EE482/682: DSP APPLICATIONS CH5: FREQUENCY ANALYSIS AND DFT

OUTLINE

- Fourier Series
- Fourier Transform
- Discrete Time Fourier Transform
- Discrete Fourier Transform
- Fast Fourier Transform
- Butterfly Structure
- Implementation Issues

FOURIER SERIES

- Periodic signals
- $x(t)=x\left(t+T_{0}\right)$
- Periodic signal can be represented as a sum of an infinite number of harmonically-related sinusoids
- $x(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j k \Omega_{0} t}$
- c_{k} - Fourier series coefficients
- Contribution of particular frequency sinusoid
- $\Omega_{0}=2 \pi / T_{0}$ - fundamental frequency
- k - harmonic frequency index
- Coefficients can be obtained from signal
- $c_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j k \Omega_{0} t}$
- Notice c_{0} is the average over a period, the DC component

FOURIER SERIES EXAMPLE

- Example 5.1
- Rectangular pulse train
- $x(t)=\left\{\begin{array}{cc}A & -\tau<t<\tau \\ 0 & \text { else }\end{array}\right.$
- $c_{k}=\frac{A \tau}{T_{0}} \frac{\sin \left(k \Omega_{0} \tau / 2\right)}{k \Omega_{0} \tau / 2}$
- $T=1$;
- $\Omega_{0}=2 \pi * \frac{1}{T}=2 \pi$
- Magnitude spectrum is known as a line spectrum
- Only few specific frequencies represented

FOURIER TRANSFORM

- Generalization of Fourier series to handle non-periodic signals
- Let $T_{0} \rightarrow \infty$
- Spacing between lines in FS go to zero
- $\Omega_{0}=2 \pi / T_{0}$
- Results in a continuous frequency spectrum
- Continuous function
- The number of FS coefficients to create "periodic" function goes to infinity
- Fourier representation of signal
- $x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\Omega) e^{j \Omega t} d \Omega$
- Inverse Fourier transform
- Fourier transform
- $X(\Omega)=\int_{-\infty}^{\infty} x(\mathrm{t}) e^{-j \Omega t} d t$
- Notice that a periodic function has both a FS and FT
- $c_{k}=\frac{1}{T_{0}} X\left(k \Omega_{0}\right)$
- Notice a normalization constant to account for the period

DISCRETE TIME FOURIER TRANSFORM

- Useful theoretical tool for discrete sequences/signals
- DTFT
- $X(\omega)=\sum_{n=-\infty}^{\infty} x(n T) e^{-j \omega n T}$
- Periodic function with period 2π
- Only need to consider a 2π interval $[0,2 \pi]$ or $[-\pi, \pi]$
- Inverse FT
- $x(n T)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) e^{j \omega n T} d \omega$
- Notice this is an integral relationship
- $X(\omega)$ is a continuous function
- Sequence $x(n)$ is infinite length

SAMPLING THEOREM

- Aliasing - signal distortion caused by sampling
- Loss of distinction between different signal frequencies

(a) Spectrum of bandlimited analog signal.
- A bandlimited signal can be recovered from its samples when there is no aliasing
- $f_{s} \geq 2 f_{m}, \quad \Omega_{s} \geq 2 \Omega_{m}$
- f_{s}, Ω_{s} - signal bandwidth
- Copies of analog spectrum are copied at f_{s} intervals
- Smaller sampling frequency compresses spectrum into overlap

(b) Spectrum of discrete-time signal when the
sampling theorem $f_{M} \leq f_{s} / 2$ is satisfied.

(c) Spectrum of discrete-time signal that shows aliasing when the sampling theorem is violated.

