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FOURIER SERIES

 Periodic signals

 𝑥 𝑡 = 𝑥(𝑡 + 𝑇0)

 Periodic signal can be represented as a sum of an infinite number of 
harmonically-related sinusoids

 𝑥 𝑡 = σ𝑘=−∞
∞ 𝑐𝑘𝑒

𝑗𝑘Ω0𝑡

 𝑐𝑘 - Fourier series coefficients

 Contribution of particular frequency sinusoid

 Ω0 = 2𝜋/𝑇0 - fundamental frequency

 𝑘 – harmonic frequency index

 Coefficients can be obtained from signal

 𝑐𝑘 =
1

𝑇0
0
𝑇0 𝑥 𝑡 𝑒

−𝑗𝑘Ω0𝑡

 Notice 𝑐0 is the average over a period, the DC component
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 Example 5.1

 Rectangular pulse train

 𝑥 𝑡 = ቊ
𝐴 −𝜏 < 𝑡 < 𝜏
0 𝑒𝑙𝑠𝑒

 𝑐𝑘 =
𝐴𝜏

𝑇0

sin 𝑘Ω0𝜏/2

𝑘Ω0𝜏/2

 𝑇 = 1;

 Ω0 = 2𝜋 ∗
1

𝑇
= 2π

 Magnitude spectrum is known as a line 
spectrum

 Only few specific frequencies represented
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FOURIER TRANSFORM

 Generalization of Fourier series to 
handle non-periodic signals

 Let 𝑇0 → ∞

 Spacing between lines in FS go to 
zero

 Ω0 = 2𝜋/𝑇0

 Results in a continuous frequency 
spectrum

 Continuous function

 The number of FS coefficients to 
create “periodic” function goes to 
infinity

 Fourier representation of signal

 𝑥 𝑡 =
1

2𝜋
∞−
∞
𝑋 Ω 𝑒𝑗Ω𝑡𝑑Ω

 Inverse Fourier transform

 Fourier transform

 𝑋 Ω = ∞−
∞
𝑥 t 𝑒−𝑗Ω𝑡𝑑𝑡

 Notice that a periodic function has 
both a FS and FT

 𝑐𝑘 =
1

𝑇0
𝑋(𝑘Ω0)

 Notice a normalization constant to 
account for the period
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DISCRETE TIME FOURIER TRANSFORM

 Useful theoretical tool for discrete sequences/signals

 DTFT

 𝑋 𝜔 = σ𝑛=−∞
∞ 𝑥 𝑛𝑇 𝑒−𝑗𝜔𝑛𝑇

 Periodic function with period 2𝜋

 Only need to consider a 2𝜋 interval 0,2𝜋 or [−𝜋, 𝜋]

 Inverse FT

 𝑥 𝑛𝑇 =
1

2𝜋

−𝜋

𝜋
𝑋 𝜔 𝑒𝑗𝜔𝑛𝑇 𝑑𝜔

 Notice this is an integral relationship

 𝑋 𝜔 is a continuous function 

 Sequence 𝑥(𝑛) is infinite length
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 Aliasing – signal distortion caused 
by sampling

 Loss of distinction between different 
signal frequencies

 A bandlimited signal can be 
recovered from its samples when 
there is no aliasing

 𝑓𝑠 ≥ 2𝑓𝑚, Ω𝑠 ≥ 2Ω𝑚
 𝑓𝑠, Ω𝑠 - signal bandwidth

 Copies of analog spectrum are 
copied at 𝑓𝑠 intervals

 Smaller sampling frequency compresses 
spectrum into overlap
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DISCRETE FOURIER TRANSFORM

 Numerically computable transform used for practical applications

 Sampled version of DTFT

 DFT definition

 𝑋 𝑘 = σ𝑛=0
𝑁−1 𝑥 𝑛 𝑒−𝑗 2𝜋/N 𝑘𝑛

 𝑘 = 0, 1, … , 𝑁 − 1 : frequency index

 Assumes 𝑥 𝑛 = 0 outside bounds [0, 𝑁 − 1]

