EE482/682: DSP APPLICATIONS CH6 ADAPTIVE FILTERING

http://www.ee.unlv.edu/~b1morris/ee482

OUTLINE

- Random Processes
- Adaptive Filters
- LMS Algorithm

ADAPTIVE FILTERING

• FIR and IIR filters are designed for linear time-invariant signals

How can we handle signals when the characteristics are unknown or changing?

- Need ways to update filter coefficients automatically and continually
 - Track time-varying signals and systems

RANDOM PROCESSES

Real-world signals are time varying and have randomness in nature

E.g. speech, music, noise

 Need to characterize a signal even if full deterministic mathematical definition does not exist

Random process – sequence of random variables

AUTOCORRELATION

- Specifies statistical relationship of signal at different time lags (n k)
 - $r_{xx}(n,k) = E[x(n)x(k)]$
 - Similarity of observations as a function of the time lag between them
- Mathematical tool for detecting signals
 - Repeating patterns (noise in sinusoid)
 - Measuring time-delay between signals
 - Radar, sonar, lidar
 - Estimation of impulse response
 - Etc.

WIDE SENSE STATIONARY (WSS) PROCESS

- Random process statistics do not change with time
- Mean independent of time
 - $E[x(n)] = m_x$
- Autocorrelation only depends only on time lag
 - $r_{xx}(k) = E[x(n+k)x(n)]$
- WSS autocorrelation properties
 - Even function
 - $\bullet \quad r_{xx}(-k) = r_{xx}(k)$
 - Bounded by 0 time lag
 - $|r_{xx}(k)| \le r_{xx}(0) = E[x^2(n)]$
 - Zero mean process: $E[x^2(n)] = \sigma_x^2$
- Cross-correlation
 - $r_{xy}(k) = E[x(n+k)y(n)]$

EXPECTED VALUE

- Value of random variable "expected" if random variable process repeated infinite number of times
 - Weighted average of all possible values
- Expectation operator

•
$$E[.] = \int_{-\infty}^{\infty} f(x) dx$$

 $\blacksquare f(x)$ – probability density function of random variable X

WHITE NOISE

- v(n) with zero mean and variance σ_v^2
- Very popular random signal
 - Typical noise model
- Autocorrelation
 - $r_{vv}(k) = \sigma_v^2 \delta(k)$
 - Statistically uncorrelated except at zero time lag
- Power spectrum
 - $P_{vv}(\omega) = \sigma_v^2$, $|\omega| \le \pi$
 - Uniformly distributed over entire frequency range

EXAMPLE 6.2

- Second-order FIR filter with white noise input $(N(0, \sigma^2))$
 - y(n) = x(n) + ax(n-1) + bx(n-2)
- Mean
 - E[y(n)] = E[x(n) + ax(n-1) + bx(n-2)]
 - E[y(n)] = E[x(n)] + aE[x(n-1)] + bE[x(n-2)]
 - $E[y(n)] = 0 + a \cdot 0 + b \cdot 0 = 0$
- Autocorrelation
 - $r_{yy}(k) = E[y(n+k)y(n)]$
 - $r_{yy}(k) = E[(x(n+k) + ax(n+k-1) + bx(n+k-2))(x(n) + ax(n-1) + bx(n-2))]$
 - $r_{yy}(k) = E[x(n+k)x(n)] + E[ax(n+k)x(n-1)] + ...$

•
$$r_{yy}(k) = r_{xx}(k) + ar_{xx}(k-1) + \cdots$$

$$\mathbf{r}_{yy}(k) = \begin{cases} (1+a^2+b^2)\sigma_x^2 & k=0\\ (a+ab)\sigma_x^2 & k=\pm 1\\ b\sigma_x^2 & k=\pm 2\\ 0 & else \end{cases}$$

PRACTICAL ESTIMATION

Practical applications have finite length sequences

- Sample mean
 - $\bullet \overline{m_x} = \frac{1}{N} \sum_{n=0}^{N-1} x(n)$
- Sample autocorrelation

$$\overline{r_{xx}}(k) = \frac{1}{N-k} \sum_{n=0}^{N-k-1} x(n+k) x(n)$$

- \blacksquare Only produces a good estimate of lags <10% of N
- Use Matlab (mean.m, xcorr.m, etc.) to calculate

ADAPTIVE FILTERS

- Signal characteristics in practical applications are time varying and/or unknown
- Must modify filter coefficients adaptively in an automated fashion to meet objectives

- Example: Channel equalization
 - High-speed data communication via media channel (e.g. wireless network)
 - Channel equalization compensates for channel distortion (e.g. path from wifi router and phone)
 - Channel must be continually tracked and characterized to compensate for distortion (e.g. moving around a room)