DISCRETE FOURIER TRANSFORM

- Numerically computable transform used for practical applications
- Sampled version of DTFT
- DFT definition
- $X(k)=\sum_{n=0}^{N-1} x(n) e^{-j(2 \pi / \mathrm{N}) k n}$
- $k=0,1, \ldots, N-1$: frequency index
- Assumes $x(n)=0$ outside bounds $[0, N-1]$
- Equivalent to taking N samples of DTFT $X(\omega)$ over the range [0, 2π]
- N equally spaced samples at frequencies $\omega_{k}=2 \pi k / N$
- Resolution of DFT is $2 \pi / N$
- Inverse DFT
- $x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j(2 \pi / \mathrm{N}) k n}$

RELATIONSHIPS BETWEEN TRANSFORMS

A bird's eye view of the relationship between
 FT, DTFT, DTFS and DFT

RELATIONSHIPS BETWEEN TRANSFORMS

RELATIONSHIPS BETWEEN TRANSFORMS

A bird's eye view of the relationship between
(

DFT TWIDDLE FACTORS

- Rewrite DFT equation using Euler's
- $X(k)=\sum_{n=0}^{N-1} x(n) e^{-j(2 \pi / \mathrm{N}) k n}$
- $X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}$
- $k=0,1, \ldots, N-1$
- $W_{N}^{k n}=e^{-j(2 \pi / N) k n}=\cos \left(\frac{2 \pi k n}{N}\right)-j \sin \left(\frac{2 \pi k n}{N}\right)$
- IDFT
- $x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j(2 \pi / \mathrm{N}) k n}$
- $x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-k n}$,
- $k=0,1, \ldots, N-1$
- Properties of twiddle factors
- W_{N}^{k} - N roots of unity in clockwise direction on unit circle
- Symmetry
- $W_{N}^{k+N / 2}=-W_{N}^{k}, 0 \leq k \leq \frac{N}{2}-1$
- Periodicity
- $W_{N}^{k+N}=W_{N}^{k}$
- Frequency resolution
- Coefficients equally spaced on unit circle
- $\Delta=f_{s} / N$

DFT PROPERTIES

- Linearity
- $\quad \operatorname{DFT}[a x(n)+b y(n)]=a X(k)+b Y(k)$
- Complex conjugate
- $\quad X(-k)=X^{*}(k)$
- $1 \leq k \leq N-1$
- For $x(n)$ real valued

(a) N is an even number, $M=N / 2$.

Figure 5.2 Complex-conjugate property for N is (a) an even number and (b) an odd number

- Only first $M+1$ coefficients are unique
- Notice the magnitude spectrum is even and phase spectrum is odd
- Z-transform connection
- $X(k)=\left.X(z)\right|_{z=e^{j(2 \pi / N) k}}$
- Obtain DFT coefficients by evaluating z-transform on the unit circle at N equally spaced frequencies $\omega_{k}=2 \pi k / N$
- Circular convolution
- $Y(k)=H(k) X(k)$
- $y(n)=h(n) \otimes x(n)$
- $y(n)=\sum_{m=0}^{N-1} h(m) x\left((n-m)_{\bmod N}\right)$
- Note: both sequences must be padded to same length

FAST FOURIER TRANSFORM

- DFT is computationally expensive
- Requires many complex multiplications and additions
- Complexity $\sim 4 N^{2}$
- Can reduce this time considerably by using the twidle factors
- Complex periodicity limits the number of distinct values
- Some factors have no real or no imaginary parts
- FFT algorithms operate in $N \log _{2} N$ time
- Utilize radix-2 algorithm so $N=2^{m}$ is a power of 2

FFT DECIMATION IN TIME

- Compute smaller DFTs on subsequences of $x(n)$
- $X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}$
- $X(k)=\sum_{m=0}^{N / 2-1} x_{1}(m) W_{N}^{k 2 m}+\sum_{m=0}^{N / 2-1} x_{2}(m) W_{N}^{k(2 m+1)}$
- $x_{1}(m)=g(n)=x(2 m)$ - even samples
- $x_{2}(m)=h(n)=x(2 m+1)-$ odd samples
- Since $W_{N}^{2 m k}=W_{N / 2}^{m k}$
- $X(k)=\sum_{m=0}^{N / 2-1} x_{1}(m) W_{N / 2}^{k m}+W_{N}^{k} \sum_{m=0}^{N / 2-1} x_{2}(m) W_{N / 2}^{k m}$
- $N / 2$-point DFT of even and odd parts of $x(n)$
- $X(k)=G(k)+W_{N}^{k} H(k)$
- Full N sequence is obtained by periodicity of each $N / 2$ DFT

FFT BUTTERFLY STRUCTURE

- Full butterfly (8-point)

Fig. 7-2. An eight-point decimation-in-time FFT algorithm after the first decimation.

