bbox offset rather than absolute location (smaller range)
= Use of anchor boxes (bounding box priors) as prototypical object dimensions
*= Trained with images of different scale = detect different scale
= SSD (single shot detector)
= Better accuracy than YOLO
= Use of MultiBox with decreasing convolutional layers for detection scales
= More bounding box predictions than YOLO



SEMANTIC SEGMENTATION

» Fach pixel is classified according to
the class of the object it belongs

= Different objects of same class are not
distinguished (panoptic segmentation)

= Traditional CNNs lose spatial
resolution due to layer stride

= Need to “upsample” coarse feature map

Skip connection

A S i
1 A -

= Use transposed convolutional layer Feature map =
= Add skip connections for better .
. B = + —> |
resolution 52 x2 x16 i

" Instance segmentation — each object
is distinguished from each other
= Mask R-CNN, Kaiming He 2017 as

extension of Faster R-CNN to produce
pixel mask for each bounding box @' B

(c) Semantic segmentation (d) Instance segmentation

Downsampling  Upsampling” O T

bottle bottle




OBJECT DETECTION

OBJECT DETECTION WITH DEEP LEARNING: A REVIEW
ZHAO, ZHENG, XU, AND WU, T-NNLS 2019
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OBJECT DETECTION OVERVIEW

®* Fundamental computer vision
prOblem ® . ® = predictions.jpg -

= Categorize not just the whole image
but delineate (with bounding boxes)
where various objects are located
(object localization )

= Localization is viewed as a bounding box
regression task
" Provides a semantic understanding
of images (video)
= Related tasks: image classification,
human behavior analysis, face
recognition, autonomous driving




DEEP CNN DOMINANCE IN DETECTION

Object detection accuracy improvements

90%

83.80% 83 50
85% N 0%
80% ==O=VOC07 MAP 76-?\0%
VOC12 mAP 73.20%
75% ' — 74.90%
. . . . . a=Om=COCO MAP@].5, .95] 20% 69.70%
Number of Publications in Object Detection 0% COCO MAP@.S 1

59.10%

\
1400 65% !/ " 68.40% /

58.50% T~
1200 60% g . %) 62.90%
— 59.20%
1000 o 55%
% \ 48.40%
— 53.70% ,
800 E 50% %) aeso%
600 45% 42.70%
200 S 39.10%
40% o < -
35.90% 41.80%
200 I I I I 35% =
o = H m m B [] .
0 O O «H N M F NN W~ 0O 0 H N M S N WO M~ 0 30%
O O © O O O © O © © © 0 J9d od d A o oA oA - o |
o OO © © O © © © O O © O O 0O 0O 0O 0O 0O O o O 21.90%
- = N N N N & & & & & 6§ & 0§ 8§89 8§89 8§ 8§ 8§ § 25%
y 19.70%
ear 20% =
15%
00%\ Q’“’b\:‘é"&o@Q@Q@&Q&\@\@%\&\
\’Jf N VRV VA URUR AR
& R S R R e
R LI RE PCIRSAES
Q Q 9 & & S W
((’b(('g} QS’J LI

Zou et al., “Object Detection in 20 Years: A survey, 2019



DEEP LEARNING AND CNNS

® Deep learning dominance: = CNN advantages:

= Large scale annotated training = Hierarchical feature
datasets representation

= Fast development of high = Deeper architecture for increased
performance parallel computing expressive capability
(GPUs) = (Can jointly optimize several

= Advances in network structures related tasks (multi-task learning)
= Initialization: pre-training = (Classical CV can be recast as
= Qverfitting: Dropout and data high-D data transtform problems

augmentation

= Efficiency: batch normalization

= Architectures: AlexNet, Inception,
ResNet
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GENERIC OBJECT DETECTION

= Locate and classify all objects (of interest) in an
1mage

= Label each object with a rectangular bounding box

® Have a measure of confidence in detection

" T'wo major approaches:

= Two-stage: i) generate region proposals and ii) classify
each proposal into different object categories

® One-stage: detection as a regression or classification to
get both categories and locations directly at once