 Equivalent to taking 𝑁 samples of DTFT 𝑋(𝜔) over the range [0, 2𝜋]

 𝑁 equally spaced samples at frequencies 𝜔𝑘 = 2𝜋𝑘/𝑁

 Resolution of DFT is 2𝜋/𝑁

 Inverse DFT

 𝑥 𝑛 =
1

𝑁
σ𝑘=0
𝑁−1𝑋 𝑘 𝑒𝑗 2𝜋/N 𝑘𝑛
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RELATIONSHIPS BETWEEN TRANSFORMS
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RELATIONSHIPS BETWEEN TRANSFORMS
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RELATIONSHIPS BETWEEN TRANSFORMS
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DFT TWIDDLE FACTORS
 Rewrite DFT equation using Euler’s

 𝑋 𝑘 = σ𝑛=0
𝑁−1 𝑥 𝑛 𝑒−𝑗 2𝜋/N 𝑘𝑛

 𝑋 𝑘 = σ𝑛=0
𝑁−1 𝑥(𝑛)𝑊𝑁

𝑘𝑛

 𝑘 = 0,1,… ,𝑁 − 1

 𝑊𝑁
𝑘𝑛 = 𝑒−𝑗 2𝜋/𝑁 𝑘𝑛 = cos

2𝜋𝑘𝑛

𝑁
− 𝑗 sin

2𝜋𝑘𝑛

𝑁

 IDFT

 𝑥 𝑛 =
1

𝑁
σ𝑘=0
𝑁−1𝑋 𝑘 𝑒𝑗 2𝜋/N 𝑘𝑛

 𝑥 𝑛 =
1

𝑁
σ𝑘=0
𝑁−1𝑋(𝑘)𝑊𝑁

−𝑘𝑛,

 𝑘 = 0,1,… ,𝑁 − 1

 Properties of twiddle factors

 𝑊𝑁
𝑘 - N roots of unity in clockwise 

direction on unit circle 

 Symmetry 

 𝑊𝑁
𝑘+𝑁/2

= −𝑊𝑁
𝑘 , 0 ≤ 𝑘 ≤

𝑁

2
− 1

 Periodicity 

 𝑊𝑁
𝑘+𝑁 = 𝑊𝑁

𝑘

 Frequency resolution

 Coefficients equally spaced on unit 
circle

 Δ = 𝑓𝑠/𝑁
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DFT PROPERTIES
 Linearity

 𝐷𝐹𝑇 𝑎𝑥 𝑛 + 𝑏𝑦 𝑛 = 𝑎𝑋 𝑘 + 𝑏𝑌 𝑘

 Complex conjugate

 𝑋 −𝑘 = 𝑋∗(𝑘)

 1 ≤ 𝑘 ≤ 𝑁 − 1

 For 𝑥 𝑛 real valued

 Only first 𝑀 + 1 coefficients are unique

 Notice the magnitude spectrum is even and phase spectrum is odd

 Z-transform connection

 𝑋 𝑘 = 𝑋 𝑧 ȁ
𝑧=𝑒𝑗 2𝜋/𝑁 𝑘

 Obtain DFT coefficients by 
evaluating z-transform on the unit 
circle at N equally spaced frequencies 
𝜔𝑘 = 2𝜋𝑘/𝑁

 Circular convolution

 𝑌 𝑘 = 𝐻 𝑘 𝑋(𝑘)

 𝑦 𝑛 = ℎ 𝑛 ⨂𝑥(𝑛)

 𝑦 𝑛 = σ𝑚=0
𝑁−1 ℎ 𝑚 𝑥( 𝑛 − 𝑚 𝑚𝑜𝑑 𝑁)

 Note: both sequences must be padded to 
same length
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FAST FOURIER TRANSFORM

