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These slides will follow parts of Szeliski’s Computer 
Vision book (available online)

Most of the lecture content comes from specific 
research papers
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NOTE

https://szeliski.org/Book/


Recognition Overview

 Instance Recognition, Image Classification, Object 
Detection, Semantic Segmentation [Szeliski]

 Performance Characterization

Classical Detection [read papers]

 Viola and Jones

 Histogram of Oriented Gradients

 Deformable Parts Model
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OVERVIEW



RECOGNITION OVERVIEW
SZELISKI 2E CHAPTER6
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 Undergone largest changes and fastest developments in 
the last decade

 Availability of larger labeled datasets

 Breakthroughs in deep learning

 Historically, recognition was a “high-level task” built on 
top of lower-level components (e.g. feature detection and 
matching)

 With deep learning, there is little distinction between 
high- and low-level tasks → end-to-end learning
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RECOGNITION OVERVIEW



 Instance recognition – find specific objects 
(exemplars, e.g. a stop-sign) 

Class/category recognition – recognize members of 
highly variable categories (e.g. any dog)

Object detection – classify and localize objects 

Segmentation – pixel-level annotation of images into 
objects/class
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RECOGNITION TASKS



Re-recognize a known 2D/3D rigid object 
(exemplar)

 Potentially with novel viewpoint, cluttered background, 
and partial occlusion
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INSTANCE RECOGNITION I



General approach:

 Find distinctive features while dealing with local 
appearance variation

 Check for co-occurrence and relative positions (e.g. affine 
transformation)

More challenging version: instance retrieval 
(content-based image retrieval) where the number 
of images to search is very large
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INSTANCE RECOGNITION II 



 Also known as category/class 
recognition
 Must recognize members of highly 

variable categories

 Much more challenging than 
instance recognition
 Same challenges but without 

known object

 Extensively studied area of CV
 Where CNNs have dominated

 Note this is whole image 
classification
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IMAGE CLASSIFICATION



 Bag-of-words (features) –
simple approach based co-
occurrence of collected features
 Detect features/keypoints

 Describe keypoints = words

 Compute histogram (distribution) 
of words

 Compare histogram to database 
for matching

 Note: no geometric verification 
since not applicable to general 
objects
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CLASSICAL APPROACHES: BOW



 Approach to find constituent 
parts and measuring geometric 
relationships
 Spring-like connections between 

subparts that have structure but 
allow variation

 Basic idea is to have an energy 
minimization function for subpart 
arrangements

 Common (graph) 
structures/topologies include 
threes and stars for efficiency

 Popular model: Deformable Part 
Model (DPM) of Felzenszwalb
 Star model on HOG parts
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CLASSICAL APPROACHES: PARTS



 Previous approaches were 
object-centric which limits 
recognition
 Scene context is very important 

for disambiguation (e.g. lemon vs. 
tennis ball)

 Context models combine 
objects into scenes
 Number of constituent objects is 

not known a priori

 The idea of context has been 
important for deep techniques
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CLASSICAL APPROACHES: CONTEXT/SCENE



 CV task of segregating an image into 
multiple regions according to different 
properties of pixels (e.g. color, intensity, 
texture)
 Typically a low-level task that relies on 

spatial information (neighborhood)

 Pixel-level class label

 Semantic segmentation – associate a 
class label for every pixel in an image

 Instance segmentation – mask 
(segment) each instance of an object in 
an image independently

 Panoptic segmentation – combination 
of semantic segmentation and instance 
segmentation
 Label both class and separate instances 

(detection)
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SEGMENTATION



 Confusion matrix-based metrics
 Binary {1,0} classification tasks

 True positives (TP) - # correct matches
 False negatives (FN) - # of missed matches

 False positives (FP) - # of incorrect 
matches

 True negatives (TN) - # of non-matches 
that are correctly rejected

 A wide range of metrics can be defined

 True positive rate (TPR) (sensitivity)

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

𝑇𝑃

𝑃

 Document retrieval → recall – fraction of 
relevant documents found

 False positive rate (FPR)

 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
=

𝐹𝑃

𝑁

 Positive predicted value (PPV)