OBJECT DETECTION MILESTONES

Object Detection Milestones

+ Multi-resolution Detection
+ Hard-negative Mining

SSD (W. Liu Retina-Net

et al-16) (T. Y. Lin et al-17)
/ + Bounding Box Regression YOLO (). Redmon
DPM etal-16,17)
HOG Det. (P. Felzenszwalb et al-08, 10) One-stage
(N. Dalal et al-05)
VJ Det. detector
(P. Viola et al-01) / + AlexNet >
2014 2015 2016 2017 2018 2019
/ ’ . e
2001 2004 2006 2008 2012
2014 2015 2016 2017 2018 2019
>
Traditional Detection RCNN\ \ Two-stage
Methods (R. Girshick et al-14)  sppyet detector
S E— / (K. He et al-14)
1sdom o € Co weapon / 1
P . Deep Learning based East RCNN
/  Detection Methods (R. Girshick-15)
,,’ Technical aesthetics of GPU Faster RCNN Pyramid Networks

(S- Ren et al-15) (T. Y. Lin et al-17)

/ + Multi-reference Detection

(Anchors Boxes) / + Feature Fusion

Zou et al., “Object Detection in 20 Years: A survey, 2019



TRADITIONAL DETECTOR REVIEW

= Viola Jones cascade detector
" Viola and Jones, 1999

= Histogram of Oriented Gradients (HOG) detector
= Dalal and Triggs, 2005

= Deformable Part-based Model (DPM)
® Felzenszwalb, 2008
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VIOLA JONES

® Real-time face detection with sliding window for position
and scale

" Integral image: speeded up Haar-like feature
computation (speeded up filtering)

» Feature selection: Adaboost to automatically select a

small but useful set of features (application driven
filters)

" Detection cascades: multi-stage detector to avoid heavy
computation on background windows but on faces



HOG

® Designed for pedestrian detection

®* Improvement over SIFT and shape contexts

= Balances feature invariance (translation, scale, illumination)
and nonlinearity (different object categories)

® Descriptor computed on dense grid of uniformly spaced
cells

" Used overlapping local contrast normalization over
blocks

" Resizes input image while keeping detection window
fixed for scale



DPM

® Extension of HOG and was winner of VOC 07-09

" Divide and conquer detection — object built from smaller
parts to detect (bike has wheels, body, etc.)

® Use of a star-model for connections — a root filter and part-
filters

= Important contributions:

® Fixtended with mixture models for more real-world variation
(e.g. bike from front or side)

= Hard negative mining — create negative examples on the
margin

®* Bounding box regression



TWO-STAGE DETECTOR MILESTONES

® Region proposal based frameworks

» “Coarse-to-tine” process somehow similar to human brain —
scan full scene and then focus on region of interest

= Approaches
= Overfeat — sliding window
= Region CNN (R-CNN)
= Spatial Pyramid Pooling Networks (SPPNet)
= Fast R-CNN

= Faster R-CNN
= Feature pyramid network (FPN)



R-CNN (GIRSHICK 2013)

= Use selective search (Uijlings
2011) to generate a small set of
potential object regions

= Bottom-up grouping and saliency
for proposals of various size
» Rescale proposals to fixed size
and evaluate ImageNet
pretrained CNN for feature
extraction

= Multi-class linear SVM for
classification

R-CNN: Regions with CNN features
: ﬂ‘ aeroplane" no. |

warpef region

____________________

%%\-H person" yes.
CNNN
Gl (Al /B =17 L [ 41tvmon1tor‘7 no. |
1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

= Advantages: significant
performance boost on VOCO7

= Shortcomings: Redundant
feature computations on
overlapping regions make this
slow



SPPNET (HE 2014)

= Spatial pyramid pooling (SPP)
layer enables a CNN to
generate a fixed-length
representation regardless of
image size/ROI without
rescaling

» Feature maps computed once
for entire image and fixed-
length representation can be
made of arbitrary region

= Use convd layer for SPP layer

fully-connected layers (fce, fcs)

fixed-length representation

™
ﬂpatial pyramid

pooling layer

A

f convolutional layers

input image

» Advantage: 20x faster than R-
CNN without accuracy loss

® Shortcomings: Training is still
multi-stage and only FC layers
are trained



FAST R-CNN (GIRSHICK 2015)

= Simultaneously train detector and
bounding box regressor

Outputs: b b ox
softmax regressor
C 3 i ]

