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OUTLINE

Fourier Series

Fourier Transform

Discrete Time Fourier Transform

Discrete Fourier Transform

Fast Fourier Transform

Butterfly Structure

 Implementation Issues
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FOURIER SERIES

 Periodic signals

 𝑥 𝑡 = 𝑥(𝑡 + 𝑇0)

 Periodic signal can be represented as a sum of an infinite number of 
harmonically-related sinusoids

 𝑥 𝑡 = σ𝑘=−∞
∞ 𝑐𝑘𝑒

𝑗𝑘Ω0𝑡

 𝑐𝑘 - Fourier series coefficients

 Contribution of particular frequency sinusoid

 Ω0 = 2𝜋/𝑇0 - fundamental frequency

 𝑘 – harmonic frequency index

 Coefficients can be obtained from signal

 𝑐𝑘 =
1

𝑇0
0׬
𝑇0 𝑥 𝑡 𝑒

−𝑗𝑘Ω0𝑡

 Notice 𝑐0 is the average over a period, the DC component
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 Example 5.1

 Rectangular pulse train

 𝑥 𝑡 = ቊ
𝐴 −𝜏 < 𝑡 < 𝜏
0 𝑒𝑙𝑠𝑒

 𝑐𝑘 =
𝐴𝜏

𝑇0

sin 𝑘Ω0𝜏/2

𝑘Ω0𝜏/2

 𝑇 = 1;

 Ω0 = 2𝜋 ∗
1

𝑇
= 2π

 Magnitude spectrum is known as a line 
spectrum

 Only few specific frequencies represented
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FOURIER SERIES EXAMPLE
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FOURIER TRANSFORM

 Generalization of Fourier series to 
handle non-periodic signals

 Let 𝑇0 → ∞

 Spacing between lines in FS go to 
zero

 Ω0 = 2𝜋/𝑇0

 Results in a continuous frequency 
spectrum

 Continuous function

 The number of FS coefficients to 
create “periodic” function goes to 
infinity

 Fourier representation of signal

 𝑥 𝑡 =
1

2𝜋
∞−׬
∞
𝑋 Ω 𝑒𝑗Ω𝑡𝑑Ω

 Inverse Fourier transform

 Fourier transform

 𝑋 Ω = ∞−׬
∞
𝑥 t 𝑒−𝑗Ω𝑡𝑑𝑡

 Notice that a periodic function has 
both a FS and FT

 𝑐𝑘 =
1

𝑇0
𝑋(𝑘Ω0)

 Notice a normalization constant to 
account for the period
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DISCRETE TIME FOURIER TRANSFORM

 Useful theoretical tool for discrete sequences/signals

 DTFT

 𝑋 𝜔 = σ𝑛=−∞
∞ 𝑥 𝑛𝑇 𝑒−𝑗𝜔𝑛𝑇

 Periodic function with period 2𝜋

 Only need to consider a 2𝜋 interval 0,2𝜋 or [−𝜋, 𝜋]

 Inverse FT

 𝑥 𝑛𝑇 =
1

2𝜋
׬
−𝜋

𝜋
𝑋 𝜔 𝑒𝑗𝜔𝑛𝑇 𝑑𝜔

 Notice this is an integral relationship

 𝑋 𝜔 is a continuous function 

 Sequence 𝑥(𝑛) is infinite length
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 Aliasing – signal distortion caused 
by sampling

 Loss of distinction between different 
signal frequencies

 A bandlimited signal can be 
recovered from its samples when 
there is no aliasing

 𝑓𝑠 ≥ 2𝑓𝑚, Ω𝑠 ≥ 2Ω𝑚
 𝑓𝑠, Ω𝑠 - signal bandwidth

 Copies of analog spectrum are 
copied at 𝑓𝑠 intervals

 Smaller sampling frequency compresses 
spectrum into overlap
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DISCRETE FOURIER TRANSFORM

