EE482/682: DSP APPLICATIONS CH5: FREQUENCY ANALYSIS AND DFT

http://www.ee.unlv.edu/~b1morris/ee482

OUTLINE

- Fourier Series
- Fourier Transform
- Discrete Time Fourier Transform
- Discrete Fourier Transform
- Fast Fourier Transform
- Butterfly Structure
- Implementation Issues

FOURIER SERIES

- Periodic signals
 - $x(t) = x(t + T_0)$
- Periodic signal can be represented as a sum of an infinite number of harmonically-related sinusoids
 - $x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\Omega_0 t}$
 - c_k Fourier series coefficients
 - Contribution of particular frequency sinusoid
 - $\Omega_0 = 2\pi/T_0$ fundamental frequency
 - k harmonic frequency index
- Coefficients can be obtained from signal

•
$$c_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-jk\Omega_0 t}$$

• Notice c_0 is the average over a period, the DC component

FOURIER SERIES EXAMPLE

- Example 5.1
- Rectangular pulse train

•
$$x(t) = \begin{cases} A & -\tau < t < \tau \\ 0 & else \end{cases}$$

•
$$C_k = \frac{A\tau}{T_0} \frac{\sin(k\Omega_0\tau/2)}{k\Omega_0\tau/2}$$

•
$$T = 1;$$

- $\Omega_0 = 2\pi * \frac{1}{T} = 2\pi$
- Magnitude spectrum is known as a line spectrum
 - Only few specific frequencies represented

4

FOURIER TRANSFORM

- Generalization of Fourier series to handle non-periodic signals
- Let $T_0 \to \infty$
 - Spacing between lines in FS go to zero
 - $\Omega_0 = 2\pi/T_0$
- Results in a continuous frequency spectrum
 - Continuous function
- The number of FS coefficients to create "periodic" function goes to infinity

Fourier representation of signal

•
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\Omega) e^{j\Omega t} d\Omega$$

- Inverse Fourier transform
- Fourier transform

•
$$X(\Omega) = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt$$

 Notice that a periodic function has both a FS and FT

•
$$c_k = \frac{1}{T_0} X(k\Omega_0)$$

 Notice a normalization constant to account for the period

DISCRETE TIME FOURIER TRANSFORM

- Useful theoretical tool for discrete sequences/signalsDTFT
 - $X(\omega) = \sum_{n=-\infty}^{\infty} x(nT) e^{-j\omega nT}$
 - \blacksquare Periodic function with period 2π
 - Only need to consider a 2π interval $[0,2\pi]$ or $[-\pi,\pi]$
- Inverse FT

•
$$x(nT) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega nT} d\omega$$

- Notice this is an integral relationship
 - $X(\omega)$ is a continuous function
 - Sequence x(n) is infinite length

SAMPLING THEOREM

- Aliasing signal distortion caused by sampling
 - Loss of distinction between different signal frequencies
- A bandlimited signal can be recovered from its samples when there is no aliasing
 - $f_s \ge 2f_m$, $\Omega_s \ge 2\Omega_m$
 - f_s, Ω_s signal bandwidth
- Copies of analog spectrum are copied at f_s intervals
 - Smaller sampling frequency compresses spectrum into overlap

(c) Spectrum of discrete-time signal that shows aliasing when the sampling theorem is violated.

Figure 5.1 Spectrum replication of discrete-time signal caused by sampling

DISCRETE FOURIER TRANSFORM

- Numerically computable transform used for practical applications
 - Sampled version of DTFT
- DFT definition
 - $X(k) = \sum_{n=0}^{N-1} x(n) e^{-j(2\pi/N)kn}$
 - k = 0, 1, ..., N 1: frequency index
 - Assumes x(n) = 0 outside bounds [0, N 1]
- Equivalent to taking N samples of DTFT $X(\omega)$ over the range $[0, 2\pi]$
 - N equally spaced samples at frequencies $\omega_k = 2\pi k/N$
 - Resolution of DFT is $2\pi/N$
- Inverse DFT

•
$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j(2\pi/N)kn}$$

RELATIONSHIPS BETWEEN TRANSFORMS

A bird's eye view of the relationship between FT, DTFT, DTFS and DFT

RELATIONSHIPS BETWEEN TRANSFORMS

RELATIONSHIPS BETWEEN TRANSFORMS

DFT TWIDDLE FACTORS

- Rewrite DFT equation using Euler's
- $X(k) = \sum_{n=0}^{N-1} x(n) e^{-j(2\pi/N)kn}$
- $X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn}$
 - k = 0, 1, ..., N 1
 - $W_N^{kn} = e^{-j(2\pi/N)kn} = \cos\left(\frac{2\pi kn}{N}\right) j\sin\left(\frac{2\pi kn}{N}\right)$
- IDFT
- $x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j(2\pi/N)kn}$
- $x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn}$,
 - k = 0, 1, ..., N 1

- Properties of twiddle factors
 - W_N^k N roots of unity in clockwise direction on unit circle
 - Symmetry

•
$$W_N^{k+N/2} = -W_N^k$$
, $0 \le k \le \frac{N}{2} - 1$

- Periodicity
 - $W_N^{k+N} = W_N^k$
- Frequency resolution
 - Coefficients equally spaced on unit circle

•
$$\Delta = f_s/N$$

DFT PROPERTIES

- Linearity
 - DFT[ax(n) + by(n)] = aX(k) + bY(k)
- Complex conjugate
 - $\bullet \quad X(-k) = X^*(k)$
 - $\bullet \quad 1 \le k \le N 1$
 - For x(n) real valued

(b) N is an odd number, M = (N-1)/2.