FC

= No need for linear SVM layers

= Like SPPNet, image is only
processed with convolutions once

Rol feature
vector For each Rol

= Rol pooling layer to generate fixed-
length feature vector

= Advantages: Increased VOC

= F'C layers branch to outputs: mAP from by 11.5% from R-
= Softmax class probabilities CNN

= Refined bounding box positions = Shortcomings: speed still

= Optimized jointly with multitask limited by region proposals

loss (classification + localization)



FASTER R-CNN (REN 2015)

= (Generate object proposals with a
CNN model

= First end-to-end and near real-time
deep learning detector

® Introduced region proposal
network (RPN)

= Nearly cost-free region proposals as
opposed to selective search

= Produces object boundaries and
scores for all positions simultaneously

= Sliding window across conv layer
= Use of reference boxes (anchors)

that match popular object
dimensions

= Later regressed for final bbox

| | 4k coordinates | < k anchor boxes

2k scores
cis layer ‘ , reg layer

256-d |
t intermediate layver

- ]

sliding window

conv feature map

Fig. 6. The RPN in Faster R-CNN [I8]. K predefined anchor boxes are
convoluted with each sliding window to produce fixed-length vectors which
are taken by cls and reg layer to obtain corresponding outputs.

= Advantages: trained end-to-end (all
layers) and high 5 fps on GPU with
SOTA VOC results

® Shortcomings: long training time,
poor performance on extreme
scales/shapes, object regions rather
than instances



FPN (LIN 2017)

= Handle wide scale variation
through use of image pyramid
= Deeper CNN layers useful for
category recognition but poor for
localization
®» Top-down architecture with
lateral connections to share high
level features with higher
resolution of lower layers

7 Z=

(b) Single feature map

e fes

[ ] AVOid exp ensive explicit im age (c) Pyramdal feature hierarchy (d) Feature Pyrammd Network
pyramid Computation Fig. 7. The main concern of FPN [66]. (a) It is slow to use an image pyramid
.. to build a feature pyramid. (b) Only single scale features is adopted for faster
[ General approach fOI‘ effICIQHt detection. (¢) An alternative to the featurized image pyramid is to reuse the
. . pyramidal feature hierarchy computed by a ConvNet. (d) FPN integrates both
mUIt l—Scale l”epresel’lt at 1011 (b) and (c). Blue outlines indicate feature maps and thicker outlines denote

semantically stronger features.

= Extensively used in semantic
segmentation



ONE-STAGE DETECTOR MILESTONES

= End-to-end regression/classification methods

= Single step to produce detections

= Approaches
= MultiBox
= AttentionNet
= Grid-based object detector (G-CNN)
®* You Only Look Once (YOLO)
= Single Shot Multi-box Detector (SSD)



YOLO (REDMOND 2015)

» First one-stage detector

» Extremely fast by abandoning
proposal detection + verification
approach

= Divides an image into regions
and predicts bounding boxes
and probabilities for all regions
simultaneously

= FEach grid region predicts objects

Class probability map

= Advantages:
= Extremely fast (45-155 fps VOC)

centered within that grid cell = Shortcomings:
= B bounding boxes are predicted = Poorer localization than two-stage
detectors

with associated confidence score
= Difficulty with small scale objects



YOLO II

®» Customized CNN architecture = Training loss

from scratch = Bounding box localization
= Inception-like modules = Box center relative to grid
= Divide image nto S X S gI‘l d o i&);g;aéigd height /width relative to
= Fach grid cell predicts an = Confidence score
object centered with the cell = Classification error
= Local search with relative * Only when object is in cell
coordinates (scale for image size) = Upgrades (v2, v3, etc.)
= B bounding boxes predicted for = Batch normalization
each cell with confidence = Anchor boxes
= (Conditional class probabilities = Dimension cluster

predicted for each of the C = Multi-scale training



SSD (LIU 2015)

= Multi-reference and multi-
resolution detection technique

= Detects at different scales at
different layers of network

= Better handles small objects

= Inspired by anchors of MultiBox
RPN, and multi-scale
representation

» Add feature layers at the end of
standard backbone (VGG16)

= Predict offsets to default bounding
boxes of different scales and aspect
ratios and confidences

= Final detection atter NMS on multi-
scale refined boxes

SSD

74.3mAP
59FPS

| Detections:8732 per Class I
| Non-Maximum Suppression |

» Advantages:

= Fast (59 fps) while more accurate
than YOLO

= Shortcomings:

= Still issues with small objects
(better backbone e.g. ResNet101)



SoD 11

= MultiBox (Szegedy 2014)

® Inception-like structure to reduce
dimensionality but not spatial resolution
(height x width)

= (Confidence loss to measure objectiveness
of bounding box (categorical cross-entry)

= Location loss to measure how far a
predicted bounding box (L2 but SSD
uses smooth L1)

" Used anchors to get good prediction
starting point for regression

= 11 priors/feature map = 1420
anchors/image for images at multiple
scales and sizes

= SSD extended idea to each cell in feature
map to avoid explicit anchor pre-train

(6/cell)

®* Hard negative mining - 3:1 ratio
of neg:pos train examples
= Need to keep low IoU predictions

» Data augmentation — random
flipping and patches of original
image at different IoU ratios

* Non-maximum suppression
(NMS) — discard low confidence
and IoU

= 80% of time is spent on base

VGG16

= Can improve speed /performance
with better backbone
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TECHNIQUES FOR BASE IMPROVEMENT

® Multi-task learning — learn better representation from
multiple correlated tasks

®* Train conv layers for e.g. region proposal, classification, and
segmentation

® Multi-scale representation — combine activations from
multiple layers with skip-layer connections

® Provide semantic information of ditferent spatial resolutions
® Contextual modeling — exploit features from surround

= Provide features from different support regions/resolutions
which help with occlusion and local similarities (e.g. tennis
ball versus lemon when a racket is nearby)
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REFERENCES

" F'or more complete overview, see recent surveys

m Object Detection with Deep Learning: A Review

m Object Detection in 20 Years: A Survey



https://arxiv.org/abs/1807.05511
https://arxiv.org/abs/1905.05055

IMAGE SEGMENTATION

EVOLUTION OF IMAGE SEGMENTATION USING DEEP CONVOLUTIONAL NEURAL
NETWORKS: A SURVEY, SULTANA, SUFIAN, AND DUTTA, KBS 2020
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SEGMENTATION TASKS

= Segmentation — CV task of segregating
an image into multiple regions
according to different properties of
pixels (e.g. color, intensity, texture)
= Typically a low-level task that relies on

spatial information (neighborhood)

= Semantic segmentation — associate a

class label for every pixel in an image

= Instance segmentation — mask image
(segment) each instance of an object in
an image independently

= Panoptic segmentation — combination
of semantic segmentation and instance
Segment ation instance segmentation panoptic segmentation

= Label both class and separate instances
(detection)

semantic segmentation




SEMANTIC SEGMENTATION

= Pixel level class labels

= Have relied heavily on CNNs
since 2012

= Popular approaches:
= Fully convolutional network

= Dilated/atrous convolution

- TOp—dOWH / bOttOm—Up appI'OaCh Natural Image Segmented Image
= Global context

= Receptive field enlargement and
multi-scale context



FCN [LONG 2017]

= Fully convolutional network (FCN)
was proposed for semantic
segmentation

m Use standard CNN backbone but
remove dense FC layers

m Use of 1x1 convolution instead

®» Produces a class presence heatmap in
low-resolution
= Bilinear interpolation used to
upsample coarse output to pixel
resolution

= Skip connections (deep jet) to
combine final prediction layer with
higher res/feature-rich lower layers

-

Convi_1

m

Convl_2

Conv2_1

Conv2_2

Conv3_1

Conv3_2
Conv3_3
Conwa_1
Conwd_2
Convd_3
Conv5_1

Conv5_2
Convs_3

Fig. 4. Architecture of FCN32s, FCN16s, FCN8s.

16x
Upsampled
prediction
(FCN 165)

32x
Upsampled
prediction
(FCN 325)

Upsampled
prediction
(FCN 8s)




DILATED/ATROUS CONVOLUTION

= Context is important for
segmentation but Traditional
convolution is expensive for larger
field-of-view (kernel size)

SOource

= Atrous convolution introduces a
dilation rate

= Trade-off context vs localization

= Traditional CNN loses resolution
while atrous can keep it

Convl

o Pot)ll Block1 Block2 Block3 Block4 Block5 Block6 Block7
= Larger feature map is better for g [0 O o :
segmentation (less interpolation) image %t 4 . 16 2 A

(a) Going deeper without atrous convolution.