 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

𝑇𝑃

𝑃′

 Document retrieval → precision – number of 
relevant documents are returned 

 Accuracy (ACC)

 𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑃+𝑁
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http://en.wikipedia.org/wiki/Receiver_operating_characteristic


 Evaluate matching performance based on threshold

 Examine all thresholds 𝜃 to map out performance curve

 Best performance in upper left corner

 Area under the curve (AUC) 
is a ROC performance metric

RECEIVER OPERATING CHARACTERISTIC (ROC)



VIOLA AND JONES DETECTOR
CVPR2001
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Motivation

Contributions

 Integral Image Features

Boosted Feature Selection

Attentional Cascade 

Results

Summary

OUTLINE



• Basic idea: slide a window across image and evaluate a 
face model at every location

FACE DETECTION



 Sliding window detector must evaluate tens of thousands 
of locations/scale combinations
 Computationally expensive → worse for complex models

 Faces are rare → usually only a few per image
 1M pixel image has 1M candidate face locations (ignoring 

scale)
 For computational efficiency, need to minimize time spent 

evaluating non-face windows
 False positive rate (mistakenly detecting a face) must be 

very low (< 10−6) otherwise the system will have false faces 
in every image tested

CHALLENGES



Motivation

Contributions

 Integral Image Features

Boosted Feature Selection

Attentional Cascade 

Results

Summary

OUTLINE



 Robust

 Very high detection rate and low false positive rate

 Real-time

 Training is slow, but detection very fast

 Key Ideas

 Integral images for fast feature evaluation

 Boosting for intelligent feature selection

 Attentional cascade for fast rejection of non-face windows

CONTRIBUTIONS



Motivation

Contributions

 Integral Image Features

Boosted Feature Selection

Attentional Cascade 

Results

Summary

OUTLINE



 Want to use simple features 
rather than pixels to encode 
domain knowledge

 Haar-like features
 Encode differences between two, 

three, or four rectangles
 Reflect similar properties of a face 

 Eyes darker than upper cheeks
 Nose lighter than eyes

 Believe that these simple 
intensity differences can encode 
face structure

INTEGRAL IMAGE FEATURES



 Simple feature

 𝑣𝑎𝑙 = ∑ 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑏𝑙𝑎𝑐𝑘 𝑎𝑟𝑒𝑎 −
∑ 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑤ℎ𝑖𝑡𝑒 𝑎𝑟𝑒𝑎

 Computed over two-, three-, and 
four-rectangles

 Each feature is represented by a 
specific sub-window location and size

 Over 180k features for a 24 × 24
image patch 

 Lots of computation

RECTANGULAR FEATURES



 Need efficient method to compute 
these rectangle differences

 Define the integral image as the 
sum of all pixels above and left of 
pixel (𝑥, 𝑦)

 Can be computed in a single pass 
over the image

 Area of a rectangle from four 
array references

 𝐷 = 𝑖𝑖 4 + 𝑖𝑖 1 − 𝑖𝑖 2 − 𝑖𝑖 3
 Constant time computation

 Integral image

 Rectangle calculation

INTEGRAL IMAGE

𝑖𝑖 𝑥, 𝑦 = ෍

𝑥′<𝑥,𝑦′<𝑦

𝑖(𝑥′, 𝑦′)



Motivation

Contributions

 Integral Image Features

Boosted Feature Selection

Attentional Cascade 

Results

Summary

OUTLINE



 There are many possible features to compute
 Individually, each is a “weak” classifier
 Computationally expensive to compute all

 Not all will be useful for face detection

 Use AdaBoost algorithm to intelligently select a small 
subset of features which can be combined to form an 
effective “strong” classifier

BOOSTED FEATURE SELECTION

Relevant feature Irrelevant feature



 Adaptive Boost algorithm

 Iterative process to build a complex classifier in an efficient 
manner

 Construct a “strong” classifier as a linear combination of 
weighted “weak” classifiers

 Adaptive: subsequent weak classifiers are designed to favor 
misclassifications of previous ones

ADABOOST (ADAPTIVE BOOST) ALGORITHM

Strong classifier

Weak classifier

WeightImage



 Initialize
 All training samples weighted equally

 Repeat for each training round
 Select most effective weak classifier 

(single Haar-like feature)
 Based on weighted eror

 Update training weights to 
emphasize incorrectly classified 
examples
 Next weak classifier will focus on 

“harder” examples

 Construct final strong classifier as 
linear combination of weak 
learners 
 Weighted according to accuracy

IMPLEMENTED ALGORITHM



 AdaBoost starts with a uniform 
distribution of “weights” over training 
examples. 