 Numerically computable transform used for practical applications

 Sampled version of DTFT

 DFT definition

 𝑋 𝑘 = σ𝑛=0
𝑁−1 𝑥 𝑛 𝑒−𝑗 2𝜋/N 𝑘𝑛

 𝑘 = 0, 1, … , 𝑁 − 1 : frequency index

 Assumes 𝑥 𝑛 = 0 outside bounds [0, 𝑁 − 1]

 Equivalent to taking 𝑁 samples of DTFT 𝑋(𝜔) over the range [0, 2𝜋]

 𝑁 equally spaced samples at frequencies 𝜔𝑘 = 2𝜋𝑘/𝑁

 Resolution of DFT is 2𝜋/𝑁

 Inverse DFT

 𝑥 𝑛 =
1

𝑁
σ𝑘=0
𝑁−1𝑋 𝑘 𝑒𝑗 2𝜋/N 𝑘𝑛
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RELATIONSHIPS BETWEEN TRANSFORMS
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RELATIONSHIPS BETWEEN TRANSFORMS
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RELATIONSHIPS BETWEEN TRANSFORMS
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DFT TWIDDLE FACTORS
 Rewrite DFT equation using Euler’s

 𝑋 𝑘 = σ𝑛=0
𝑁−1 𝑥 𝑛 𝑒−𝑗 2𝜋/N 𝑘𝑛

 𝑋 𝑘 = σ𝑛=0
𝑁−1 𝑥(𝑛)𝑊𝑁

𝑘𝑛

 𝑘 = 0,1,… ,𝑁 − 1

 𝑊𝑁
𝑘𝑛 = 𝑒−𝑗 2𝜋/𝑁 𝑘𝑛 = cos

2𝜋𝑘𝑛

𝑁
− 𝑗 sin

2𝜋𝑘𝑛

𝑁

 IDFT

 𝑥 𝑛 =
1

𝑁
σ𝑘=0
𝑁−1𝑋 𝑘 𝑒𝑗 2𝜋/N 𝑘𝑛

 𝑥 𝑛 =
1

𝑁
σ𝑘=0
𝑁−1𝑋(𝑘)𝑊𝑁

−𝑘𝑛,

 𝑘 = 0,1,… ,𝑁 − 1

 Properties of twiddle factors

 𝑊𝑁
𝑘 - N roots of unity in clockwise 

direction on unit circle 

 Symmetry 

 𝑊𝑁
𝑘+𝑁/2

= −𝑊𝑁
𝑘 , 0 ≤ 𝑘 ≤

𝑁

2
− 1

 Periodicity 

 𝑊𝑁
𝑘+𝑁 = 𝑊𝑁

𝑘

 Frequency resolution

 Coefficients equally spaced on unit 
circle

 Δ = 𝑓𝑠/𝑁
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DFT PROPERTIES
 Linearity

 𝐷𝐹𝑇 𝑎𝑥 𝑛 + 𝑏𝑦 𝑛 = 𝑎𝑋 𝑘 + 𝑏𝑌 𝑘

 Complex conjugate

 𝑋 −𝑘 = 𝑋∗(𝑘)

 1 ≤ 𝑘 ≤ 𝑁 − 1

 For 𝑥 𝑛 real valued

 Only first 𝑀 + 1 coefficients are unique

 Notice the magnitude spectrum is even and phase spectrum is odd

 Z-transform connection

 𝑋 𝑘 = 𝑋 𝑧 ȁ
𝑧=𝑒𝑗 2𝜋/𝑁 𝑘

 Obtain DFT coefficients by 
evaluating z-transform on the unit 
circle at N equally spaced frequencies 
𝜔𝑘 = 2𝜋𝑘/𝑁

 Circular convolution

 𝑌 𝑘 = 𝐻 𝑘 𝑋(𝑘)

 𝑦 𝑛 = ℎ 𝑛 ⨂𝑥(𝑛)

 𝑦 𝑛 = σ𝑚=0
𝑁−1 ℎ 𝑚 𝑥( 𝑛 − 𝑚 𝑚𝑜𝑑 𝑁)

 Note: both sequences must be padded to 
same length
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FAST FOURIER TRANSFORM