 DFT is computationally expensive

 Requires many complex multiplications and additions

 Complexity ~4𝑁2

 Can reduce this time considerably by using the twidle
factors

 Complex periodicity limits the number of distinct values

 Some factors have no real or no imaginary parts

 FFT algorithms operate in 𝑁 log2𝑁 time

 Utilize radix-2 algorithm so 𝑁 = 2𝑚 is a power of 2
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FFT DECIMATION IN TIME

 Compute smaller DFTs on subsequences of 𝑥 𝑛

 𝑋 𝑘 = σ𝑛=0
𝑁−1𝑥(𝑛)𝑊𝑁

𝑘𝑛

 𝑋 𝑘 = σ𝑚=0
𝑁/2−1

𝑥1(𝑚)𝑊𝑁
𝑘2𝑚 + σ𝑚=0

𝑁/2−1
𝑥2(𝑚)𝑊𝑁

𝑘(2𝑚+1)

 𝑥1 𝑚 = 𝑔(𝑛) = 𝑥 2𝑚 - even samples 

 𝑥2 𝑚 = ℎ 𝑛 = 𝑥(2𝑚 + 1) – odd samples 

 Since 𝑊𝑁
2𝑚𝑘 = 𝑊𝑁/2

𝑚𝑘

 𝑋 𝑘 = σ𝑚=0
𝑁/2−1

𝑥1(𝑚)𝑊𝑁/2
𝑘𝑚 +𝑊𝑁

𝑘 σ𝑚=0
𝑁/2−1

𝑥2(𝑚)𝑊𝑁/2
𝑘𝑚

 𝑁/2-point DFT of even and odd parts of 𝑥(𝑛)

 𝑋 𝑘 = 𝐺 𝑘 +𝑊𝑁
𝑘𝐻(𝑘)

 Full 𝑁 sequence is obtained by periodicity of each 𝑁/2 DFT
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FFT BUTTERFLY STRUCTURE

 Full butterfly (8-point)  Simplified structure
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FFT DECIMATION

 Repeated application of 
even/odd signal split 

 Stop at simple 2-point DFT

 Complete 8-point DFT 
structure
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FFT DECIMATION IN TIME IMPLEMENTATION

 Notice arrangement of samples is not in sequence – requires shuffling

 Use bit reversal to figure out pairing of samples in 2-bit DFT

 Input values to DFT block are not needed after calculation

 Enables in-place operation

 Save FFT output in same register as input

 Reduce memory requirements
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DFT Algorithm

◆ The Fourier transform of an analogue 
signal x(t) is given by:

( ) ( )
+

−

−= dtetxX tj

◆ The Discrete Fourier Transform (DFT) of 
a discrete-time signal x(nT) is given by:

 Where:

( )  
−

=

−

=
1

0

2N

n

nk
N

j

enxkX


( )  nxnTx

Nk

=

−= 1,1,0 
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◆ If we let:
N

N
j

We =
−

2

then: ( )  
−

=

=
1

0

N

n

nk

NWnxkX
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DFT Algorithm

( )  
−

=

=
1

0

N

n

nk

NWnxkX

X(0) = x[0]WN
0 + x[1]WN

0*1 +…+ x[N-1]WN
0*(N-1)

X(1) = x[0]WN
0 + x[1]WN

1*1 +…+ x[N-1]WN
1*(N-1)

:

X(k) = x[0]WN
0 + x[1]WN

k*1 +…+ x[N-1]WN
k*(N-1)

:

X(N-1) = x[0]WN
0 + x[1]WN

(N-1)*1 +…+ x[N-1]WN
(N-1)(N-1)

Note: For N samples of x we have N frequencies 
representing the signal.

x[n] = input

X[k] = frequency bins

W = twiddle factors
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Performance of the DFT Algorithm

◆ The DFT requires N2 (NxN) complex 
multiplications: 

 Each X(k) requires N complex 
multiplications.