 Select the classifier with the lowest 
weighted error (i.e. a “weak” classifier)

 Increase the weights on the training 
examples that were misclassified.

 (Repeat)

 At the end, carefully make a linear 
combination of the weak classifiers 
obtained at all iterations.
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ADABOOST EXAMPLE

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa



 Build effective 200-feature 
classifier

 95% detection rate

 0.14 × 10−3 FPR (1 in 14084 
windows)

 0.7 sec / frame

 Not yet real-time

BOOSTED FACE DETECTOR
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Boosted Feature Selection

Attentional Cascade 

Results
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OUTLINE



 Boosted strong classifier is still 
too slow
 Spends equal amount of time on 

both face and non-face image patches
 Need to minimize time spent on non-

face patches

 Use cascade structure of 
gradually more complex classifiers
 Early stages use only a few features 

but can filter out many non-face 
patches

 Later stages solves “harder” problems
 Face detected after going through all 

stages
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ATTENTIONAL CASCADE



 Much fewer features computed 
per sub-window

 Dramatic speed-up in 
computation

 See IJCV paper for details 

 #stages and #features/stage

 Chain classifiers that are 
progressively more complex 
and have lower false positive 
rates

ATTENTIONAL CASCADE
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 Visualized
 https://vimeo.com/12774628

FACE CASCADE EXAMPLE
Step 1 Step 4 Step N… …

https://vimeo.com/12774628


Motivation

Contributions

 Integral Image Features

Boosted Feature Selection

Attentional Cascade 

Results

Summary

OUTLINE



 Training data
 4916 labeled faces

 9544 non-face images → 350M non-face sub-
windows

 24 × 24 pixel size

 Cascade layout
 38 layer cascade classifier

 6061 total features

 S1: 1, S2: 10, S3: 25, S4: 25, S5: 50, …

 Evaluation 
 Avg. 10/6061 features evaluated per sub-window

 0.067 sec/image 
 700 MHz PIII 

 384×388 image size

 With various scale

 Much faster than existing algorithms

RESULTS

Similar performance between cascade and big classifier, 
but cascade is ~10x faster



 Real-world face test set

 130 images with 507 frontal faces

MIT+CMU FACE TEST



Motivation

Contributions

 Integral Image Features

Boosted Feature Selection

Attentional Cascade 

Results

Summary

OUTLINE



 Pros
 Extremely fast feature computation
 Efficient feature selection
 Scale and location invariant detector
 Scale features not image (e.g. image pyramid)

 Generic detection scheme → can train other objects
 Cons
 Detector only works on frontal faces (< 45∘)
 Sensitive to lighting conditions
 Multiple detections to same face due to overlapping sub-

windows

SUMMARY



HOG DETECTOR
DALAL AND TRIGGS, CVPR2005
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 Want descriptor for a full object rather than keypoints

 Geared toward detection/classification rather than matching

 Designed by Dalal and Triggs for pedestrian detection

 Must handle various pose, variable appearance, complex 
background, and unconstrained illumination

HISTOGRAM OF ORIENTED GRADIENTS



 Compute horizontal and vertical 
gradients (with no smoothing)

 Compute gradient orientation and 
magnitude 

 Divide image into 16 × 16 blocks of 
50% overlap
 For 64 × 128 image → 7 × 15 =

105 blocks
 Each block consists of 2 × 2 cells of size 

8 × 8 pixels

 Histogram of gradient orientation of 
cells
 9 bins between 0-180 degrees

 Bin vote is gradient magnitude
 Interpolate vote between bins

HOG STEPS I



 Group cells into large blocks and 
normalize

 Concatenate histograms into 
large feature vector
 #features = (15*7)*9*4 = 3780

 15*7 blocks
 9 orientation bins

 4 cells per block

 Use SVM to train classifier
 Unique feature signature for different 

objects
 Computed on dense grids at single 

scale and without orientation 
alignment

HOG STEPS II



Note: emphasizes contours/silhouette of object so 
robust to illumination

HOG OVERVIEW



DPM DETECTOR
FELZENSZWALB, PAMI2010
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Want to detect all objects of the same category 
within in image

