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OUTLINE

® Fourier Series

= Fourier Transform

® Discrete Time Fourier Transtorm
® Discrete Fourier Transform

= Fast Fourier Transform

» Buttertly Structure

" Implementation Issues



FOURIER SERIES

= Periodic signals

= x(t) =x(t+Ty)

= Periodic signal can be represented as a sum of an infinite number of
harmonically-related sinusoids

_ ' JkQot
" x(t) - Zk:-oo Cke
= ¢, - Fourier series coefficients

= (Contribution of particular frequency sinusoid
= Oy =2n/T, - fundamental frequency

= k — harmonic frequency index

= (Coefficients can be obtained from signal
" Cg = TiofOTOX(t)e_jkﬂot

= Notice ¢y is the average over a period, the DC component



FOURIER SERIES EXAMPLE

= Example 5.1

1.2
= Rectangular pulse train |
0.8
A —1t<t<rT 06!
= x(t) = .
0 else o4/
GQeée?ele 'L ?eé ®
-0.2 : : :
- C — ﬂ Sln(kQOT/Z) 0_20 0 frequenc;/)[rad/sec] 10 20
k TO kﬂo'l'/z
m T = 1’ 1:;
1 0.8
B QO=27T*;=21T o
° 0.4
= Magnitude spectrum is known as a line op e geterellloretopes
spectrum R ) 5 10

frequency [Hz]

=  Only few specific frequencies represented



FOURIER TRANSFORM

= Generalization of Fourier series to = Fourier representation of signal

handle non-periodic signals L oo .
= x(t) ==/ X(Q)e/dO
= et TO — OO 2T

= Spacing between lines in F'S go to

® Inverse Fourier transform

= Fourier transform

ZEr0
= Oy = 21/T, = X(Q) = ffooox(t)e_jﬂtdt
= Results in a continuous frequency
spectrum = Notice that a periodic function has
= Continuous function both a F'S and FT
®* The number of F'S coefficients to _1
« . * 9 . " k= X(kQO)
create “periodic” function goes to To
jnfjnjty = Notice a normalization constant to

account for the period



DISCRETE TIME FOURIER TRANSFORM

= Useful theoretical tool for discrete sequences/signals
= DTFT

= X(w) = Yp=—co x(nT)e /o7
= Periodic function with period 2n

= Only need to consider a 2m interval [0,27] or [—m, ]

® Inverse F'T

= x(nT) = %fan(w)ejw"T dw

= Notice this is an integral relationship
= X(w) is a continuous function

= Sequence x(n) is infinite length



SAMPLING THEOREM

= Aliasing — signal distortion caused
by sampling

= [Loss of distinction between different
signal frequencies

= A bandlimited signal can be
recovered from its samples when
there is no aliasing

" fs 2 2fm Qs 220p
= fs, g - signal bandwidth

= (Copies of analog spectrum are
copied at f; intervals

= Smaller sampling frequency compresses
spectrum into overlap

X(f)
/ \ .
-fm 0 fu

(a) Spectrum of bandlimited analog signal.

X(FIF,)
______ 7fS & [
2 2
: : : | > f
—f, -fu 0 fu f,

(b) Spectrum of discrete-time signal when the

sampling theorem £y, < f; /2 is satisfied.

fIf,

X(
-f,
2
v

/Y \(\ """ f

f¢ ~fw 0 fu £

(c) Spectrum of discrete-time signal that shows aliasing

when the sampling theorem is violated.

Figure 5.1 Spectrum replication of discrete-time signal caused by sampling



DISCRETE FOURIER TRANSFORM

= Numerically computable transform used for practical applications
= Sampled version of DTFT

= DFT definition

= X(k) = TN x eI @nRn
= k=0,1,...,N — 1 : frequency index
= Assumes x(n) = 0 outside bounds [0, N — 1]
= Equivalent to taking N samples of DTFT X(w) over the range [0, 2r]

= N equally spaced samples at frequencies w;, = 2wk /N
= Resolution of DFT is 2 /N