 Therefore to evaluate all the values of the 
DFT ( X(0) to X(N-1) ) N2 multiplications are 
required.

◆ The DFT also requires (N-1)*N complex 
additions:

 Each X(k) requires N-1 additions.

 Therefore to evaluate all the values of the 
DFT (N-1)*N additions are required.
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Performance of the DFT Algorithm
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◆ Can the number of computations required 
be reduced?
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DFT → FFT

◆ A large amount of work has been devoted 
to reducing the computation time of a 
DFT.

◆ This has led to efficient algorithms which 
are known as the Fast Fourier Transform 
(FFT) algorithms.
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DFT → FFT

x[n] = x[0], x[1], …, x[N-1]

( )   10   ;
1

0

−=
−

=

NkWnxkX
N

n

nk

N [1]

◆ Lets divide the sequence x[n] into even 
and odd sequences:

 x[2n] = x[0], x[2], …, x[N-2]

 x[2n+1] = x[1], x[3], …, x[N-1]
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DFT → FFT

[2]

◆ Equation 1 can be rewritten as:

◆ Since:

( ) nk

N

k

N

kn

N WWW
2

12 =+

( )    

( ) ( )kZWkY

WnxWWnxkX

k
N

N

n

nk
N

k
N

N

n

nk
N

+=

++= 
−

=

−

=

1
2

0 2

1
2

0 2

122

◆ Then:
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( )    

( ) ( )kZWkY

WnxWWnxkX

k
N

N

n

nk
N

k
N

N

n

nk
N

+=

+= 
−

=

−

=

1
2

0 2

2

1
2

0 2

1

DFT → FFT

◆ The result is that an N-point DFT can be 
divided into two N/2 point DFT’s:

( )   10   ;
1

0

−=
−

=

NkWnxkX
N

n

nk

N N-point DFT

◆ Where Y(k) and Z(k) are the two N/2 
point DFTs operating on even and odd 
samples respectively:

Two N/2-
point DFTs
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DFT → FFT

◆ Periodicity and symmetry of W can be 
exploited to simplify the DFT further:

Or:

And:

k

N

k
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k
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[3]

: Symmetry

: Periodicity
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DFT → FFT

◆ Symmetry and periodicity:

W8
0 = W8

8

W8
1 = W8

9

W8
2

W8
4

W8
3

W8
6

W8
7W8

5

WN
k+N/2 = -WN

k

WN/2
k+N/2 = WN/2

k

W8
k+4 = -W8

k

W8
k+8 = W8

k
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DFT → FFT

◆ Finally by exploiting the symmetry and 
periodicity, Equation 3 can be written as:

[4]
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( ) ( ) ( )

( ) ( ) 
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DFT → FFT

◆ Y(k) and WN
k Z(k) only need to be 

calculated once and used for both 
equations.

◆ Note: the calculation is reduced from 0 to 
N-1 to 0 to (N/2 - 1).
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DFT → FFT

◆ Y(k) and Z(k) can also be divided into N/4 
point DFTs using the same process shown 
above:

( ) ( ) ( )

( ) ( )kVWkU
N

kY

kVWkUkY

k

N

k

N

2

2

4
−=








+

+= ( ) ( ) ( )
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k

N

k

N

2

2

4
−=








+

+=

◆ The process continues until we reach 2 
point DFTs.

( ) ( ) ( )

( ) ( ) 
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DFT → FFT

◆ Illustration of the first decimation in time 
FFT.

y[0]

y[1]

y[2]

y[N-2]

N/2 point 
DFT

x[0]
x[2]

x[4]

x[N-2]

N/2 point 
DFT

x[1]
x[3]

x[5]

x[N-1]

z[0]

z[1]

z[2]

z[N/2-1]

X[N/2] = y[0]-W0z[0]

-1

X[0] = y[0]+W0z[0]

W0 X[N/2+1] = y[1]-W1z[1]

-1

X[1] = y[1]+W1z[1]

W1



Dr. Naim Dahnoun, Bristol University,  (c) Texas Instruments 2004Chapter 19, Slide 35

FFT Implementation

◆ To efficiently implement the FFT 
algorithm a few observations are made:

 Each stage has the same number of 
butterflies (number of butterflies = N/2, N is 
number of points).