 DFT is computationally expensive

 Requires many complex multiplications and additions

 Complexity ~4𝑁2

 Can reduce this time considerably by using the twidle
factors

 Complex periodicity limits the number of distinct values

 Some factors have no real or no imaginary parts

 FFT algorithms operate in 𝑁 log2𝑁 time

 Utilize radix-2 algorithm so 𝑁 = 2𝑚 is a power of 2
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FFT DECIMATION IN TIME

 Compute smaller DFTs on subsequences of 𝑥 𝑛

 𝑋 𝑘 = σ𝑛=0
𝑁−1𝑥(𝑛)𝑊𝑁

𝑘𝑛

 𝑋 𝑘 = σ𝑚=0
𝑁/2−1

𝑥1(𝑚)𝑊𝑁
𝑘2𝑚 + σ𝑚=0

𝑁/2−1
𝑥2(𝑚)𝑊𝑁

𝑘(2𝑚+1)

 𝑥1 𝑚 = 𝑔(𝑛) = 𝑥 2𝑚 - even samples 

 𝑥2 𝑚 = ℎ 𝑛 = 𝑥(2𝑚 + 1) – odd samples 

 Since 𝑊𝑁
2𝑚𝑘 = 𝑊𝑁/2

𝑚𝑘

 𝑋 𝑘 = σ𝑚=0
𝑁/2−1

𝑥1(𝑚)𝑊𝑁/2
𝑘𝑚 +𝑊𝑁

𝑘 σ𝑚=0
𝑁/2−1

𝑥2(𝑚)𝑊𝑁/2
𝑘𝑚

 𝑁/2-point DFT of even and odd parts of 𝑥(𝑛)

 𝑋 𝑘 = 𝐺 𝑘 +𝑊𝑁
𝑘𝐻(𝑘)

 Full 𝑁 sequence is obtained by periodicity of each 𝑁/2 DFT
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FFT BUTTERFLY STRUCTURE

 Full butterfly (8-point)  Simplified structure
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FFT DECIMATION

 Repeated application of 
even/odd signal split 

 Stop at simple 2-point DFT

 Complete 8-point DFT 
structure
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FFT DECIMATION IN TIME IMPLEMENTATION

 Notice arrangement of samples is not in sequence – requires shuffling

 Use bit reversal to figure out pairing of samples in 2-bit DFT

 Input values to DFT block are not needed after calculation

 Enables in-place operation

 Save FFT output in same register as input

 Reduce memory requirements
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DFT Algorithm

◆ The Fourier transform of an analogue 
signal x(t) is given by:

( ) ( )
+

−

−= dtetxX tj

◆ The Discrete Fourier Transform (DFT) of 
a discrete-time signal x(nT) is given by:

 Where:

( )  
−

=

−

=
1

0

2N

n

nk
N

j

enxkX


( )  nxnTx

Nk

=

−= 1,1,0 
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◆ If we let:
N

N
j

We =
−

2

then: ( )  
−

=

=
1

0

N

n

nk

NWnxkX
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DFT Algorithm

( )  
−

=

=
1

0

N

n

nk

NWnxkX

X(0) = x[0]WN
0 + x[1]WN

0*1 +…+ x[N-1]WN
0*(N-1)

X(1) = x[0]WN
0 + x[1]WN

1*1 +…+ x[N-1]WN
1*(N-1)

:

X(k) = x[0]WN
0 + x[1]WN

k*1 +…+ x[N-1]WN
k*(N-1)

:

X(N-1) = x[0]WN
0 + x[1]WN

(N-1)*1 +…+ x[N-1]WN
(N-1)(N-1)

Note: For N samples of x we have N frequencies 
representing the signal.

x[n] = input

X[k] = frequency bins

W = twiddle factors
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Performance of the DFT Algorithm

◆ The DFT requires N2 (NxN) complex 
multiplications: 

 Each X(k) requires N complex 
multiplications.

 Therefore to evaluate all the values of the 
DFT ( X(0) to X(N-1) ) N2 multiplications are 
required.

◆ The DFT also requires (N-1)*N complex 
additions:

 Each X(k) requires N-1 additions.