Figure 5.2 Complex-conjugate property for N is (a) an even number and (b) an odd number

- Only first M + 1 coefficients are unique
- Notice the magnitude spectrum is even and phase spectrum is odd

- Z-transform connection
 - $X(k) = X(z)|_{z=e^{j(2\pi/N)k}}$
 - Obtain DFT coefficients by evaluating z-transform on the unit circle at N equally spaced frequencies $\omega_k = 2\pi k/N$
- Circular convolution
 - Y(k) = H(k)X(k)
 - $y(n) = h(n) \otimes x(n)$
 - $y(n) = \sum_{m=0}^{N-1} h(m) x((n-m)_{mod N})$
 - Note: both sequences must be padded to same length

FAST FOURIER TRANSFORM

- DFT is computationally expensive
 - Requires many complex multiplications and additions
 - \blacksquare Complexity ${\sim}4N^2$
- Can reduce this time considerably by using the twidle factors
 - Complex periodicity limits the number of distinct values
 - Some factors have no real or no imaginary parts
- FFT algorithms operate in $N \log_2 N$ time
 - \blacksquare Utilize radix-2 algorithm so $N=2^m$ is a power of 2

FFT DECIMATION IN TIME

- Compute smaller DFTs on subsequences of x(n)
- $X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn}$
- $X(k) = \sum_{m=0}^{N/2-1} x_1(m) W_N^{k2m} + \sum_{m=0}^{N/2-1} x_2(m) W_N^{k(2m+1)}$
 - $x_1(m) = g(n) = x(2m)$ even samples
 - $x_2(m) = h(n) = x(2m + 1) \text{odd samples}$
- Since $W_N^{2mk} = W_{N/2}^{mk}$
 - $X(k) = \sum_{m=0}^{N/2-1} x_1(m) W_{N/2}^{km} + W_N^k \sum_{m=0}^{N/2-1} x_2(m) W_{N/2}^{km}$
 - N/2-point DFT of even and odd parts of x(n)
 - $X(k) = G(k) + W_N^k H(k)$
 - Full N sequence is obtained by periodicity of each $N/2~{\rm DFT}$

FFT BUTTERFLY STRUCTURE

Full butterfly (8-point)

Fig. 7-2. An eight-point decimation-in-time FFT algorithm after the first decimation.

Figure 5.4 Decomposition of N-point DFT into two N/2-point DFTs, N = 8

FFT DECIMATION

- Repeated application of even/odd signal split
 - Stop at simple 2-point DFT

Figure 5.6 Flow graph illustrating second step of N-point DFT, N=8

Figure 5.7 Flow graph of two-point DFT

 Complete 8-point DFT structure

FFT DECIMATION IN TIME IMPLEMENTATION

- Notice arrangement of samples is not in sequence requires shuffling
 - Use bit reversal to figure out pairing of samples in 2-bit DFT

Input sample index		Bit-reversed sample index	
Decimal	Binary	Binary	Decimal
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

Table 5.1Example of bit-reversal process, N = 8 (3-bit)

- Input values to DFT block are not needed after calculation
 - Enables in-place operation
 - Save FFT output in same register as input
 - Reduce memory requirements

The Fourier transform of an analogue signal x(t) is given by:

$$X(\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$$

The Discrete Fourier Transform (DFT) of a discrete-time signal x(nT) is given by:

$$X(k) = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}nk}$$

• Where:

$$k = 0, 1, \dots N - 1$$
$$x(nT) = x[n]$$

DFT Algorithm

• If we let:

$$e^{-j\frac{2\pi}{N}} = W_N$$
 then:

$$X(k) = \sum_{n=0}^{N-1} x[n] W_N^{nk}$$

DFT Algorithm

$$X(k) = \sum_{n=0}^{N-1} x[n] W_N^{nk}$$

x[n] = input X[k] = frequency bins W = twiddle factors

$$\begin{split} \mathbf{X}(0) &= \mathbf{x}[0] \mathbf{W}_{N}^{0} + \mathbf{x}[1] \mathbf{W}_{N}^{0*1} + \ldots + \mathbf{x}[N-1] \mathbf{W}_{N}^{0*(N-1)} \\ \mathbf{X}(1) &= \mathbf{x}[0] \mathbf{W}_{N}^{0} + \mathbf{x}[1] \mathbf{W}_{N}^{1*1} + \ldots + \mathbf{x}[N-1] \mathbf{W}_{N}^{1*(N-1)} \\ &\vdots \\ \mathbf{X}(\mathbf{k}) &= \mathbf{x}[0] \mathbf{W}_{N}^{0} + \mathbf{x}[1] \mathbf{W}_{N}^{\mathbf{k}*1} + \ldots + \mathbf{x}[N-1] \mathbf{W}_{N}^{\mathbf{k}*(N-1)} \\ &\vdots \\ \mathbf{X}(N-1) &= \mathbf{x}[0] \mathbf{W}_{N}^{0} + \mathbf{x}[1] \mathbf{W}_{N}^{(N-1)*1} + \ldots + \mathbf{x}[N-1] \mathbf{W}_{N}^{(N-1)(N-1)} \end{split}$$