GENERAL ADAPTIVE FILTER

Two components

- Digital filter defined by coefficients
- Adaptive algorithm automatically update filter coefficients (weights)
- Adaption occurs by comparing filtered signal y(n) with a desired (reference) signal d(n)
 - Minimize error *e(n)* using a cost function (e.g. mean-square error)
 - Continually lower error and get y(n) closer to d(n)

FIR ADAPTIVE FILTER

•
$$y(n) = \sum_{l=0}^{L-1} w_l(n) x(n-l)$$

Notice time-varying weights

In vector form

Figure 6.2 Block diagram of time-varying FIR filter for adaptive filtering

• $y(n) = w^{T}(n)x(n) = x^{T}(n)w(n)$ • $x(n) = [x(n), x(n-1), ..., x(n-L+1)]^{T}$ • $w(n) = [w_{0}(n), w_{1}(n), ..., w_{L-1}(n)]^{T}$ • Error signal

•
$$e(n) = d(n) - y(n) = d(n) - \mathbf{w}^T(n)\mathbf{x}(n)$$

PERFORMANCE FUNCTION

- Use mean-square error (MSE) cost function
- $\xi(n) = E[e^2(n)]$
- $\boldsymbol{\boldsymbol{\omega}} \xi(n) = E[d^2(n)] 2\boldsymbol{p}^T \boldsymbol{w}(n) + \boldsymbol{w}^T(n) \boldsymbol{R} \boldsymbol{w}(n)$
 - $\boldsymbol{p} = E[d(n)\boldsymbol{x}(n)] = [r_{dx}(0), r_{dx}(1), \dots, r_{dx}(L-1)]^T$
 - **\mathbf{R}** autocorrelation matrix
 - $\boldsymbol{R} = E[\boldsymbol{x}(n)\boldsymbol{x}^T(n)]$

$$= \begin{bmatrix} r_{xx}(0) & r_{xx}(1) & \dots & r_{xx}(L-1) \\ r_{xx}(1) & r_{xx}(0) & \dots & r_{xx}(L-2) \\ \vdots & & \ddots & \vdots \\ r_{xx}(L-1) & r_{xx}(L-2) & \dots & r_{xx}(0) \end{bmatrix},$$
(6.22)

14

Toeplitz matrix – symmetric across main diagonal

STEEPEST DESCENT OPTIMIZATION

- Error function is a quadratic surface
 - $\xi(n) = E[d^2(n)] 2\boldsymbol{p}^T \boldsymbol{w}(n) + \boldsymbol{w}^T(n)\boldsymbol{R}\boldsymbol{w}(n)$
- Therefore gradient descent search techniques can be used
 - Gradient points in direction of greatest change
- Iterative optimization to "step" toward the bottom of error surface

•
$$w(n+1) = w(n) - \frac{\mu}{2}\nabla\xi(n)$$

Figure 6.4 Examples of error surface (top) and error contours (bottom), L=2

LMS ALGORITHM

- Practical applications do not have knowledge of d(n), x(n)
 - Cannot directly compute MSE and gradient
 - Stochastic gradient algorithm
- Use instantaneous squared error to estimate MSE
 - $\hat{\xi}(n) = e^2(n)$
- Gradient estimate
 - $\nabla \hat{\xi}(n) = 2[\nabla e(n)]e(n)$
 - $e(n) = d(n) w^T(n)x(n)$
 - $\nabla \hat{\xi}(n) = -2x(n)e(n)$
- Steepest descent algorithm
 - $w(n+1) = w(n) + \mu x(n)e(n)$

- LMS Steps
- 1. Set L, μ , and w(0)
 - L filter length
 - μ step size (small e.g. 0.01)

- w(0) initial filter weights
- 2. Compute filter output
 - $y(n) = \boldsymbol{w}^T(n)\boldsymbol{x}(n)$
- 3. Compute error signal
 - e(n) = d(n) y(n)
- 4. Update weight vector
 - $w_l(n+1) = w_l(n) + \mu x(n-l)e(n), \quad l = 0, 1, \dots L 1$
- Notice this requires a reference signal

LMS STABILITY

- Convergence of LMS algorithm
 - $0 < \mu < 2/\lambda_{max}$
 - λ_{max} largest eigenvalue of autocorrelation matrix **R**

- Not easy to compute eigenvalues
- Eigenvalue approximation
 - $0 < \mu < 2/LP_x$
 - L length of data window, filter length
 - $P_x = r_{xx}(0) = E[x^2(n)]$
- Step size is inversely proportional to filter length
 - Smaller μ for higher order filters
- Step size inversely proportional to input signal power
 - Larger μ for lower power signal

CONVERGENCE SPEED

- Convergence of filter weights is defined by the time τ_{MSE} to go from initial MSE to min
 - Plot of MSE vs. time is known as the learning curve
- Convergence time related to the minimum eigenvalue of **R**