 Therefore to evaluate all the values of the 
DFT (N-1)*N additions are required.
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Performance of the DFT Algorithm
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◆ Can the number of computations required 
be reduced?
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DFT → FFT

◆ A large amount of work has been devoted 
to reducing the computation time of a 
DFT.

◆ This has led to efficient algorithms which 
are known as the Fast Fourier Transform 
(FFT) algorithms.
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DFT → FFT

x[n] = x[0], x[1], …, x[N-1]

( )   10   ;
1

0

−=
−

=

NkWnxkX
N

n

nk

N [1]

◆ Lets divide the sequence x[n] into even 
and odd sequences:

 x[2n] = x[0], x[2], …, x[N-2]

 x[2n+1] = x[1], x[3], …, x[N-1]
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DFT → FFT

[2]

◆ Equation 1 can be rewritten as:

◆ Since:

( ) nk

N

k

N

kn

N WWW
2

12 =+

( )    

( ) ( )kZWkY

WnxWWnxkX

k
N

N

n

nk
N

k
N

N

n

nk
N

+=

++= 
−

=

−

=

1
2

0 2

1
2

0 2

122

◆ Then:
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( )    

( ) ( )kZWkY

WnxWWnxkX

k
N

N

n

nk
N

k
N

N

n

nk
N

+=

+= 
−

=

−

=

1
2

0 2

2

1
2

0 2

1

DFT → FFT

◆ The result is that an N-point DFT can be 
divided into two N/2 point DFT’s:

( )   10   ;
1

0

−=
−

=

NkWnxkX
N

n

nk

N N-point DFT

◆ Where Y(k) and Z(k) are the two N/2 
point DFTs operating on even and odd 
samples respectively:

Two N/2-
point DFTs
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DFT → FFT

◆ Periodicity and symmetry of W can be 
exploited to simplify the DFT further:

Or:

And:

k
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k
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[3]

: Symmetry

: Periodicity
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DFT → FFT

◆ Symmetry and periodicity:

W8
0 = W8

8
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   
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DFT → FFT

◆ Finally by exploiting the symmetry and 
periodicity, Equation 3 can be written as:

[4]
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( ) ( ) ( )

( ) ( ) 

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


−=−=




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
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−=+=

1
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2

1
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,0   ;

N
kkZWkY

N
kX

N
kkZWkYkX

k

N

k

N





DFT → FFT

◆ Y(k) and WN
k Z(k) only need to be 

calculated once and used for both 
equations.

◆ Note: the calculation is reduced from 0 to 
N-1 to 0 to (N/2 - 1).
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DFT → FFT

◆ Y(k) and Z(k) can also be divided into N/4 
point DFTs using the same process shown 
above:

( ) ( ) ( )

( ) ( )kVWkU
N

kY

kVWkUkY

k

N

k

N

2

2

4
−=





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
+

+= ( ) ( ) ( )

( ) ( )kQWkP
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k

N

k

N

2

2

4
−=








+

+=

◆ The process continues until we reach 2 
point DFTs.

( ) ( ) ( )

( ) ( ) 







−=−=


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2
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2

1
2
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N
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N
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N
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N

k

N
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DFT → FFT

◆ Illustration of the first decimation in time 
FFT.

y[0]

y[1]

y[2]

y[N-2]

N/2 point 
DFT

x[0]
x[2]

x[4]

x[N-2]

N/2 point 
DFT

x[1]
x[3]

x[5]

x[N-1]

z[0]

z[1]

z[2]

z[N/2-1]

X[N/2] = y[0]-W0z[0]

-1

X[0] = y[0]+W0z[0]

W0 X[N/2+1] = y[1]-W1z[1]

-1

X[1] = y[1]+W1z[1]

W1
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FFT Implementation

◆ To efficiently implement the FFT 
algorithm a few observations are made:

 Each stage has the same number of 
butterflies (number of butterflies = N/2, N is 
number of points).

 The number of DFT groups per stage is equal 
to (N/2stage).

 The difference between the upper and lower 
leg is equal to 2stage-1.