 The number of DFT groups per stage is equal 
to (N/2stage).

 The difference between the upper and lower 
leg is equal to 2stage-1.

 The number of butterflies in the group is 
equal to 2stage-1.
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FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Example: 8 point FFT
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FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Example: 8 point FFT

(1) Number of stages:
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FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Example: 8 point FFT

(1) Number of stages:

 Nstages = 1

Stage 1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 2

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2Stage 1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1:

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 1

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1

Block 1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 2

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1

Block 1

Block 2
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 3

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1

Block 1

Block 2

Block 3
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1

Block 1

Block 2

Block 3

Block 4
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 1

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1

Block 1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1

Block 1

Block 2
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

 Stage 3: Nblocks = 1

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1

Block 1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

 Stage 3: Nblocks = 1

(3) B’flies/block:

 Stage 1:

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

 Stage 3: Nblocks = 1

(3) B’flies/block:

 Stage 1: Nbtf = 1

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

 Stage 3: Nblocks = 1

(3) B’flies/block:

 Stage 1: Nbtf = 1

 Stage 2: Nbtf = 1

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

 Stage 3: Nblocks = 1

(3) B’flies/block:

 Stage 1: Nbtf = 1

 Stage 2: Nbtf = 2

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

 Stage 3: Nblocks = 1

(3) B’flies/block:

 Stage 1: Nbtf = 1

 Stage 2: Nbtf = 2

 Stage 3: Nbtf = 1

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

 Stage 3: Nblocks = 1

(3) B’flies/block:

 Stage 1: Nbtf = 1

 Stage 2: Nbtf = 2

 Stage 3: Nbtf = 2

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

 Stage 3: Nblocks = 1

(3) B’flies/block:

 Stage 1: Nbtf = 1

 Stage 2: Nbtf = 2

 Stage 3: Nbtf = 3

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

 Stage 3: Nblocks = 1

(3) B’flies/block:

 Stage 1: Nbtf = 1

 Stage 2: Nbtf = 2

 Stage 3: Nbtf = 4

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1
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FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1

Twiddle Factor Index N/2 = 4

Start Index 0 0 0

Input Index 1 2 4
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FFT Implementation

Twiddle Factor Index N/2 = 4 4/2 = 2

Start Index 0 0 0

Input Index 1 2 4

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1
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FFT Implementation

Twiddle Factor Index N/2 = 4 4/2 = 2 2/2 = 1

Start Index 0 0 0

Input Index 1 2 4

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1
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FFT Implementation

