EE482/682: DSP APPLICATIONS
CH6 ADAPTIVE FILTERING

http://www.ee.unlv.edu/ blmorris/eed82

http://www.ee.unlv.edu/~b1morris/ee482

2

OUTLINE

= Random Processes
» Adaptive Filters
» LMS Algorithm

3

ADAPTIVE FILTERING

®» FIR and IIR filters are designed for linear time-invariant
signals

" How can we handle signals when the characteristics are
unknown or changing?

® Need ways to update filter coefficients automatically and
continually

" Track time-varying signals and systems

RANDOM PROCESSES

® Real-world signals are time varying and have
randomness in nature

E.g. speech, music, noise

" Need to characterize a signal even if full
deterministic mathematical definition does not exist

®» Random process — sequence of random variables

4

5

AUTOCORRELATION

® Specifies statistical relationship of signal at different
time lags (n — k)

" (k) = Elx(n)x(k)]

» Similarity of observations as a function of the time lag between them

= Mathematical tool for detecting signals
= Repeating patterns (noise in sinusoid)

= Measuring time-delay between signals
= Radar, sonar, lidar

= Estimation of impulse response
= Litc.

WIDE SENSE STATIONARY (WSS) PROCESS

= Random process statistics do not change with time

= Mean independent of time
= Elx(m)] =m,
= Autocorrelation only depends only on time lag
" Ty(k) = Elx(n+ k)x(n)]
= WSS autocorrelation properties
= FEven function
" rxx(_k) = rxx(k)
= Bounded by 0 time lag
= (K] < 7, (0) = E[x*(n)]

= Zero mean process: E [x2 (n)] = o2

® (Cross-correlation

= 1y (k) = Elx(n +)y

7

EXPECTED VALUE

" Value of random variable “expected” if random
variable process repeated infinite number of times

" Weighted average of all possible values

= [ixpectation operator

“E[]1= [f(x)dx
" f(x) — probability density function of random variable X

8

WHITE NOISE

= p(n) with zero mean and variance o2

" Very popular random signal

= Typical noise model

= Autocorrelation
" rvv(k) — 0-1275(1()
= Statistically uncorrelated except at zero time lag

= Power spectrum

= Pp(w)=0; ol <m

» Uniformly distributed over entire frequency range

EXAMPLE 6.2

= Second-order FIR filter with white noise input (N(0,5?))

= y(n)=x(n)+ax(n—1) + bx(n— 2)
= Mean
= E[ly(n)] = E[x(n) + ax(n — 1) + bx(n — 2)]
= E[y(n)] = E[x(n)] + aE[x(n — 1)] + bE[x(n — 2)]
= Elyn)]=0+4+a-0+b-0=0
= Autocorrelation
= 1y,,(k) =Ely(n+k)ymn)]
= 71y (k) = E[(x(n +k)+ax(n+k—1)+bx(n+k — 2))(x(n) +ax(n—1) + bx(n — 2))]
" 1y (k) = E[x(n + K)x(n)] + Elax(n + K)x(n — D] + ...

w1y (k) =1 (k) +arg, (k—1) + -

(1+a2+b2)a,zc k=0

2 =+1

| ryy(k) = (a ;zf)ax I]z _ Ez
* else

0

PRACTICAL ESTIMATION

® Practical applications have finite length sequences

= Sample mean

— _ 1 ¢N-1
"m, = NZ"ZO x(n)

= Sample autocorrelation

__ 1 h—
" T (R) = ~= X020 L x(n + K)x(n)
® Only produces a good estimate of lags < 10% of N

= Use Matlab (mean.m, xcorr.m, etc.) to calculate

ADAPTIVE FILTERS

= Signal characteristics in practical applications are time varying
and /or unknown

» Must modity filter coefficients adaptively in an automated fashion
to meet objectives

= Example: Channel equalization

= High-speed data communication via media channel (e.g. wireless
network)

= Channel equalization compensates for channel distortion (e.g. path from
wifi router and phone)

= Channel must be continually tracked and characterized to compensate
for distortion (e.g. moving around a room)

GENERAL ADAPTIVE FILTER

= T'wo components

= Digital filter — defined by coefficients

= Adaptive algorithm — automatically
update filter coefficients (weights)

= Adaption occurs by comparing *0

Digital

filtered signal y(n) with a desired
(reference) signal d(n)

= Minimize error e(n) using a cost
function (e.g. mean-square error)

= Continually lower error and get y(n)
closer to d(n)

| ftilter

din)
+
yin) _ e(n)