 The number of butterflies in the group is 
equal to 2stage-1.
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FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Example: 8 point FFT
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FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Example: 8 point FFT

(1) Number of stages:
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FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Example: 8 point FFT

(1) Number of stages:

 Nstages = 1

Stage 1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 2

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2Stage 1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1:

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 1

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1

Block 1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 2

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1

Block 1

Block 2
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 3

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1

Block 1

Block 2

Block 3
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1

Block 1

Block 2

Block 3

Block 4
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 1

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1

Block 1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1

Block 1

Block 2
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

 Stage 3: Nblocks = 1

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1

Block 1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

 Stage 3: Nblocks = 1

(3) B’flies/block:

 Stage 1:

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1

Stage 2 Stage 3Stage 1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

 Stage 3: Nblocks = 1

(3) B’flies/block:

 Stage 1: Nbtf = 1

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

 Stage 3: Nblocks = 1

(3) B’flies/block:

 Stage 1: Nbtf = 1

 Stage 2: Nbtf = 1

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

 Stage 3: Nblocks = 1

(3) B’flies/block:

 Stage 1: Nbtf = 1

 Stage 2: Nbtf = 2

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

 Stage 3: Nblocks = 1

(3) B’flies/block:

 Stage 1: Nbtf = 1

 Stage 2: Nbtf = 2

 Stage 3: Nbtf = 1

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

 Stage 3: Nblocks = 1

(3) B’flies/block:

 Stage 1: Nbtf = 1

 Stage 2: Nbtf = 2

 Stage 3: Nbtf = 2

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

 Stage 3: Nblocks = 1

(3) B’flies/block:

 Stage 1: Nbtf = 1

 Stage 2: Nbtf = 2

 Stage 3: Nbtf = 3

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1
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Example: 8 point FFT

(1) Number of stages:

 Nstages = 3

(2) Blocks/stage:

 Stage 1: Nblocks = 4

 Stage 2: Nblocks = 2

 Stage 3: Nblocks = 1

(3) B’flies/block:

 Stage 1: Nbtf = 1

 Stage 2: Nbtf = 2

 Stage 3: Nbtf = 4

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1

◆ Decimation in time FFT:

 Number of stages = log2N

 Number of blocks/stage = N/2stage

 Number of butterflies/block = 2stage-1



Dr. Naim Dahnoun, Bristol University,  (c) Texas Instruments 2004Chapter 19, Slide 57

FFT Implementation

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1

Twiddle Factor Index N/2 = 4

Start Index 0 0 0

Input Index 1 2 4
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FFT Implementation

Twiddle Factor Index N/2 = 4 4/2 = 2

Start Index 0 0 0

Input Index 1 2 4

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1
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FFT Implementation

Twiddle Factor Index N/2 = 4 4/2 = 2 2/2 = 1

Start Index 0 0 0

Input Index 1 2 4

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1
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FFT Implementation