= [nverse DFT

= x(n) = TS X (ke Cr/0kn



RELATIONSHIPS BETWEEN TRANSFORMS

A bird’s eye view of the relationship between

FT, DTFT, DTFS and DFT
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RELATIONSHIPS BETWEEN TRANSFORMS
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RELATIONSHIPS BETWEEN TRANSFORMS
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DFT TWIDDLE FACTORS

= Rewrite DFT equation using Euler’s ] Properties of twiddle factors
_ yN-1 —j(2m/N)k : :
= X(k) = XnZg x(n)e~/em/Nkn = WX - N roots of unity in clockwise
= X(k) = YNLx(n) win direction on unit circle
= k=01,..,N—1 = Symmetry
= WK = e=J@r/N)kn — ¢og (%) — jsin (Z?n) o W]\;HN/Z =-Wk 0<k< g -1

= Periodicity

= IDFT —"
_ 1gnN-1 ' N)k .
" x(n) = 3 k=g X (e 2/l = Frequency resolution
s x(n) = %ZQ’;& X (k) wykn, = (Coefficients equally spaced on unit

circle

= A=f./N

= k=01,..,N—-1



DFT PROPERTIES

Linearity
=  DFT[ax(n) + by(n)] = aX(k) + bY (k)
Complex conjugate
= X(=k) =X"(k)
= 1<k<N-1
For x(n) real valued

Real

Real Middle
|

|

X(0) X(1) ... X(M=1) X(M) iX(M+'I) X(M+2) ... X(N-1)
| |

Complex conjugate

(b) Nis an odd number, M = (N-1)/2.

Figure 5.2 Complex-conjugate property for N is (a) an even number and (b) an odd number

= Only first M + 1 coefficients are unique

= Notice the magnitude spectrum is even and phase spectrum is odd

® 7-transform connection

= X(k) = X(2)| ,_picerymri

= Obtain DFT coefficients by
evaluating z-transform on the unit

circle at N equally spaced frequencies
Wy = 2k / N

= Circular convolution
= Y(k) = H()X (k)
= y(n) = h(n)®x(n)

- y(n) = Irvn_=10 h(m)x((n _ m)mod N)

= Note: both sequences must be padded to
same length



FAST FOURIER TRANSFORM

" DFT is computationally expensive

" Requires many complex multiplications and additions
= Complexity ~4N*

= Can reduce this time considerably by using the twidle
factors

®» Complex periodicity limits the number of distinct values
= Some factors have no real or no imaginary parts
= FF'T algorithms operate in N log, N time

= Utilize radix-2 algorithm so N = 2™ is a power of 2



FFT DECIMATION IN TIME

= Compute smaller DFTs on subsequences of x(n)

= X(k) = XNZ3 x(n) WE"

= X(k) = XNy (m) Wik 4 N2ty (m) W EmE

= x;(m) =g(n) =x(2m) - even samples
= x,(m) =h(n) =x(2m+ 1) — odd samples

= Since Wy™* = W%

N/2-1 N/2-1
= X(k) = T2y xa () Wi + Wi SlZ5 0 (m) WS
= N/2-point DFT of even and odd parts of x(n)
= X(k) =G(k) + W¥H (k)
= Full N sequence is obtained by periodicity of each N/2 DFT



FFT BUTTERFLY STRUCTURE

= Full butterfly (8-point)

G(0)

z(0) O—— X(0)
we
G:‘l)\
z(2) O y Q X(1)
4-Point Wi
DFT c\(‘z\v
z(4) O—— —Q X(2)
we
G(3)
wi
z(1) -OF— X(4)
z(3) O—— 3 F X(5)
s e B - X(6)
H(2) wé
2(7) O——— -O— X(7)
H(3) Wy

Fig.7-2. An eight-point decimation-in-time FFT algorithm after the first decimation.

» Simplified structure

RO X1(0) ~ .

