
EE482/682: DSP APPLICATIONS
CH6 ADAPTIVE FILTERING

1

http://www.ee.unlv.edu/~b1morris/ee482

http://www.ee.unlv.edu/~b1morris/ee482

Random Processes

Adaptive Filters

LMS Algorithm

2

OUTLINE

 FIR and IIR filters are designed for linear time-invariant
signals

 How can we handle signals when the characteristics are
unknown or changing?

 Need ways to update filter coefficients automatically and
continually

 Track time-varying signals and systems

3

ADAPTIVE FILTERING

Real-world signals are time varying and have
randomness in nature

 E.g. speech, music, noise

Need to characterize a signal even if full
deterministic mathematical definition does not exist

Random process – sequence of random variables

4

RANDOM PROCESSES

 Specifies statistical relationship of signal at different
time lags (𝑛 − 𝑘)

 𝑟𝑥𝑥 𝑛, 𝑘 = 𝐸 𝑥 𝑛 𝑥 𝑘

 Similarity of observations as a function of the time lag between them

 Mathematical tool for detecting signals

 Repeating patterns (noise in sinusoid)

 Measuring time-delay between signals

 Radar, sonar, lidar

 Estimation of impulse response

 Etc.

5

AUTOCORRELATION

 Random process statistics do not change with time

 Mean independent of time

 𝐸 𝑥 𝑛 = 𝑚𝑥

 Autocorrelation only depends only on time lag

 𝑟𝑥𝑥 𝑘 = 𝐸 𝑥 𝑛 + 𝑘 𝑥 𝑛

 WSS autocorrelation properties

 Even function

 𝑟𝑥𝑥 −𝑘 = 𝑟𝑥𝑥 𝑘

 Bounded by 0 time lag

 𝑟𝑥𝑥 𝑘 ≤ 𝑟𝑥𝑥 0 = 𝐸[𝑥2 𝑛]

 Zero mean process: 𝐸 𝑥2 𝑛 = 𝜎𝑥
2

 Cross-correlation

 𝑟𝑥𝑦 𝑘 = 𝐸[𝑥 𝑛 + 𝑘 𝑦 𝑛]

6

WIDE SENSE STATIONARY (WSS) PROCESS

Value of random variable “expected” if random
variable process repeated infinite number of times

 Weighted average of all possible values

Expectation operator

 𝐸 . = −∞

∞
. 𝑓 𝑥 𝑑𝑥

 𝑓(𝑥) – probability density function of random variable 𝑋

7

EXPECTED VALUE

 𝑣(𝑛) with zero mean and variance 𝜎𝑣
2

 Very popular random signal

 Typical noise model

 Autocorrelation

 𝑟𝑣𝑣 𝑘 = 𝜎𝑣
2𝛿 𝑘

 Statistically uncorrelated except at zero time lag

 Power spectrum

 𝑃𝑣𝑣 𝜔 = 𝜎𝑣
2, 𝜔 ≤ 𝜋

 Uniformly distributed over entire frequency range

8

WHITE NOISE

 Second-order FIR filter with white noise input (𝑁(0, 𝜎2))

 𝑦 𝑛 = 𝑥 𝑛 + 𝑎𝑥 𝑛 − 1 + 𝑏𝑥 𝑛 − 2

 Mean

 𝐸 𝑦 𝑛 = 𝐸[𝑥 𝑛 + 𝑎𝑥 𝑛 − 1 + 𝑏𝑥 𝑛 − 2]

 𝐸 𝑦 𝑛 = 𝐸[𝑥 𝑛] + 𝑎𝐸[𝑥 𝑛 − 1] + 𝑏𝐸[𝑥 𝑛 − 2]