- Simplified structure

Figure 5.4 Decomposition of N-point DFT into two $N / 2$-point DFTs, $N=8$

Figure 5.5 Flow graph for butterfly computation

FFT DECIMATION

- Repeated application of even/odd signal split
- Stop at simple 2-point DFT

Figure 5.6 Flow graph illustrating second step of N-point DFT, $N=8$

- Complete 8-point DFT structure

Figure 5.7 Flow graph of two-point DFT

FFT DECIMATION IN TIME IMPLEMENTATION

- Notice arrangement of samples is not in sequence - requires shuffling
- Use bit reversal to figure out pairing of samples in 2-bit DFT

Table 5.1 Example of bit-reversal process, $N=8$ (3-bit)

Input sample index		Bit-reversed sample index	
Decimal	Binary	Binary	Decimal
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

- Input values to DFT block are not needed after calculation
- Enables in-place operation
- Save FFT output in same register as input
- Reduce memory requirements

DFT Algorithm

- The Fourier transform of an analogue signal $\mathbf{x}(\mathrm{t})$ is given by:

$$
x(\omega)=\int_{x}^{+\infty}(t) e^{-j \mu \alpha} d t
$$

The Discrete Fourier Transform (DFT) of a discrete-time signal $\mathrm{x}(\mathrm{nT})$ is given by:

$$
X(k)=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} n k}
$$

- Where:

$$
\begin{gathered}
k=0,1, \ldots N-1 \\
x(n T)=x[n]
\end{gathered}
$$

DFT Algorithm

\triangleleft If we let: $\quad e^{-j \frac{2 \pi}{N}}=W_{N} \quad$ then: $\quad X(k)=\sum_{n=0}^{N-1} x[n] W_{N}^{n k}$

DFT Algorithm

$\mathrm{x}[\mathrm{n}]=$ input
$\mathrm{X}[\mathrm{k}]=$ frequency bins
W = twiddle factors

$$
\begin{aligned}
& \mathrm{X}(0) \quad=\mathrm{x}[0] \mathrm{W}_{\mathrm{N}}{ }^{0}+\mathrm{x}[1] \mathrm{W}_{\mathrm{N}}{ }^{0^{*} 1}+\ldots+\mathrm{x}[\mathrm{~N}-1] \mathrm{W}_{\mathrm{N}} \mathbf{0}^{*}(\mathrm{~N}-1) \\
& \mathrm{X}(1) \quad=\mathrm{x}[0] \mathrm{W}_{\mathrm{N}}{ }^{0}+\mathrm{x}[1] \mathrm{W}_{\mathrm{N}}{ }^{1 * 1}+\ldots+\mathrm{x}[\mathrm{~N}-1] \mathrm{W}_{\mathrm{N}}{ }^{*}{ }^{*}(\mathrm{~N}-1) \\
& X(k) \quad=x[0] W_{N}{ }^{0}+x[1] W_{N}{ }^{k^{*} 1}+\ldots+x[N-1] W_{N}{ }^{k^{*}(N-1)} \\
& \text { : } \\
& X(N-1)=x[0] W_{N}{ }^{0}+x[1] W_{N}{ }^{(N-1) * 1}+\ldots+x[N-1] W_{N}{ }^{(N-1)(N-1)}
\end{aligned}
$$

Note: For \mathbf{N} samples of x we have N frequencies representing the signal.

Performance of the DFT Algorithm

- The DFT requires $\mathbf{N}^{2}(\mathbf{N x N})$ complex multiplications:
- Each X(k) requires N complex multiplications.
- Therefore to evaluate all the values of the DFT (X(0) to $\mathbf{X}(\mathbf{N}-1)$) \mathbf{N}^{2} multiplications are required.
\checkmark The DFT also requires ($\mathbf{N}-1$) ${ }^{*} \mathbf{N}$ complex additions:
- Each X(k) requires N-1 additions.
- Therefore to evaluate all the values of the DFT $(\mathbf{N}-1) * \mathbb{N}$ additions are required.

Performance of the DFT Algorithm

- Can the number of computations required be reduced?