Lo VNN Z ﬁfi
el NN
x6) ] 48 NNX/L e
FORN| | X%(0) WQM it
X3 neepoint 2 (TWSNSN X(5)
x| Corr | k@ Wi/ NN Lo
x| x@ Wi/ N\ f’ﬁ’l

Figure 5.4 Decomposition of N-point DFT into two N/2-point DFTs, N=8

(m-1)th mith
stage stage

Wy 1

Figure 5.5 Flow graph for butterfly computation



FFT DECIMATION

= Repeated application of
even/odd signal split

= Stop at simple 2-point DFT

x(0)

_— i . '-x(n)
x(4) M;,f-?mt D\/ \ / X(1)

W
‘E%‘ N/4-point]| W; 1 X(2)
= 4 DFT = X(3)
WD

iﬁ—*mmmm- o N X(4)
4 DFT

) — Wi XX W/ NN
xn) | VaRtws NS we /) D W

o

Figure 5.6 Flow graph illustrating second step of N-point DFT, N=8

X -~

Figure 5.7 Flow graph of two-point DFT

®» Complete 8-point DFT

structure
2(0) O—s——O— s e S et X(0)
w > %§ Ny
2(4) O—e—0 —0 o X(1)
we
z(2) O O— O
S vy
z(6) o
-1
2(1) VAVAS S
e 7
2(5) O——m—OF D X(5)

Fig. 7-6. A complete eight-point radix-2 decimation-in-time FFT.



FFT DECIMATION IN TIME IMPLEMENTATION

= Notice arrangement of samples is not in sequence — requires shuffling

= Use bit reversal to figure out pairing of samples in 2-bit DF'T

Table 5.1 Example of bit-reversal process, N=8 (3-bit)

Input sample index Bit-reversed sample index
Decimal Binary Binary Decimal
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
+ 100 001 1
3 101 101 5
6 110 011 3
7 111 111 7

= Input values to DFT block are not needed after calculation

= Enables in-place operation

= Save FFT output in same register as input

=  Reduce memory requirements



DET Algorithm

¢ The Fourler transform of an analogue
signal x(t) i1s given by:

¢ The Discrete Fourier Transform (DFT) of
a discrete-time signal x(nT) Is given by:.

Chapter 19, Slide 20 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004



DET Algorithm

¢ If we let: e_j% =W, then:

Sampled signal

Amplitude

60 80
Sample

Frequency Domain

Magnitude

0.2 0.3
Normalised Frequency

Chapter 19, Slide 21 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004



DFET Algorithm

X[n] = Input
X[K] = frequency bins
W = twiddle factors

) = X[0]W° + X[1]W, T +...+ x[N-1]JW " (N-)
X(1)  =x[0]W,L° + x[1]W ! +...+ x[N-1]W (D

X(k) = x[0]W,0 + X[1]W T +...+ x[N-1]W K N-D

X(N-1) =x[0]W° + x[1]Wy N-D*L +, [+ x[N-1]W,, N-DN-1)

Note: For N samples of x we have N frequencies
representing the signal.

Chapter 19, Slide 22 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004



Performance of the DFET Algorithm

¢ The DFT requires N2 (NxN) complex
multiplications:

+ Each X(k) requires N complex
multiplications.

+ Therefore to evaluate all the values of the
DFT ( X(0) to X(N-1) ) N multiplications are
required.

¢ The DFT also requires (N-1)*N complex
additions:

+ Each X(k) requires N-1 additions.

+ Therefore to evaluate all the values of the
DFT (N-1)*N additions are required.

Chapter 19, Slide 23 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004



Performance of the DFT Algorithm

o 120 120
S
= 100 £ 100
> =] /
f o / g &
= < /
> 60 / 5 60 /
o 40 S 40
3 / £ /
g 20 Zz 20
0_ T T T T T T T T T 0 I T T T T T T
O 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
Number of Samples Number of Samples

¢ Can the number of computations required
be reduced?

Chapter 19, Slide 24 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004



DFT — FFT

¢ A large amount of work has been devoted

to reducing the computation time of a
DFT.

¢ This has led to efficient algorithms which
are known as the Fast Fourier Transform
(FFT) algorithms.