Start Index 0

Input Index 1

Twiddle Factor Index N/2 = 4 4/2 = 2 2/2 = 1

Indicies Used W0 W0

W2

W0

W1

W2

W3

0

2

0

4

W0 -1

W0 -1

W0 -1

W0 -1

W2 -1

W0

-1W0

W2 -1

-1W0

W1 -1

W0

W3 -1

-1W2

-1

Stage 2 Stage 3Stage 1



FFT DECIMATION IN FREQUENCY

 Similar divide and conquer strategy

 Decimate in frequency domain 

 𝑋 2𝑘 = σ𝑛=0
𝑁−1 𝑥 𝑛 𝑊𝑁

2𝑛𝑘

 𝑋 2𝑘 = σ𝑛=0
𝑁/2−1

𝑥 𝑛 𝑊𝑁/2
𝑛𝑘 +σ𝑛=𝑁/2

𝑁−1 𝑥 𝑛 𝑊𝑁/2
𝑛𝑘

 Divide into first half and second half of sequence

 𝑋 2𝑘 = σ𝑛=0
𝑁/2−1

𝑥 𝑛 𝑊𝑁/2
𝑛𝑘 +σ𝑛=0

𝑁/2−1
𝑥 𝑛 +

𝑁

2
𝑊
𝑁/2

𝑛+
𝑁

2
𝑘

 Simplifying with twiddle properties

 𝑋 2𝑘 = σ𝑛=0
𝑁/2−1

𝑥 𝑛 + 𝑥 𝑛 +
𝑁

2
𝑊𝑁/2

𝑛𝑘

 𝑋 2𝑘 + 1 = σ𝑛=0
𝑁/2−1

𝑊𝑁
𝑛 𝑥 𝑛 − 𝑥 𝑛 +

𝑁

2
𝑊𝑁/2

𝑛𝑘

61



FFT DECIMATION IN FREQUENCY STRUCTURE

 Stage structure

 Bit reversal happens at output 
instead of input

 Full structure

62



INVERSE FFT

 𝑥 𝑛 =
1

𝑁
σ𝑘=0
𝑁−1𝑋(𝑘)𝑊𝑁

−𝑘𝑛

 Notice this is the DFT with a scale factor and change in 
twiddle sign

 Can compute using the FFT with minor modifications

 𝑥∗ 𝑛 =
1

𝑁
σ𝑘=0
𝑁−1𝑋∗(𝑘)𝑊𝑁

𝑘𝑛

 Conjugate coefficients, compute FFT with scale factor, conjugate result

 For real signals, no final conjugate needed

 Can complex conjugate twiddle factors and use in butterfly 
structure

63



FFT EXAMPLE

 Example 5.10

 Sine wave with 𝑓 = 50 Hz

 𝑥 𝑛 = sin
2𝜋𝑓𝑛

𝑓𝑠

 𝑛 = 0,1,… , 127

 𝑓𝑠 = 256Hz

 Frequency resolution of DFT?

 Δ = 𝑓𝑠/𝑁 =
256

128
= 2 Hz

 Location of peak

 50 = 𝑘Δ → 𝑘 =
50

2
= 25
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SPECTRAL LEAKAGE AND RESOLUTION
 Notice that a DFT is like windowing a 

signal to finite length

 Longer window lengths (more samples) the 
closer DFT 𝑋(𝑘) approximates DTFT 𝑋 𝜔

 Convolution relationship

 𝑥𝑁 𝑛 = 𝑤 𝑛 𝑥 𝑛

 𝑋𝑁 𝑘 = 𝑊 𝑘 ∗ 𝑋 𝑘

 Corruption of spectrum due to window 
properties (mainlobe/sidelobe)

 Sidelobes result in spurious peaks in computed 
spectrum known as spectral leakage

 Obviously, want to use smoother windows to minimize 
these effects

 Spectral smearing is the loss in sharpness due to 
convolution which depends on mainlobe width

 Example 5.15

 Two close sinusoids smeared together

 To avoid smearing:

 Frequency separation should be greater than freq resolution

 𝑁 >
2𝜋

Δ𝜔
, 𝑁 > 𝑓𝑠/Δ𝑓
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POWER SPECTRAL DENSITY

 Parseval’s theorem

 𝐸 = σ𝑛=0
𝑁−1 𝑥 𝑛 2 =

1

𝑁
σ𝑘=0
𝑁−1 𝑋 𝑘 2

 𝑋 𝑘 2 - power spectrum or periodogram

 Power spectral density (PSD, or 
power density spectrum or power 
spectrum) is used to measure 
average power over frequencies

 Computed for time-varying signal 
by using a sliding window technique

 Short-time Fourier transform

 Grab 𝑁 samples and compute FFT

 Must have overlap and use windows

 Spectrogram

 Each short FFT is arranged as a column in a 
matrix to give the time-varying properties of 
the signal

 Viewed as an image
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FAST FFT CONVOLUTION

 Linear convolution is multiplication in frequency domain

 Must take FFT of signal and filter, multiply, and iFFT

 Operations in frequency domain can be much faster for large 
filters

 Requires zero-padding because of circular convolution

 Typically, will do block processing

 Segment a signal and process each segment individually 
before recombining 
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