DET \rightarrow ENT

- A large amount of work has been devoted to reducing the computation time of a DFT.
- This has led to efficient algorithms which are known as the Fast Fourier Transform (FFT) algorithms.

DFT \rightarrow FFT

$$
\begin{aligned}
& X(k)=\sum_{n=0}^{N-1} x[n] W_{N}^{n k} ; 0 \leq k \leq N-1 \\
& \mathbf{x}[\mathbf{n}]=\mathbf{x}[\mathbf{0}], \mathbf{x}[\mathbf{1}], \ldots, \mathbf{x}[\mathbf{N}-\mathbf{1}]
\end{aligned}
$$

Lets divide the sequence $x[n]$ into even and odd sequences:

- $x[2 n]=x[0], x[2], \ldots, x[N-2]$
- $x[2 n+1]=x[1], x[3], \ldots, x[N-1]$

DET \rightarrow FRT

- Equation 1 can be rewritten as:

$$
X(k)=\sum_{n=0}^{\frac{N}{2}-1} x[2 n] W_{N}^{2 n k}+\sum_{n=0}^{\frac{N}{2}-1} x[2 n+1] W_{N}^{(2 n+1) k}
$$

- Since:

$$
\begin{aligned}
W_{N}^{2 n k} & =e^{-j \frac{2 \pi}{N} \frac{2}{2} n k}=e^{-j \frac{2 \pi}{N / 2} n k} \\
& =W_{\frac{N}{2}}^{n k}
\end{aligned}
$$

$$
W_{N}^{(2 n+1) k}=W_{N}^{k} \cdot W_{\frac{N}{2}}^{n k}
$$

Then:

$$
\begin{aligned}
X(k) & =\sum_{n=0}^{\frac{N}{2}-1} x[2 n] W_{\frac{N}{2}}^{n k}+W_{N}^{k} \sum_{n=0}^{\frac{N}{2}-1} x[2 n+1] W_{\frac{N}{2}}^{n k} \\
& =Y(k)+W_{N}^{k} Z(k)
\end{aligned}
$$

DET \rightarrow FRT

- The result is that an N -point DFT can be divided into two N/2 point DFT's:

$$
X(k)=\sum_{n=0}^{N-1} x[n] W_{N}^{n k} ; 0 \leq k \leq N-1 \quad \text { N-point DFT }
$$

- Where $\mathbf{Y}(\mathbf{k})$ and $\mathbf{Z}(\mathbf{k})$ are the two $\mathbf{N} / 2$ point DFT's operating on even and odd samples respectively:

$$
\begin{aligned}
X(k) & =\sum_{n=0}^{\frac{N}{2}-1} x_{1}[n] W_{\frac{N}{2}}^{n k}+W_{N}^{k} \sum_{n=0}^{\frac{N}{2}-1} x_{2}[n] W_{\frac{N}{2}}^{n k} \\
& =Y(k)+W_{N}^{k} Z(k)
\end{aligned}
$$

Two N/2point DFTs

- Periodicity and symmetry of W can be exploited to simplify the DF' further:

$$
\begin{gathered}
X(k)=\sum_{n=0}^{\frac{N}{2}-1} x_{1}[n] W_{\frac{N}{2}}^{n k}+W_{N}^{k} \sum_{n=0}^{\frac{N}{2}-1} x_{2}[n] W_{\frac{N}{2}}^{n k} \\
\vdots \\
X\left(k+\frac{N}{2}\right)=\sum_{n=0}^{\frac{N}{2}-1} x_{1}[n] W_{\frac{N}{2}}^{n\left(k+\frac{N}{2}\right)}+W_{N}{ }^{k+\frac{N}{2}} \sum_{n=0}^{\frac{N}{2}-1} x_{2}[n] W_{\frac{N}{2}}^{n\left(k+\frac{N}{2}\right)}
\end{gathered}
$$

Or: $W_{N}^{k+\frac{N}{2}}=e^{-j \frac{2 \pi}{N} k} e^{-j \frac{2 \pi}{N} \frac{N}{2}}=e^{-j \frac{2 \pi}{N} k} e^{-j \pi}=-e^{-j \frac{2 \pi}{N} k}=-W_{N}^{k}$
: Symmetry