Chapter 19, Slide 25 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004



DFT — FFT

[1]
x[n] = x[0], x[1], ..., x[N-1]

¢ Lets divide the sequence x[n] into even
and odd sequences:

+ X[2n] =x][0], x[2], ..., X|N-2]
+ X[2n+1] =x][1], x[3], ..., X[N-1]

Chapter 19, Slide 26 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004



DET > FFT
¢ Equation 1 can be rewritten as:

Chapter 19, Slide 27 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004



Chapter 19, Slide 28

DFT — FFT

¢ The result is that an N-point DFT can be
divided into two N/2 point DFT"s:

N-1

X(k)=>"x[n]v; 0<k<N-1 EENECIeIls|ABISH]

=0

¢ Where Y(k) and Z(k) are the two N/2
point DFTs operating on even and odd
samples respectively:

Two N/2-
point DFTs

Dr. Naim Dahnoun, Bristol University, (c) Texas

Instruments 2004



DFT — FFT

¢ Periodicity and symmetry of W can be
exploited to simplify the DFT further:

[3]

.2

N I R : Symmetry

. Periodicity

Chapter 19, Slide 29 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004



DFT - FFT

¢ Symmetry and periodicity:

W..7
8 WNk+N/2 — -WNk
W0 =W,8 W oK N2 = Wi -
W8k+4 — -W8k
W8k+8 — W8k

W81 — W89

Chapter 19, Slide 30 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004



DFT — FFT

¢ Finally by exploiting the symmetry and
periodicity, Equation 3 can be written as:

2

v Wy Z X, [ [4]

Chapter 19, Slide 31 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004



DFT — FFT

X(k)=Y(k)+WEZ(k); k=0,...(%— j

X(k +%) =Y(k)-W)z(k) k= o,...(g— j

¢ Y(k) and W *Z(k) only need to be
calculated once and used for both
equations.

¢ Note: the calculation is reduced from O to
N-1to O to (N/2 - 1).

Chapter 19, Slide 32 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004



DFT — FFT

X(k)=Y(k)+WEZ(k); k=0,...(%— j

X(k +%) =Y(k)-W)z(k) k= o,...(g— j

¢ Y(k) and Z(k) can also be divided into N/4
pgmt DFTs using the same process shown
above:

¢ The process continues until we reach 2
point DFTSs.

Chapter 19, Slide 33 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004



DFT - FFT

X[0] — y[0] X[0] = y[0]+Wz[0]
x[2] y[1] N /. X[1] = y[1]+W,z[1]
x[4] N/2 point [ YI2]
DFT
x[N-2] ___| yIN-2]
X[1] —— z[0] X[N/2] = y[0]-Wz[0]
x[3] ___ Z[1] Wy I\ X[N/2+1] = y[1]-W,z[1]
x[5] __| N/2 point |z[2] W, -
DFT
X[N-1] z[N/2-1]

¢ lllustration of the first decimation in time
FFT.

Chapter 19, Slide 34 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004



FET Implementation

¢ To efficiently implement the FFT
algorithm a few observations are made:

» Each stage has the same number of
butterflies (number of butterflies = N/2, N is
number of points).

+ The number of DFT groups per stage is equal
to (N/25tage),

+ The difference between the upper and lower
leg 1s equal to 2stage-1,

» The number of butterflies in the group Is
equal to 2stage-1,

Chapter 19, Slide 35 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004



FET Implementation
Example: 8 point FFT

>
W, -1
>
W, -1

¢ Decimation in time FFT:
+ Number of stages = log,N
» Number of blocks/stage = N/25tag®
» Number of butterflies/block = 25tage-1

Chapter 19, Slide 36 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004




FET Implementation

Example: 8 point FFT
(1) Number of stages:

>
W, £)
>
W, i

¢ Decimation in time FFT:
» Number of stages = log,N
+ Number of blocks/stage = N/25tage
+ Number of butterflies/block = 2stage-1

Chapter 19, Slide 37 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004




FET Implementation

Example: 8 point FFT
(1) Number of stages:
+ N =1

Stage 1

>
W, £)
>
W, i

stages

¢ Decimation in time FFT:
» Number of stages = log,N
+ Number of blocks/stage = N/25tage
+ Number of butterflies/block = 2stage-1