Must account for dramatic appearance differences

 Object is composed of parts in different positions

 Non-rigid objects
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DEFORMABLE PARTS MODEL



 Root – rough appearance of 
object

 Part – local appearance of 
object

 Spring – spatial connection 
between parts

 Use HOG descriptors
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DPM COMPONENTS



 Use pyramid to view image at 
different scale
 Coarse level (low resolution) used 

for root filter (general object 
outline)

 Fine level (high resolution) used 
for parts

 Use a mixture of models to 
handle wide variation in 
appearance 
 E.g. model for front and side view 

of a person/horse/bike
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DPM SEARCH



SIFT FEATURES
LOWE, IJCV 1999
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 One of the most popular feature 
descriptors [Lowe 2004]

 Many variants have been developed

 Descriptor is invariant to uniform 
scaling, orientation, and partially 
invariant to affine distortion and 
illumination changes

 Used for matching between 
images

SCALE INVARIANT FEATURE TRANSFORM (SIFT)



 Identify keypoints
 Use difference of Gaussians for scale space 

representation

 Identify “stable” regions
 Location, scale, orientation

 Compute gradient 16 × 16 grid around 
keypoint
 Keep orientation and down-weight magnitude 

by a Gaussian fall off function
 Avoid sudden changes in descriptor with small position 

changes

 Give less emphasis to gradients far from center

 Form a gradient orientation histogram in 
each 4 × 4 quadrant
 8 bin orientations

 Trilinear interpolation of gradient magnitude to 
neighboring orientation bins

 Gives 4 pixel shift robustness and orientation 
invariance

SIFT STEPS I



 Final descriptor is 4 × 4 × 8 =
128 dimension vector
 Normalize vector to unit length for 

contrast/gain invariance

 Values clipped to 0.2 and 
renormalized to remove emphasis of 
large gradients (orientation is most 
important)

 Descriptor used for object 
recognition
 Match keypoints

 Hough transform used to “vote” for 
2D location, scale, orientation

 Estimate affine transformation

SIFT STEPS II



 Speeded up robust features (SURF) [Bay 2008] 
 Faster computation by using integral images (Szeliski 3.2.3 

and later for object detection)

 Popularized because it is free for non-commercial use 
 SIFT is patented

 OpenCV implements many 
 FAST, ORB, BRISK, FREAK

 OpenCV is a standard in vision research community
 Emphasis on fast descriptors for real-time applications

OTHER SIFT VARIANTS



 SIFT
 128 dimensional vector
 16x16 window
 4x4 sub-window (16 total)
 8 bin histogram (360 degree)

 Computed at sparse, scale-invariant 
keypoints of image

 Rotated and aligned for orientation
 Good for matching

 HOG
 3780 dimensional vector

 64x128 window

 16x16 blocks with overlap

 Each block in 2x2 cells of 8x8 pixels

 9 bin histogram (180 degree)

 Appears similar in spirit to SIFT

 Computed at dense grid at single 
scale 

 No orientation alignment

 Good for detection

SIFT VS HOG
Powerful orientation-based descriptors
Robust to changes in brightness



Questions?

THANK YOU



 Reading
 P. Viola and M. Jones, Rapid object detection using a 

boosted cascade of simple features, CVPR 2001
 P. Viola and M. Jones, Robust real-time face detection, 

IJCV 57(2), 2004
 Dalal and Triggs, "Histogram of Oriented Gradients for 

Human Detection", CVPR 2005
 Lowe, "Distinctive Image Features from Scale-Invariant 

Keypoints", IJCV 60(2) 1999
 Code
 OpenCV has implementations [cascade 

classifier][HOG][SIFT-like]

REFERENCES

https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://learnopencv.com/histogram-of-oriented-gradients/
https://docs.opencv.org/3.4/db/d27/tutorial_py_table_of_contents_feature2d.html