And:

$$
W_{\frac{N}{2}}^{k+\frac{N}{2}}=e^{-j \frac{2 \pi}{N / 2} k} e^{-j \frac{2 \pi}{N / 2} \frac{N}{2}}=e^{-j \frac{2 \pi}{N / 2} k}=W_{\frac{N}{2}}^{k}
$$

: Periodicity

DET \rightarrow ENT

Symmetry and periodicity:

$$
\begin{aligned}
& \mathbf{W}_{\mathrm{N}}{ }^{\mathrm{k}+\mathrm{N} / 2}=-\mathbf{W}_{\mathrm{N}}{ }^{\mathrm{k}} \\
& \mathrm{~W}_{\mathrm{N} / 2}{ }^{\mathrm{k}+\mathrm{N} / 2}=\mathrm{W}_{\mathrm{N} / 2}{ }^{\mathrm{k}} \\
& W_{8}{ }^{k+4}=-W_{8}{ }^{k} \\
& \mathbf{W}_{\mathbf{8}}{ }^{\mathbf{k}+8}=\mathbf{W}_{\mathbf{8}}{ }^{\mathbf{k}}
\end{aligned}
$$

$\mathrm{DFT} \rightarrow \mathrm{FFT}$

Finally by exploiting the symmetry and periodicity, Equation 3 can be written as:

$$
\begin{aligned}
& =Y(k)-W_{N}^{k} Z(k)
\end{aligned}
$$

DFT \rightarrow FNT

$$
\begin{aligned}
X(k)=Y(k)+W_{N}^{k} Z(k) ; & k=0, \ldots\left(\frac{N}{2}-1\right) \\
X\left(k+\frac{N}{2}\right) & =Y(k)-W_{N}^{k} Z(k) ;
\end{aligned} \quad k=0, \ldots\left(\frac{N}{2}-1\right)
$$

- $\mathrm{Y}(\mathrm{k})$ and $\mathrm{W}_{\mathrm{N}} \mathrm{Z}(\mathrm{k})$ only need to be calculated once and used for both equations.
- Note: the calculation is reduced from 0 to N-1 to 0 to (N/2-1).

DFT \rightarrow FRT

$$
\begin{aligned}
X(k) & =Y(k)+W_{N}^{k} Z(k) ;
\end{aligned} \quad k=0, \ldots\left(\frac{N}{2}-1\right), ~\left(k+\frac{N}{2}\right)=Y(k)-W_{N}^{k} Z(k) ; \quad k=0, \ldots\left(\frac{N}{2}-1\right)
$$

- $Y(k)$ and $Z(k)$ can also be divided into N/4 point DF'Is using the same process shown above:

$$
\begin{aligned}
Y(k) & =U(k)+W_{\frac{N}{2}}^{k} V(k) & Z(k) & =P(k)+W_{\frac{N}{2}}^{k} Q(k) \\
Y\left(k+\frac{N}{4}\right) & =U(k)-W_{\frac{N}{2}}^{k} V(k) & Z\left(k+\frac{N}{4}\right) & =P(k)-W_{\frac{N}{2}}^{k} Q(k)
\end{aligned}
$$

- The process continues until we reach 2 point DF'Ts.

DFT \rightarrow FRT

Illustration of the first decimation in time FRT.

FRT Implementation

- To efficiently implement the FFT algorithm a few observations are made:
- Each stage has the same number of butterfilies (number of butterfilies $=\mathbf{N} / 2, \mathrm{~N}$ is number of points).
- The number of DFT groups per stage is equal to ($\mathrm{N} / \mathrm{Z}^{\text {stage }}$).
- The difiference between the upper and lower leg is equal to $2^{\text {stage-1. }}$
- The number of butterfilies in the group is equal to $2^{\text {stage-1. }}$

FFT Implementation

- Decimation in time FFT:
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {stage-1 }}$

FFT Implementation

Example: 8 point FFT
(1) Number of stages:

- Decimation in time FFT:
- Number of stages $=\log _{2} \mathrm{~N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterfilies/block $=2^{\text {stage-1 }}$

FFT Implementation

Stage 1

Example: 8 point FF'T
(1) Number of stages:

$$
\text { - } \mathbf{N}_{\text {stages }}=1
$$

- Decimation in time FFT:

- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterfilies/block $=2^{\text {stage-1 }}$

FFT Implementation

Stage 1

Stage 2

Example: 8 point FFT
(1) Number of stages:

$$
\text { - } \mathbf{N}_{\text {stages }}=2
$$

- Decimation in time FFT:
- Number of stages $=\log _{2} \mathrm{~N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterfilies/block $=2^{\text {stage-1 }}$

Stage 1

Stage 2

Stage 3

Example: 8 point FNT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=\mathbf{3}$
- Decimation in time FFT:
- Number of stages $=\log _{2} \mathrm{~N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterfilies/block $=2^{\text {stage-1 }}$

FRT Implementation

Stage 1

Stage 2

Stage 3

Example: 8 point FITT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=\mathbf{3}$
(2) Blocks/stage:
- Stage 1:
- Decimation in time FFT:
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathrm{N} / 2^{\text {stage }}$
- Number of butterfilies/block $=2^{\text {stage-1 }}$

FRT Implementation

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=\mathbf{3}$
(2) Blocks/stage:
- Stage 1: $\mathbf{N}_{\text {blocks }}=1$
- Decimation in time FNT:
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterfilies/block $=2^{\text {stage-1 }}$

FRT Implementation

FRT Implementation

FRT Implementation

FRT Implementation

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=3$
(2) Blocks/stage:
- Stage 1: $\mathbf{N}_{\text {blocks }}=4$
- Stage 2: $\mathbf{N}_{\text {blocks }}=1$
- Decimation in time FNT:
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathrm{N} / 2^{\text {stage }}$
- Number of butterfilies/block $=2^{\text {stage-1 }}$

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=\mathbf{3}$
(2) Blocks/stage:
- Stage 1: $\mathbf{N}_{\text {blocks }}=4$
- Stage 2: $\mathbf{N}_{\text {blocks }}=2$
- Decimation in time FFT:
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=N / 2^{\text {stage }}$
- Number of butterfilies/block $=2^{\text {stage-1 }}$

FRT Implementation

Stage 1
Stage 2

Stage 3

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=3$
(2) Blocks/stage:
- Stage 1: $\mathbf{N}_{\text {blocks }}=4$
- Stage 2: $\mathbf{N}_{\text {blocks }}=2$
- Stage 3: $\mathbf{N}_{\text {blocks }}=1$
- Decimation in time FFT:
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=N / 2^{\text {stage }}$
- Number of butterfilies/block $=2^{\text {stage-1 }}$

FRT Implementation

Stage 1

Stage 2

Stage 3

Example: 8 point FIFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=\mathbf{3}$
(2) Blocks/stage:
- Stage 1: $\mathbf{N}_{\text {blocks }}=4$
- Stage 2: $\mathbf{N}_{\text {blocks }}=2$
- Stage 3: $\mathbf{N}_{\text {blocks }}=1$
(3) B’flies/block:
- Stage 1:
- Decimation in time FFT:
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterfilies/block $=2^{\text {stage-1 }}$

FRT Implementation

Stage 1

Stage 2

Stage 3

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=\mathbf{3}$
(2) Blocks/stage:
- Stage 1: $\mathbf{N}_{\text {blocks }}=4$
- Stage 2: $\mathbf{N}_{\text {blocks }}=2$
- Stage 3: $\mathbf{N}_{\text {blocks }}=1$
(3) B’flies/block:
- Stage 1: $\mathbf{N}_{\mathrm{bff}}=1$
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterfilies/block $=2^{\text {stage-1 }}$

FRT Implementation

Stage 1

Stage 2

Stage 3

Decimation in time FFT:

Example: 8 point FITT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=\mathbf{3}$
(2) Blocks/stage:
- Stage 1: $\mathbf{N}_{\text {blocks }}=4$
- Stage 2: $\mathbf{N}_{\text {blocks }}=2$
- Stage 3: $\mathbf{N}_{\text {blocks }}=1$
(3) B’flies/block:
- Stage 1: $\mathbf{N}_{\mathrm{bff}}=1$
- Stage 2: $\mathbf{N}_{\mathrm{bff}}=1$
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterfilies/block $=2^{\text {stage-1 }}$