Chapter 19, Slide 38 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004




FET Implementation

Stage 1 Stage 2

>
W, £)
>
W, i

Example: 8 point FFT
(1) Number of stages:
+ N =2

stages

¢ Decimation in time FFT:
» Number of stages = log,N
+ Number of blocks/stage = N/25tage
+ Number of butterflies/block = 2stage-1

Chapter 19, Slide 39 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004




FET Implementation

Stage 1 Stage 2 Stage 3

>
W, £)
>
W, i

Example: 8 point FFT
(1) Number of stages:
+ N

stages — 3

¢ Decimation in time FFT:
» Number of stages = log,N
+ Number of blocks/stage = N/25tage
+ Number of butterflies/block = 2stage-1

Chapter 19, Slide 40 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004




FET Implementation

Stage 1 Stage 2 Stage 3

>
W, -1
>
W, -1

Example: 8 point FFT
(1) Number of stages:
¢ Nstages = 3
(2) Blocks/stage:

+ Stage 1:

¢ Decimation in time FFT:
+ Number of stages = log,N
» Number of blocks/stage = N/25ta%€
» Number of butterflies/block = 2stage-1

Chapter 19, Slide 41 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004




FET Implementation

Stage 1 Stage 2 Stage 3

Example: 8 point FFT
(1) Number of stages:
¢ Nstages = 3
(2) Blocks/stage:
+ Stage 1: Nyjoens = 1

Block 1

¢ Decimation in time FFT:
+ Number of stages = log,N
» Number of blocks/stage = N/25ta%€
» Number of butterflies/block = 2stage-1

Chapter 19, Slide 42 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004




Chapter 19, Slide 43

Block 1

Block 2

Stage 1

FET Implementation

Stage 2 Stage 3

Example: 8 point FFT
(1) Number of stages:
¢ Nstages =3
(2) Blocks/stage:
+ Stage 1: Nyjpeps = 2

Decimation in time FFT:

« Num
« Num
« Num

oer of stages = log,N
oer of blocks/stage = N/25ta%

ner of butterflies/block = 2stage-1

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004



Stage 1

FET Implementation

Stage 2 Stage 3

Block 1

Block 2

Block 3

Example: 8 point FFT
(1) Number of stages:
¢ Nstages =3
(2) Blocks/stage:
+ Stage 1: Nyjpeps = 3

¢ Decimation intime FFT:

« Num
« Num
« Num

Chapter 19, Slide 44

oer of stages = log,N
oer of blocks/stage = N/25ta%

ner of butterflies/block = 2stage-1

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004



FET Implementation

Stage 1 Stage 2 Stage 3

Example: 8 point FFT
(1) Number of stages:
¢ Nstages = 3
(2) Blocks/stage:
+ Stage 1: Nyjoeus = 4

Block 1

Block 2

Block 3

Block 4

¢ Decimation in time FFT:
+ Number of stages = log,N
» Number of blocks/stage = N/25ta%€
» Number of butterflies/block = 2stage-1

Chapter 19, Slide 45 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004




FET Implementation

Stage 1 Stage 2 Stage 3

>
W, -1
>
W, -1

Example: 8 point FFT

(1) Number of stages:
¢ Nstages =3

(2) Blocks/stage:
+ Stage 1: Nyjpers = 4
+ Stage 2: Nyjpers = 1

Block 1

¢ Decimation in time FFT:
+ Number of stages = log,N
» Number of blocks/stage = N/25ta%€
» Number of butterflies/block = 2stage-1

Chapter 19, Slide 46 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004




Chapter 19, Slide 47

Block 1

Block 2

Stage 1

FET Implementation

Stage 2 Stage 3

>
W, -1
>
W, -1

Example: 8 point FFT

(1) Number of stages:
¢ Nstages =3

(2) Blocks/stage:
+ Stage 1: Nyjpers = 4
+ Stage 2: Nyjpers = 2

¢ Decimation intime FFT:

« Num
« Num
« Num

oer of stages = log,N
oer of blocks/stage = N/25ta%

ner of butterflies/block = 2stage-1

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004



FET Implementation

Stage 1 Stage 2 Stage 3

>
W, -1
>
W, -1

Example: 8 point FFT

(1) Number of stages:
¢ Nstages =3

(2) Blocks/stage:
+ Stage 1: Nyjoens = 4
+ Stage 2: Nyjoeks = 2
+ Stage 3: Nyjoens = 1