 𝐸 𝑦 𝑛 = 0 + 𝑎 ⋅ 0 + 𝑏 ⋅ 0 = 0

 Autocorrelation

 𝑟𝑦𝑦 𝑘 = 𝐸 𝑦 𝑛 + 𝑘 𝑦 𝑛

 𝑟𝑦𝑦 𝑘 = 𝐸 𝑥 𝑛 + 𝑘 + 𝑎𝑥 𝑛 + 𝑘 − 1 + 𝑏𝑥 𝑛 + 𝑘 − 2 𝑥 𝑛 + 𝑎𝑥 𝑛 − 1 + 𝑏𝑥 𝑛 − 2

 𝑟𝑦𝑦 𝑘 = 𝐸 𝑥 𝑛 + 𝑘 𝑥 𝑛 + 𝐸 𝑎𝑥 𝑛 + 𝑘 𝑥 𝑛 − 1 + …

 𝑟𝑦𝑦 𝑘 = 𝑟𝑥𝑥 𝑘 + 𝑎𝑟𝑥𝑥 𝑘 − 1 + ⋯

 𝑟𝑦𝑦 𝑘 =

1 + 𝑎2 + 𝑏2 𝜎𝑥
2

𝑎 + 𝑎𝑏 𝜎𝑥
2

𝑏𝜎𝑥
2

0

𝑘 = 0
𝑘 = ±1
𝑘 = ±2

𝑒𝑙𝑠𝑒

9

EXAMPLE 6.2

 Practical applications have finite length sequences

 Sample mean

 𝑚𝑥 =
1

𝑁
 𝑛=0

𝑁−1 𝑥(𝑛)

 Sample autocorrelation

 𝑟𝑥𝑥 𝑘 =
1

𝑁−𝑘
 𝑛−0

𝑁−𝑘−1 𝑥 𝑛 + 𝑘 𝑥(𝑛)

 Only produces a good estimate of lags < 10% of 𝑁

 Use Matlab (mean.m, xcorr.m, etc.) to calculate

10

PRACTICAL ESTIMATION

 Signal characteristics in practical applications are time varying
and/or unknown

 Must modify filter coefficients adaptively in an automated fashion
to meet objectives

 Example: Channel equalization

 High-speed data communication via media channel (e.g. wireless
network)

 Channel equalization compensates for channel distortion (e.g. path from
wifi router and phone)

 Channel must be continually tracked and characterized to compensate
for distortion (e.g. moving around a room)

11

ADAPTIVE FILTERS

 Two components

 Digital filter – defined by coefficients

 Adaptive algorithm – automatically
update filter coefficients (weights)

 Adaption occurs by comparing
filtered signal 𝑦(𝑛) with a desired
(reference) signal 𝑑(𝑛)

 Minimize error 𝑒(𝑛) using a cost
function (e.g. mean-square error)

 Continually lower error and get 𝑦 𝑛
closer to 𝑑(𝑛)

12

GENERAL ADAPTIVE FILTER

 𝑦 𝑛 = 𝑙=0
𝐿−1 𝑤𝑙 𝑛 𝑥(𝑛 − 𝑙)

 Notice time-varying weights

 In vector form

 𝑦 𝑛 = 𝒘𝑇 𝑛 𝒙 𝑛 = 𝒙𝑇 𝑛 𝒘 𝑛

 𝒙 𝑛 = 𝑥 𝑛 , 𝑥 𝑛 − 1 , … , 𝑥 𝑛 − 𝐿 + 1 𝑇

 𝒘 𝑛 = 𝑤0 𝑛 , 𝑤1 𝑛 , … , 𝑤𝐿−1 𝑛 𝑇

 Error signal

 𝑒 𝑛 = 𝑑 𝑛 − 𝑦 𝑛 = 𝑑 𝑛 − 𝒘𝑇 𝑛 𝒙 𝑛

13

FIR ADAPTIVE FILTER

 Use mean-square error (MSE) cost function

 𝜉 𝑛 = 𝐸 𝑒2 𝑛

 𝜉 𝑛 = 𝐸 𝑑2 𝑛 − 2𝒑𝑇𝒘 𝑛 + 𝒘𝑇 𝑛 𝑹𝒘 𝑛

 𝒑 = 𝐸 𝑑 𝑛 𝒙 𝑛 = 𝑟𝑑𝑥 0 , 𝑟𝑑𝑥 1 , … , 𝑟𝑑𝑥 𝐿 − 1 𝑇

 𝑹 – autocorrelation matrix

 𝑹 = 𝐸[𝒙 𝑛 𝒙𝑇 𝑛]