Adaptive

(+

algorithm [

13

FIR ADAPTIVE FILTER

— L_l n—L+1
- Y(n) — Zl=0 Wl(n)x(n — l) L " S rtn-uw,w [XL }H
= Notice time-varying weights ? t\i ik
@) ,
[] In Vector form Figure 6.2 Block diagram of time-varying FIR filter for adaptive filtering

= y(n) = w'(mMx(n) = x" (Mwn)

= x(n) = [x(n),x(n—-1),...,.x(n—L+ D]’
= w(n) = [wo(n), wi(n), ...,w,—1(n)]"

" Error signal

=e(m) =dm) —y(n) = dn) —w' (Mxn)

14

PERFORMANCE FUNCTION

= Use mean-square error (MSE) cost function
= {(n) = Ele*(n),
= &(n) = E[d*(n)] — 2p"w(n) + w! (n) Rw(n)

= p = E[dm)x(n)] = [r4,(0),74x(1), ..., g (L — DI

= R — autocorrelation matrix

[rxx(0) rxe(1) oo Te(L—1)]
- R — E[x(n)xT (n)] 5 ru(1) re(0) v (L —2) (6.22)
[ra(L=1) ra(l—2) ... ru«(0)

= Toeplitz matrix — symmetric across main diagonal

STEEPEST DESCENT OPTIMIZATION

= Frror function is a quadratic surface e

= &(n) = E[d*()] — 2p"w(n) + W (m)Rw(n) = i i:f}iﬁ}i;ffi::z
= Therefore gradient descent search Deq IRy il N
techniques can be used :

» Gradient points in direction of greatest
change

" [terative optimization to “step” toward
the bottom of error surface

s wn+1) =w(n)— g 7é(n)

Figure 6.4 Examples of error surface (top) and error contours (bottom), L=2

LMS ALGORITHM

= Practical applications do not have = LMS Steps

knowledge of d(n), x(n)

1. Set L,u,and w(0
= (Cannot directly compute MSE and gradient H ()

= [— filter length
= u — step size (small e.g. 0.01)

= Stochastic gradient algorithm

= Use instantaneous squared error to estimate

MSE = w(0) — initial filter weights
= &) = e2(n) 2. Compute filter output
= Gradient estimate = y(n) =wl(n)x(n)
= 7é(n) = 2[Ve(n)]e(n) 3. Compute error signal
= e(n) =d(n) —w (m)x(n) « e(n) = d(n) — y(n)

= Vé(n) = —2x(n)e(n)

= Steepest descent algorithm

4. Update weight vector
= wi(n+1)=wn)+ux(n—De(n), 1=01,..L—1
= win+1) =wh)+ ux(n)e(n)

= Notice this requires a reference signal

LMS STABILITY

= Convergence of LMS algorithm
= O<u<?2/1

" A.ac - largest eigenvalue of autocorrelation matrix R

max

= Not easy to compute eigenvalues
= Eigenvalue approximation
= O<u<?2/LP,
= L — length of data window, filter length
= Py =1y (0) = E[x*(n)]
= Step size is inversely proportional to filter length
= Smaller u for higher order filters

= Step size inversely proportional to input signal power

= Larger u for lower power signal

CONVERGENCE SPEED

= Convergence of filter weights is defined by the
time Ty5p to go from initial MSE to min

= Plot of MSE vs. time is known as the learning
curve

= Convergence time related to the minimum
eigenvalue of R

1
UAmin
= Smaller step size results in longer convergence time

" Tmse =

® In practice, weights will not converge to a fixed
optimum value but will vary around it

1.2

-
T

R=1 o

0.g

0.2F

o

02F

0.4
0

lterations, n

Wreight Tracks wy to vy for LS with =20, mu = 0.04

T i

—
—
—
—

EXAMPLE 6.7

= sd = 12357; rng(sd); % Set seed value

= x = randn(1,128); % Reference signal x(n)

= b =10.1,0.2,0.4,0.2,0.1]; % An FIR filter to be identified

= d = filter(b,1,x); % Desired signal d(n) — d[n]
= mu — 0.05; % Step size mu == yn]
= h = adaptfilt.lms(5,mu); % LMS algorithn @~ KN | mmm-- e[n]
= |y,e] = filter(h,x,d); % Adaptive filtering

= n=1:128; o m

= hl=figure; g N e 1 .
= hold all; g-

= plot(n,d,'-','linewidth', 3); <

(
n plot(n,y,'—.', 'linewidth', 3);
= plot(n,e,'--', 'linewidth', 2);
= axis([l 128 -inf inf]);

= xlabel('Time index, n');

r r r r

= ylabel("Amplitude'); 20 40 60 80 100 120
= legend('d[n]', 'y[n]', 'e[n]"); Time index, n
= [b; h.coefficients] Coefficients

b =10.1000 0.2000 0.4000 0.2000 0.1000]
w = [0.1005 0.1999 0.3996 0.1995 0.0996]