Block 1

¢ Decimation in time FFT:
+ Number of stages = log,N
» Number of blocks/stage = N/25ta%€
» Number of butterflies/block = 2stage-1

Chapter 19, Slide 48 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004




FET Implementation

Stage 1 Stage 2 Stage 3

>
W, -1
>
W, -1

Example: 8 point FFT
(1) Number of stages:
¢ Nstages =3
(2) Blocks/stage:
+ Stage 1: Nyjoens = 4
+ Stage 2: Nyjoeks = 2
+ Stage 3: Nyjoens = 1
(3) B’flies/block:
+ Stage 1:

¢ Decimation in time FFT:
+ Number of stages = log,N
» Number of blocks/stage = N/25tag®
« Number of butterflies/block = 25tage-1

Chapter 19, Slide 49 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004




FET Implementation

Stage 1 Stage 2 Stage 3

W =l
W L
>
W, -1
>
W, -1

Example: 8 point FFT
(1) Number of stages:
¢ Nstages =3
(2) Blocks/stage:
+ Stage 1: Nyjoens = 4
+ Stage 2: Nyjoeks = 2
+ Stage 3: Nyjoens = 1
(3) B’flies/block:
+ Stage 1: Ny =1

i

¢ Decimation in time FFT:
+ Number of stages = log,N
» Number of blocks/stage = N/25tag®
« Number of butterflies/block = 25tage-1

Chapter 19, Slide 50 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004




FET Implementation

Stage 1 Stage 2 Stage 3

>
W, -1
>
W, -1

Example: 8 point FFT
(1) Number of stages:
¢ Nstages =3
(2) Blocks/stage:
+ Stage 1: Nyjoens = 4
+ Stage 2: Nyjoeks = 2
+ Stage 3: Nyjoens = 1
(3) B’flies/block:
+ Stage 1: N =1
¢ Decimation in time FFT: . Stage 2: Ny =1
+ Number of stages = log,N
» Number of blocks/stage = N/25tag®

+ Number of butterflies/block = 2stage-1

Chapter 19, Slide 51 Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004




FET Implementation

Stage 1 Stage 2 Stage 3

>
W, -1
>
W, -1

Example: 8 point FFT
(1) Number of stages:
¢ Nstages =3
(2) Blocks/stage:
+ Stage 1: Nyjoens = 4
+ Stage 2: Nyjoeks = 2
+ Stage 3: Nyjoens = 1
(3) B’flies/block:
+ Stage 1: N =1
¢ Decimation in time FFT: » Stage 2: Ny = 2
+ Number of stages = log,N
» Number of blocks/stage = N/25tag®

+ Number of butterflies/block = 2stage-1
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Example: 8 point FFT
(1) Number of stages:
¢ Nstages =3
(2) Blocks/stage:
+ Stage 1: Nyjpers = 4
+ Stage 2: Nyjpers = 2
+ Stage 3: Nyjpes = 1
(3) B’flies/block:
» Stage 1: Ny =1
¢ Decimation in time FFT: . Stage 2: N, = 2
« Number of stages = log,N » Stage 3: Npy =3
+ Number of blocks/stage = N/25tag®
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Example: 8 point FFT
(1) Number of stages:
¢ Nstages =3
(2) Blocks/stage:
+ Stage 1: Nyjpers = 4
+ Stage 2: Nyjpers = 2
+ Stage 3: Nyjpes = 1
(3) B’flies/block:
» Stage 1: Ny =1
¢ Decimation in time FFT: . Stage 2: N, = 2
« Number of stages = log,N » Stage 3: Ny =4
+ Number of blocks/stage = N/25tag®

+ Number of butterflies/block = 2stage-1
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FET Implementation

Stage 1 Stage 2 Stage 3

Start Index 0 0 0
Input Index 1 2 4
Twiddle Factor Index N/2 =4
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FET Implementation