 Toeplitz matrix – symmetric across main diagonal

14

PERFORMANCE FUNCTION

 Error function is a quadratic surface

 𝜉 𝑛 = 𝐸 𝑑2 𝑛 − 2𝒑𝑇𝒘 𝑛 + 𝒘𝑇 𝑛 𝑹𝒘 𝑛

 Therefore gradient descent search
techniques can be used

 Gradient points in direction of greatest
change

 Iterative optimization to “step” toward
the bottom of error surface

 𝑤 𝑛 + 1 = 𝑤 𝑛 −
𝜇

2
𝛻𝜉 𝑛

15

STEEPEST DESCENT OPTIMIZATION

LMS ALGORITHM
 Practical applications do not have

knowledge of 𝑑 𝑛 , 𝑥 𝑛

 Cannot directly compute MSE and gradient

 Stochastic gradient algorithm

 Use instantaneous squared error to estimate
MSE

 𝜉 𝑛 = 𝑒2 𝑛

 Gradient estimate

 𝛻 𝜉 𝑛 = 2 𝛻𝑒 𝑛 𝑒 𝑛

 𝑒 𝑛 = 𝑑 𝑛 − 𝑤𝑇 𝑛 𝑥(𝑛)

 𝛻 𝜉 𝑛 = −2𝑥(𝑛)𝑒 𝑛

 Steepest descent algorithm

 𝑤 𝑛 + 1 = 𝑤 𝑛 + 𝜇𝑥 𝑛 𝑒 𝑛

 LMS Steps

1. Set 𝐿, 𝜇, and 𝒘(0)

 𝐿 – filter length

 𝜇 – step size (small e.g. 0.01)

 𝒘(0) – initial filter weights

2. Compute filter output

 𝑦 𝑛 = 𝒘𝑇 𝑛 𝒙 𝑛

3. Compute error signal

 𝑒 𝑛 = 𝑑 𝑛 − 𝑦 𝑛

4. Update weight vector
 𝑤𝑙 𝑛 + 1 = 𝑤𝑙 𝑛 + 𝜇𝑥 𝑛 − 𝑙 𝑒 𝑛 , 𝑙 = 0,1, … 𝐿 − 1

 Notice this requires a reference signal

16

 Convergence of LMS algorithm

 0 < 𝜇 < 2/𝜆𝑚𝑎𝑥

 𝜆𝑚𝑎𝑥 - largest eigenvalue of autocorrelation matrix 𝑹

 Not easy to compute eigenvalues

 Eigenvalue approximation

 0 < 𝜇 < 2/𝐿𝑃𝑥

 𝐿 – length of data window, filter length

 𝑃𝑥 = 𝑟𝑥𝑥 0 = 𝐸[𝑥2 𝑛]

 Step size is inversely proportional to filter length

 Smaller 𝜇 for higher order filters

 Step size inversely proportional to input signal power

 Larger 𝜇 for lower power signal

17

LMS STABILITY

 Convergence of filter weights is defined by the
time 𝜏𝑀𝑆𝐸 to go from initial MSE to min

 Plot of MSE vs. time is known as the learning
curve

 Convergence time related to the minimum
eigenvalue of 𝑹

 𝜏𝑀𝑆𝐸 ≅
1

𝜇𝜆𝑚𝑖𝑛

 Smaller step size results in longer convergence time

 In practice, weights will not converge to a fixed
optimum value but will vary around it

18

CONVERGENCE SPEED

 sd = 12357; rng(sd); % Set seed value

 x = randn(1,128); % Reference signal x(n)

 b = [0.1,0.2,0.4,0.2,0.1]; % An FIR filter to be identified

 d = filter(b,1,x); % Desired signal d(n)

 mu = 0.05; % Step size mu

 h = adaptfilt.lms(5,mu); % LMS algorithm

 [y,e] = filter(h,x,d); % Adaptive filtering

 n = 1:128;

 h1=figure;

 hold all;

 plot(n,d,'-','linewidth', 3);

 plot(n,y,'-.', 'linewidth', 3);

 plot(n,e,'--', 'linewidth', 2);

 axis([1 128 -inf inf]);

 xlabel('Time index, n');

 ylabel('Amplitude');

 legend('d[n]', 'y[n]', 'e[n]');

 [b; h.coefficients]