= However, isolates pixel from context

= Key architectures: DilatedNet and
DeepLab (CRF for fine details) Image OsltjrtulfjgL - 8 16 16 16 16 16 16

(b) Going deeper with atrous convolution. Atrous convolution with rate > 1 is applied after block3 when output_stride = 16.

Convl rate=2 rate=4 rate=8 rate=16
+

Pooll Block1 Block2 Block3 Block4 Blocks Blocké Block7
b M i -



https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d

TOP-DOWN/BOTTOM-UP APPROACH

= Encoder-decoder architecture " Cconv de-conv
= (Convolution encodes image features

= Deconvolutional network to decode
features into pixels/labels

= Deconvolution (transposed convolution)
reconstructs spatial resolution

= Upscaling convolution operation

= Both encoder and decoder extract
features

= (Generally lose fine-grained information
in encoding process

= Skip connections utilized to pass higher-
resolution features

= Key architectures: Deconvnet, U-Net,
SegNet, FC-DenseNet, HRNet

SOource
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Convolutional Encoder-Decoder

Output

Pooling Indices

RGB |mage -Conv + Batch Normalisation + RellU Segmentaticn
B Pooling I Upsampling Softmax

Fig. 9. Encoder-decoder architecture of SegNet.
Source: From [93].


https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d

GLOBAL CONTEXT

= Most segmentation relies on just

local information but global context

1s important

= Add global features or global context
information

= (Global features

= Global average pool (final layers)
= Large convolution kernels

= Context
= Use of class mapping
= Helps resolve inaccuracies but lacks

scaling information of multiscale
objects

» Key architectures: ParseNet, GCN,
EncNet

2 3)
Global feature 1.2 Norm UnPool

(1)

Global \
. -
(2)

Pooling]
Combined feature

Feature map L2 Norm

(e) ParseNet contexture module overview.

(a) Image (b) Truth

(c) FCN

(d) ParseNet



RECEPTIVE FIELD ENLARGEMENT AND

MULTI-SCALE CONTEXT

. Use Of feature pyramid Pooll Blockl Block2 Block3 |:| Block4 |:| Blocks |:| Block6 Block7

techniques for multi-resolution i,
. mage sgide 4 8 16 32 64 128 256 256
r e pr e S e nt at lon (a) Going deeper without atrous convolution.

Convl rate=2 rate=4 rate=8 rate=16

onv.
+
[

Blockl Block2 Block3 Block4 Block5 Block6 Block7

= Atrous Special Pooling Pyramid H B ) E b o

\

A tput
( SPP) Image ‘wnge 4 8 16 16 16 16 16 16

(b) Going deeper with atrous convolution. Atrous convolution with rate > 1 is applied after block3 when ourput_stride = 16.

= Pyramid pooling module @ s S
= Provides better localization B coc | cona
Pooll Blockl Block2 Block3 Blocka =1 axaconv 1x1 Conv
. = - - - - E! —{ [ rate=12 e
= Helps incorporate scale *
Image e 4 8 16 16 [ © ] rewss 16

information of objects for fine- o
grained segmentation

= Key architectures: DeepLabv?2,
DeepLabv3, PSPNet, Gated-
SCNN

Input Image Feature Map Pyramid Pooling Module Final Prediction

Fig. 15. PSPNet Model Design.



INSTANCE SEGMENTATION

» Fach instance of a particular object
is masked independently

= Tagsk is intertwined with object
detection

= Detection gives bounding box while
instance segmentation further refines
with mask
= (General approach is to give

proposals of objects/masks and
refine

= Mask R-CNN as example
= Faster R-CNN extension

= RPN for object proposals — classification
and bounding box regression

= Separate segmentation network for each Fig. 18. Mask R-CNN results on sample images from the COCO test set.
ROI From [64].



PANOPTIC SEGMENTATION

= Combination of instance
segmentation and semantic
segmentation

= Newer segmentation task

= (General approach:
= Heads for semantic segmentation
= Head for instance segmentation
" Panoptic head to combine

= Key architectures: OANet,
UPSNet, Multitask Network
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" F'or more complete overview, see recent surveys

m Fvolution of Image Segmentation using Deep
Convolutional Neural Network: A Survey

® [mage Segmentation Using Deep Learning: A
Survey
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