Start Index 0

Input Index 1

Twiddle Factor Index N/2 = 4 4/2 = 2 2/2 = 1

Indicies Used W0 W0

W2

W0

W1

W2

W3

0

2

0

4

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1



FFT DECIMATION IN FREQUENCY

 Similar divide and conquer strategy

 Decimate in frequency domain 

 𝑋 2𝑘 = σ𝑛=0
𝑁−1 𝑥 𝑛 𝑊𝑁

2𝑛𝑘

 𝑋 2𝑘 = σ𝑛=0
𝑁/2−1

𝑥 𝑛 𝑊𝑁/2
𝑛𝑘 +σ𝑛=𝑁/2

𝑁−1 𝑥 𝑛 𝑊𝑁/2
𝑛𝑘

 Divide into first half and second half of sequence

 𝑋 2𝑘 = σ𝑛=0
𝑁/2−1

𝑥 𝑛 𝑊𝑁/2
𝑛𝑘 +σ𝑛=0

𝑁/2−1
𝑥 𝑛 +

𝑁

2
𝑊
𝑁/2

𝑛+
𝑁

2
𝑘

 Simplifying with twiddle properties

 𝑋 2𝑘 = σ𝑛=0
𝑁/2−1

𝑥 𝑛 + 𝑥 𝑛 +
𝑁

2
𝑊𝑁/2

𝑛𝑘

 𝑋 2𝑘 + 1 = σ𝑛=0
𝑁/2−1

𝑊𝑁
𝑛 𝑥 𝑛 − 𝑥 𝑛 +

𝑁

2
𝑊𝑁/2

𝑛𝑘
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FFT DECIMATION IN FREQUENCY STRUCTURE

 Stage structure

 Bit reversal happens at output 
instead of input

 Full structure
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INVERSE FFT

 𝑥 𝑛 =
1

𝑁
σ𝑘=0
𝑁−1𝑋(𝑘)𝑊𝑁

−𝑘𝑛

 Notice this is the DFT with a scale factor and change in 
twiddle sign

 Can compute using the FFT with minor modifications

 𝑥∗ 𝑛 =
1

𝑁
σ𝑘=0
𝑁−1𝑋∗(𝑘)𝑊𝑁

𝑘𝑛

 Conjugate coefficients, compute FFT with scale factor, conjugate result

 For real signals, no final conjugate needed

 Can complex conjugate twiddle factors and use in butterfly 
structure
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FFT EXAMPLE

 Example 5.10

 Sine wave with 𝑓 = 50 Hz

 𝑥 𝑛 = sin
2𝜋𝑓𝑛

𝑓𝑠

 𝑛 = 0,1,… , 127

 𝑓𝑠 = 256Hz

 Frequency resolution of DFT?

 Δ = 𝑓𝑠/𝑁 =
256

128
= 2 Hz

 Location of peak

 50 = 𝑘Δ → 𝑘 =
50

2
= 25
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SPECTRAL LEAKAGE AND RESOLUTION
 Notice that a DFT is like windowing a 

signal to finite length

 Longer window lengths (more samples) the 
closer DFT 𝑋(𝑘) approximates DTFT 𝑋 𝜔

 Convolution relationship

 𝑥𝑁 𝑛 = 𝑤 𝑛 𝑥 𝑛

 𝑋𝑁 𝑘 = 𝑊 𝑘 ∗ 𝑋 𝑘

 Corruption of spectrum due to window 
properties (mainlobe/sidelobe)

 Sidelobes result in spurious peaks in computed 
spectrum known as spectral leakage

 Obviously, want to use smoother windows to minimize 
these effects

 Spectral smearing is the loss in sharpness due to 
convolution which depends on mainlobe width

 Example 5.15

 Two close sinusoids smeared together

 To avoid smearing:

 Frequency separation should be greater than freq resolution

 𝑁 >
2𝜋

Δ𝜔
, 𝑁 > 𝑓𝑠/Δ𝑓
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POWER SPECTRAL DENSITY

 Parseval’s theorem

 𝐸 = σ𝑛=0
𝑁−1 𝑥 𝑛 2 =

1

𝑁
σ𝑘=0
𝑁−1 𝑋 𝑘 2

 𝑋 𝑘 2 - power spectrum or periodogram

 Power spectral density (PSD, or 
power density spectrum or power 
spectrum) is used to measure 
average power over frequencies

 Computed for time-varying signal 
by using a sliding window technique

 Short-time Fourier transform

 Grab 𝑁 samples and compute FFT

 Must have overlap and use windows

 Spectrogram

 Each short FFT is arranged as a column in a 
matrix to give the time-varying properties of 
the signal

 Viewed as an image
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FAST FFT CONVOLUTION

 Linear convolution is multiplication in frequency domain

 Must take FFT of signal and filter, multiply, and iFFT

 Operations in frequency domain can be much faster for large 
filters

 Requires zero-padding because of circular convolution

 Typically, will do block processing

 Segment a signal and process each segment individually 
before recombining 
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