19

EXAMPLE 6.7

20 40 60 80 100 120

-1

-0.5

0

0.5

1

Time index, n

A
m

p
lit

u
d

e

d[n]

y[n]

e[n]

Coefficients
𝑏 = [0.1000 0.2000 0.4000 0.2000 0.1000]
𝑤 = [0.1005 0.1999 0.3996 0.1995 0.0996]

Four classes of adaptive filtering applications

 System identification

 Prediction

 Noise cancellation

 Inverse modeling

Differences based on configuration of control signals
𝑥 𝑛 , 𝑑 𝑛 , 𝑦 𝑛 , 𝑒(𝑛)

20

PRACTICAL APPLICATIONS

SYSTEM IDENTIFICATION

 Given an unknown system, try
to determine (identify)
coefficients

 Excite unknown system and
adaptive system with same
input

 Input signal: white noise

 Reference signal: output of
unknown system

 Error is difference between
adaptive filter and the output of
unknown system

21

PREDICTION

 Linear predictor estimates
signal values at future times

 Reference signal: signal of interest

 Input signal: delayed reference
signal

 Error is difference between
current sample and predicted
sample (using past samples)

 Leverage correlation between
samples

 Broadband output: noise
component

 Narrowband output: signal of
interest (high correlation)

22

EXAMPLE 6.9
 Fs = 1000;

 f0 = 150;

 L =64;

 N=256;

 A=sqrt(2);

 w0=2*pi*f0/Fs;

 n = [0:N-1];

 sn = A*sin(w0*n);

 vn = 0.1*(rand(1,N)-0.5)*sqrt(12)

 x = sn+vn

 d = [0, x(2:256)];

 mu = 0.001;

 h = adaptfilt.lms(L,mu);

 [y,e] = filter(h,x,d)

 h1=figure;

 hold all;

 plot(n,x,'-','linewidth', 2);

 plot(n,y,'-.', 'linewidth', 2);

 plot(n,e,'--', 'linewidth', 2);

 axis([1 N -inf inf]);

 xlabel('Time index, n');

 ylabel('Amplitude');

 legend('x[n]', 'y[n]', 'e[n]');

23

50 100 150 200 250
-1.5

-1

-0.5

0

0.5

1

1.5

Time index, n

A
m

p
lit

u
d

e

x[n]

y[n]

e[n]

NOISE CANCELLATION

 Remove (cancel) noise
components embedded in a
primary signal

 E.g. background noise in speech
signal

 Flip idea of reference and input
signals

 Reference signal: primary signal +
noise

 Close to primary source

 Input signal: noise signal

 Far from primary source to measure
noise

 Adaptive filter tracks correlated
noise

 Error signal is the desired cleaned
primary signal

24

EXAMPLE 6.10
 Fs = 1000;

 f0 = 110;

 L = 3;

 N = 128;

 w0 = 2*pi*f0/Fs;

 pz = [0.1, 0.3, 0.2]; % Define noise path

 n = [0:N-1]; % Time index

 sd = 12357; rng(sd); % Set seed value

 sn = 0.5*sin(w0*n); % Sine sequence

 xn = 2.5*(rand(1,N)-0.5); % Zero-mean white noise

 xpn = filter(pz, 1, xn); % Generate x'(n)

 dn = sn+xpn; % Sinewave embedded in white noise

 mu = 0.025; % Step size mu

 h = adaptfilt.lms(L,mu); % LMS algorithm

 [y,e] = filter(h,xn,dn); % Adaptive filtering

 h1=figure;

 hold all;

 plot(n,dn,'-','linewidth', 2);

 plot(n,sn,'-.', 'linewidth', 2);

 plot(n,e,'--', 'linewidth', 2);

 axis([1 N -inf inf]);

 xlabel('Time index, n');

 ylabel('Amplitude');

 legend('d[n] - noisy signal', 's[n] primary', 'e[n] - output');

25

20 40 60 80 100 120
-1

-0.5

0

0.5

1

Time index, n

A
m

p
lit

u
d

e

d[n] - noisy signal

s[n] primary

e[n] - output

INVERSE MODELING

 Method to estimate the inverse
of an unknown system

 E.g. a communication channel is
unknown but its distortion needs
to be corrected

 Reference signal: a known
training signal

 Input signal: training signal
after going through unknown
system

26