Stage 1 Stage 2 Stage 3

Start Index 0 0 0
Input Index 1 2 4
Twiddle Factor Index N/2 =4 4/2 = 2=1
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FET Implementation

Stage 1 Stage 2 Stage 3

W0 1
W, -1
Start Index 0 0 0
Input Index 1 2 4
Twiddle Factor Index N/2 =4 4/2 =2 2/2=1
Indicies Used A A W,
W, W,
W2
W3
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FFT DECIMATION IN FREQUENCY

= Similar divide and conquer strategy

= Decimate in frequency domain

= X(2k) = YNZLEx(m)w2nk

= X(2k) = SnL5T X (W + INZL , x (W,

= Divide into first half and second half of sequence

= X(2k) = Zn/a T x (W + Znlatx (n+2)
= Simplifying with twiddle properties

= X(2k) = ZNfz ! [x(n) + x (n + )] W,{,%

D X(2k+1)—ZN/2 1WN [x(n)—x(n+ )]W

n+H k
i)



FFT DECIMATION IN FREQUENCY STRUCTURE

= Stage structure = Full structure
} z(0) O Q: —0- O —O0— -0 X(0)
x(0) X (0 X(0) \ 7 wg
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Figure 5.8 Decomposition of an N-point DFT into two N/2-point DFTs z(7) O 2 o= : O -0 X(7)

Fig. 7-8. Eight-point radix-2 decimation-in-frequency FFT.

® Bit reversal happens at output
instead of input



INVERSE FFT

= x(n) = %Z’,X;(}X(k) Wy kn

= Notice this is the DFT with a scale factor and change in
twiddle sign

» Can compute using the FFT with minor modifications
= x*(n) =~ INZ3 X" (k) W™

= Conjugate coefficients, compute FFT with scale factor, conjugate result

= For real signals, no final conjugate needed

= Can complex conjugate twiddle factors and use in butterfly
structure



FFT EXAMPLE

= Example 5.10
= Sine wave with f = 50 Hz

= x(n) = sin (2’7 ")
S
= n=01,..,127
= f. =256 Hz

= Frequency resolution of DFT?

= A=f/N="2=2Hz

= Location of peak

s 50=kA—>k=%=25

Magnitude

10 20 30 40 50 60
Frequency index, k

Reconstruction error

x10"

50

sample n

100

15C



SPECTRAL LEAKAGE AND RESOLUTION

= Notice that a DFT is like windowing a = Example 5.15
Signal to finite length =  Two close sinusoids smeared together
= Longer window lengths (more samples) the

closer DFT X (k) approximates DTFT X(w) 70-
= (Convolution relationship 60r
= xy(n) = wx(n) 8>
2 40
- Xy() = WK) * X (k) :
S 30+

= Corruption of spectrum due to window 2ol
properties (mainlobe/sidelobe)
= Sidelobes result in spurious peaks in computed o

spectrum known as spectral leakage

o

10 20 30 40 50 60
= Obviously, want to use smoother windows to minimize Frequency index, k
these effects

= Spectral smearing is the loss in sharpness due to = To avoid smearing:

convolution which depends on mainlobe width = Frequency separation should be greater than freq resolution

= N>, N>f/Af



POWER SPECTRAL DENGSITY

= Parseval’s theorem

= E = SNZ3lxm)|? = S ENZ3X ()1

= |X(k)|? - power spectrum or periodogram

= Power spectral density (PSD, or
power density spectrum or power
spectrum) is used to measure
average power over frequencies

= Computed for time-varying signal
by using a sliding window technique
= Short-time Fourier transform

= Grab N samples and compute FFT

= Must have overlap and use windows

= Spectrogram

Fach short FFT is arranged as a column in a
matrix to give the time-varying properties of
the signal

Viewed as an image
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FAST FFT CONVOLUTION

® Linear convolution is multiplication in frequency domain

= Must take FFT of signal and filter, multiply, and iFFT

= Operations in frequency domain can be much faster for large
filters

» Requires zero-padding because of circular convolution
= T'ypically, will do block processing

® Segment a signal and process each segment individually
before recombining