•
$$\tau_{MSE} \cong \frac{1}{\mu \lambda_{min}}$$

- Smaller step size results in longer convergence time
- In practice, weights will not converge to a fixed optimum value but will vary around it

EXAMPLE 6.7

- $\bullet \quad \mathrm{sd} = 12357; \, \mathrm{rng(sd)};$
 - % Set seed value
- x = randn(1,128); % Reference signal x(n)
- $\mathbf{b} = [0.1, 0.2, 0.4, 0.2, 0.1];$ % An FIR filter to be identified
- d = filter(b,1,x); % Desired signal d(n)
- $\bullet \quad \mathrm{mu} = 0.05; \qquad \qquad \% \text{ Step size mu}$
- h = adaptfilt.lms(5,mu); % LMS algorithm
- $\bullet \quad [y,e] = filter(h,x,d); \qquad \% \text{ Adaptive filtering}$
- n = 1:128;
- h1=figure;
- hold all;
- $\bullet \quad plot(n,d,'-','linewidth', 3);$
- plot(n,y,'-.', 'linewidth', 3);
- $\bullet \quad plot(n,e,'--', 'linewidth', 2);$
- axis([1 128 -inf inf]);
- xlabel('Time index, n');
- ylabel('Amplitude');
- legend('d[n]', 'y[n]', 'e[n]');
- [b; h.coefficients]

PRACTICAL APPLICATIONS

• Four classes of adaptive filtering applications

20

- System identification
- Prediction
- Noise cancellation
- Inverse modeling

Differences based on configuration of control signals x(n), d(n), y(n), e(n)

SYSTEM IDENTIFICATION

 Given an unknown system, try to determine (identify) coefficients

Figure 6.7 Adaptive system identification using the LMS algorithm

- Excite unknown system and adaptive system with same input
 - Input signal: white noise
 - Reference signal: output of unknown system
 - Error is difference between adaptive filter and the output of unknown system

PREDICTION

 Linear predictor estimates signal values at future times

- Reference signal: signal of interest
- Input signal: delayed reference signal
- Error is difference between current sample and predicted sample (using past samples)
 - Leverage correlation between samples
- Broadband output: noise component
- Narrowband output: signal of interest (high correlation)

EXAMPLE 6.9

- Fs = 1000;
- f0 = 150;
- L =64;
- N=256;
- A=sqrt(2);
- w0=2*pi*f0/Fs;
- n = [0:N-1];
- sn = A*sin(w0*n);
- vn = 0.1*(rand(1,N)-0.5)*sqrt(12)
- x = sn+vn
- d = [0, x(2:256)];
- mu = 0.001;
- h = adaptfilt.lms(L,mu);
- [y,e] = filter(h,x,d)
- h1=figure;
- hold all;
- plot(n,x,'-','linewidth', 2);
- plot(n,y,'-.', 'linewidth', 2);
- plot(n,e,'--', 'linewidth', 2);
- axis([1 N -inf inf]);
- xlabel('Time index, n');
- ylabel('Amplitude');
- legend('x[n]', 'y[n]', 'e[n]');

NOISE CANCELLATION

- Remove (cancel) noise components embedded in a primary signal
 - E.g. background noise in speech signal

- Flip idea of reference and input signals
 - Reference signal: primary signal + noise
 - Close to primary source
 - Input signal: noise signal
 - Far from primary source to measure noise
 - Adaptive filter tracks correlated noise
 - Error signal is the desired cleaned primary signal

EXAMPLE 6.10

- Fs = 1000;
- f0 = 110;
- L = 3;
- N = 128;
- w0 = 2*pi*f0/Fs;
- pz = [0.1, 0.3, 0.2]; % Define noise path
- n = [0:N-1]; % Time index
- sd = 12357; rng(sd); % Set seed value
- sn = 0.5*sin(w0*n); % Sine sequence
- xn = 2.5*(rand(1,N)-0.5); % Zero-mean white noise
- xpn = filter(pz, 1, xn); % Generate x'(n)
- dn = sn+xpn; % Sinewave embedded in white noise
- mu = 0.025; % Step size mu
- h = adaptfilt.lms(L,mu); % LMS algorithm
- [y,e] = filter(h,xn,dn); % Adaptive filtering
- h1=figure;
- hold all;
- plot(n,dn,'-','linewidth', 2);
- plot(n,sn,'-.', 'linewidth', 2);
- plot(n,e,'--', 'linewidth', 2);
- axis([1 N -inf inf]);
- xlabel('Time index, n');
- ylabel('Amplitude');
- legend('d[n] noisy signal', 's[n] primary', 'e[n] output');

INVERSE MODELING

- Method to estimate the inverse of an unknown system
 - E.g. a communication channel is unknown but its distortion needs to be corrected

- Reference signal: a known training signal
- Input signal: training signal after going through unknown system