FRT Implementation

Stage 1

Stage 2

Stage 3

Example: 8 point FFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=\mathbf{3}$
(2) Blocks/stage:
- Stage 1: $\mathbf{N}_{\text {blocks }}=4$
- Stage 2: $\mathbf{N}_{\text {blocks }}=2$
- Stage 3: $\mathbf{N}_{\text {blocks }}=1$
(3) B’flies/block:
- Stage 1: $\mathbf{N}_{\mathrm{bff}}=1$
- Stage 2: $\mathbf{N}_{\mathrm{bff}}=2$
- Number of stages $=\log _{2} \mathbf{N}$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {stage-1 }}$

FRT Implementation

Stage 2

Stage 3

Decimation in time FFT:

- Number of stages $=\log _{2} \mathbf{N}$

Example: 8 point FIFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=\mathbf{3}$
(2) Blocks/stage:
- Stage 1: $\mathbf{N}_{\text {blocks }}=4$
- Stage 2: $\mathbf{N}_{\text {blocks }}=2$
- Stage 3: $\mathbf{N}_{\text {blocks }}=1$
(3) B’flies/block:
- Stage 1: $\mathbf{N}_{\mathrm{bff}}=1$
- Stage $2: \mathbf{N}_{\mathrm{btf}}=2$
- Stage 3: $\mathbf{N}_{\mathrm{bff}}=1$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterflies/block = $2^{\text {stage-1 }}$

FRT Implementation

Stage 2

Stage 3

Decimation in time FFT:

- Number of stages $=\log _{2} \mathbf{N}$

Example: 8 point FIFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=\mathbf{3}$
(2) Blocks/stage:
- Stage 1: $\mathbf{N}_{\text {blocks }}=4$
- Stage 2: $\mathbf{N}_{\text {blocks }}=2$
- Stage 3: $\mathbf{N}_{\text {blocks }}=1$
(3) B’flies/block:
- Stage 1: $\mathbf{N}_{\mathrm{bff}}=1$
- Stage $2: \mathrm{N}_{\mathrm{btf}}=2$
- Stage 3: $\mathbf{N}_{\mathrm{bff}}=2$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterfilies/block $=2^{\text {stage-1 }}$

FRT Implementation

Stage 2

Stage 3

Decimation in time FFT:

- Number of stages $=\log _{2} \mathbf{N}$

Example: 8 point FIFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=\mathbf{3}$
(2) Blocks/stage:
- Stage 1: $\mathbf{N}_{\text {blocks }}=4$
- Stage 2: $\mathbf{N}_{\text {blocks }}=2$
- Stage 3: $\mathbf{N}_{\text {blocks }}=1$
(3) B’flies/block:
- Stage 1: $\mathbf{N}_{\mathrm{bff}}=1$
- Stage $2: \mathbf{N}_{\mathrm{btf}}=2$
- Stage 3: $\mathbf{N}_{\mathrm{bff}}=3$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterfilies/block $=2^{\text {stage-1 }}$

FRT Implementation

Stage 2

Stage 3

Decimation in time FFT:

- Number of stages $=\log _{2} \mathbf{N}$

Example: 8 point FIFT
(1) Number of stages:

- $\mathbf{N}_{\text {stages }}=\mathbf{3}$
(2) Blocks/stage:
- Stage 1: $\mathbf{N}_{\text {blocks }}=4$
- Stage 2: $\mathbf{N}_{\text {blocks }}=2$
- Stage 3: $\mathbf{N}_{\text {blocks }}=1$
(3) B’flies/block:
- Stage 1: $\mathbf{N}_{\mathrm{bff}}=1$
- Stage $2: \mathbf{N}_{\mathrm{btf}}=2$
- Stage 3: $\mathbf{N}_{\mathrm{bff}}=4$
- Number of blocks/stage $=\mathbf{N} / 2^{\text {stage }}$
- Number of butterfilies/block $=2^{\text {stage-1 }}$