PRACTICAL APPLICATIONS

" Four classes of adaptive filtering applications

» System identification
= Prediction
= Noise cancellation

" Inverse modeling

® Differences based on configuration of control signals

x(n), d(n), y(n), e(n)

SYSTEM IDENTIFICATION

® Given an unknown system, try ® Excite unknown system and

to determine (identify) adaptive system with same
coetficients input
oo T = Input signal: white noise
system
, = Reference signal: output of
Signal X0 Sem] V) _ A e unknown system
generator fiter _W(z) '\D |
= Error is difference between
aiggeatin adaptive filter and the output of

Figure 6.7 Adaptive system identification using the LMS algorithm unkHOWH SYStem

PREDICTION

= Linear predictor estimates = Reference signal: signal of interest
signal values at future times = Input signal: delayed reference
signal
X0 | = FError is difference between
current sample and predicted
sample (using past samples)
x(n-A) Digilél yin) _ + e(n) Br:::;t::nd .
I filer W) o o o = Leverage correlation between
ey y(n) samples
: Marrowband
LMS - output
Figure 6.9 Adaptive predictor with the LMS algorithm [| Broadband Output: nOise
component

= Narrowband output: signal of
interest (high correlation)

EXAMPLE 6.9

Fs = 1000;

f0 = 150;
L =64;

N=256;

1.5]

]

A=sqrt (2) ;
w0=2*pi*f0/Fs;
n = [0:N-1]; 1,_ "

sn = A*sin (wO*n); | H | i
vn = 0.1% (rand(1,N)-0.5)*sqrt (12) “ ’J 1 1 1 : ‘ i “

0.5

X = snt+vn

d = [0, x(2:256)];

mu = 0.001;

h = adaptfilt.lms (L, mu) ;

Amplitude
(@)
—

[y,e] = filter(h,x,d)

"I ||

hold all;

I

plot(n,x,'-','linewidth', 2); _1

(
plot(n,y,'-."', 'linewidth', 2);
(

plot(n,e,'--', 'linewidth', 2);

1

=

O
]

axis([1 N -inf inf]); 50 100 150

xlabel ('Time index, n'); . .
Time index, n
ylabel ('Amplitude');

legend('x[n]', 'y[nl', 'elnl');

NOISE CANCELLATION

= Remove (cancel) noise = Flip idea of reference and input
components embedded in a signals

primary signal = Reference signal: primary signal -+
noise

= E.g. background noise in speech .
= (Close to primary source

signal
= Input signal: noise signal
Primary .
: sensor dn O = Far from primary source to measure
@ .
source + noi1se
Lo = Adaptive filter tracks correlated
==l sensor noise
”‘“" b1 o
= Frror signal is the desired cleaned
*| LMS |- primary signal

Figure 6.11 Basic concept of adaptive noise canceling

EXAMPLE 6.10

L] L = 3;

L] N = 128;

L] w0 = 2*pi*f0/Fs;

L] pz = [0.1, 0.3, 0.2]; % Define noise path
u n = [0:N-1]; % Time index

L] sd = 12357; rng(sd); % Set seed value

L] sn = 0.5*sin(w0*n) ; % Sine sequence

L xn = 2.5%* (rand(1,N)-0.5); % Zero-mean white noise
L xpn = filter(pz, 1, xn); % Generate x'(n)

L] dn = sn+xpn; % Sinewave embedded in white noise
L] mu = 0.025; % Step size mu

L h = adaptfilt.lms(L,mu); % LMS algorithm

u [y,e] = filter (h,xn,dn); % Adaptive filtering
u hl=figure;

u hold all;

L plot(n,dn,'-", 'linewidth', 2);

L plot(n,sn,'-."', 'linewidth', 2);

u plot(n,e, '--"', 'linewidth', 2);

L axis([1 N -inf inf]);

u xlabel ('Time index, n');

L] ylabel ('Amplitude');

L legend('d[n] - noisy signal', 's[n] primary', 'e[n] - output');

Amplitude

—
—

-~ 'l

=

—d[n] - noisy signal
mrmees s[n] primary
----- e[n] - output

6]

— — —
e,

-
S e S a—
—1—

p—

r r r [

60 80 100 120
Time index, n

INVERSE MODELING

= Method to estimate the inverse ® Reference signal: a known
of an unknown system training signal

= F.g. a communication channel is ® Input signal: training signal

unknown but its distortion needs after going through unknown
to be corrected
Ssystem

Figure 6.14 An adaptive channel equalizer as an example of inverse modeling