FRT Implementation

FRT Implementation

FFT Implementation

FRT Implementation

FFT DECIMATION IN FREQUENCY

- Similar divide and conquer strategy
- Decimate in frequency domain
- $X(2 k)=\sum_{n=0}^{N-1} x(n) W_{N}^{2 n k}$
- $X(2 k)=\sum_{n=0}^{N / 2-1} x(n) W_{N / 2}^{n k}+\sum_{n=N / 2}^{N-1} x(n) W_{N / 2}^{n k}$
- Divide into first half and second half of sequence
- $X(2 k)=\sum_{n=0}^{N / 2-1} x(n) W_{N / 2}^{n k}+\sum_{n=0}^{N / 2-1} x\left(n+\frac{N}{2}\right) W_{N / 2}^{\left(n+\frac{N}{2}\right) k}$
- Simplifying with twiddle properties
- $X(2 k)=\sum_{n=0}^{N / 2-1}\left[x(n)+x\left(n+\frac{N}{2}\right)\right] W_{N / 2}^{n k}$
- $X(2 k+1)=\sum_{n=0}^{N / 2-1} W_{N}^{n}\left[x(n)-x\left(n+\frac{N}{2}\right)\right] W_{N / 2}^{n k}$

FFT DECIMATION IN FREQUENCY STRUCTURE

- Stage structure

Figure 5.8 Decomposition of an N-point DFT into two $N / 2$-point DFTs

- Bit reversal happens at output instead of input
- Full structure

INVERSE FFT

- $x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) W_{N}^{-k n}$
- Notice this is the DFT with a scale factor and change in twiddle sign
- Can compute using the FFT with minor modifications
- $x^{*}(n)=\frac{1}{N} \sum_{k=0}^{N-1} X^{*}(k) W_{N}^{k n}$
- Conjugate coefficients, compute FFT with scale factor, conjugate result
- For real signals, no final conjugate needed
- Can complex conjugate twiddle factors and use in butterfly structure

FFT EXAMPLE

- Example 5.10
- Sine wave with $f=50 \mathrm{~Hz}$
- $x(n)=\sin \left(\frac{2 \pi f n}{f_{s}}\right)$
- $n=0,1, \ldots, 127$
- $f_{s}=256 \mathrm{~Hz}$
- Frequency resolution of DFT?
- $\Delta=f_{s} / N=\frac{256}{128}=2 \mathrm{~Hz}$
- Location of peak

- $50=k \Delta \rightarrow k=\frac{50}{2}=25$

Reconstruction error

SPECTRAL LEAKAGE AND RESOLUTION

- Notice that a DFT is like windowing a signal to finite length
- Longer window lengths (more samples) the closer DFT $X(k)$ approximates DTFT $X(\omega)$
- Convolution relationship
- $\quad x_{N}(n)=w(n) x(n)$
- $\quad X_{N}(k)=W(k) * X(k)$
- Corruption of spectrum due to window properties (mainlobe/sidelobe)
- Sidelobes result in spurious peaks in computed spectrum known as spectral leakage
- Obviously, want to use smoother windows to minimize these effects
- Spectral smearing is the loss in sharpness due to convolution which depends on mainlobe width
- Example 5.15
- Two close sinusoids smeared together

- To avoid smearing:
- Frequency separation should be greater than freq resolution
- $\quad N>\frac{2 \pi}{\Delta \omega}, \quad N>f_{s} / \Delta f$

POWER SPECTRAL DENSITY

- Parseval's theorem
- $E=\sum_{n=0}^{N-1}|x(n)|^{2}=\frac{1}{N} \sum_{k=0}^{N-1}|X(k)|^{2}$
- $|X(k)|^{2}$ - power spectrum or periodogram
- Power spectral density (PSD, or power density spectrum or power spectrum) is used to measure average power over frequencies
- Computed for time-varying signal by using a sliding window technique
- Short-time Fourier transform
- Grab N samples and compute FFT
- Must have overlap and use windows
- Spectrogram
- Each short FFT is arranged as a column in a matrix to give the time-varying properties of the signal
- Viewed as an image

FAST FFT CONVOLUTION

- Linear convolution is multiplication in frequency domain
- Must take FFT of signal and filter, multiply, and iFFT
- Operations in frequency domain can be much faster for large filters
- Requires zero-padding because of circular convolution
- Typically, will do block processing
- Segment a signal and process each segment individually before recombining