Note: For N samples of x we have N frequencies representing the signal.

Performance of the DFT Algorithm

- The DFT requires N² (NxN) complex multiplications:
 - Each X(k) requires N complex multiplications.
 - Therefore to evaluate all the values of the DFT (X(0) to X(N-1)) N² multiplications are required.
- The DFT also requires (N-1)*N complex additions:
 - Each X(k) requires N-1 additions.
 - Therefore to evaluate all the values of the DFT (N-1)*N additions are required.

Performance of the DFT Algorithm

Can the number of computations required be reduced?

$DFT \rightarrow FFT$

 A large amount of work has been devoted to reducing the computation time of a DFT.

 This has led to efficient algorithms which are known as the Fast Fourier Transform (FFT) algorithms.

$$X(k) = \sum_{n=0}^{N-1} x[n] W_N^{nk}; \quad 0 \le k \le N-1$$
 [1]

x[n] = x[0], x[1], ..., x[N-1]

Lets divide the sequence x[n] into even and odd sequences:

- x[2n] = x[0], x[2], ..., x[N-2]
- x[2n+1] = x[1], x[3], ..., x[N-1]

$DFT \rightarrow FFT$

• Equation 1 can be rewritten as:

$$X(k) = \sum_{n=0}^{\frac{N}{2}-1} x[2n] W_N^{2nk} + \sum_{n=0}^{\frac{N}{2}-1} x[2n+1] W_N^{(2n+1)k}$$
[2]

$$W_{N}^{2nk} = e^{-j\frac{2\pi}{N}2nk} = e^{-j\frac{2\pi}{N/2}nk}$$
$$= W_{N}^{nk}$$
$$= W_{N}^{nk} \frac{1}{2}$$

♦ Then:

$$X(k) = \sum_{n=0}^{\frac{N}{2}-1} x[2n] W_{\frac{N}{2}}^{nk} + W_{N}^{k} \sum_{n=0}^{\frac{N}{2}-1} x[2n+1] W_{\frac{N}{2}}^{nk}$$
$$= Y(k) + W_{N}^{k} Z(k)$$

The result is that an N-point DFT can be divided into two N/2 point DFT's:

$$X(k) = \sum_{n=0}^{N-1} x[n] W_N^{nk}; \quad 0 \le k \le N-1$$
 N-point DFT

Where Y(k) and Z(k) are the two N/2 point DFTs operating on even and odd samples respectively:

$$X(k) = \sum_{n=0}^{\frac{N}{2}-1} x_1[n] W_{\frac{N}{2}}^{nk} + W_N^k \sum_{n=0}^{\frac{N}{2}-1} x_2[n] W_{\frac{N}{2}}^{nk}$$
$$= Y(k) + W_N^k Z(k)$$

$DFT \rightarrow FFT$

Periodicity and symmetry of W can be exploited to simplify the DFT further:

$$X(k) = \sum_{n=0}^{\frac{N}{2}-1} x_1[n] W_{\frac{N}{2}}^{nk} + W_N^k \sum_{n=0}^{\frac{N}{2}-1} x_2[n] W_{\frac{N}{2}}^{nk}$$

$$\vdots$$

$$X\left(k + \frac{N}{2}\right) = \sum_{n=0}^{\frac{N}{2}-1} x_1[n] W_{\frac{N}{2}}^{n\left(k+\frac{N}{2}\right)} + W_N^{k+\frac{N}{2}} \sum_{n=0}^{\frac{N}{2}-1} x_2[n] W_{\frac{N}{2}}^{n\left(k+\frac{N}{2}\right)}$$
Or:
$$W_N^{k+\frac{N}{2}} = e^{-j\frac{2\pi}{N}k} e^{-j\frac{2\pi}{N}\frac{N}{2}} = e^{-j\frac{2\pi}{N}k} e^{-j\pi} = -e^{-j\frac{2\pi}{N}k} = -W_N^k$$
: Symmetry
And:
$$W_N^{k+\frac{N}{2}} = e^{-j\frac{2\pi}{N}k} e^{-j\frac{2\pi}{N}\frac{N}{2}} = e^{-j\frac{2\pi}{N}\frac{N}{2}} = e^{-j\frac{2\pi}{N}k} = -W_N^k$$
: Periodicity

Chapter 19, Slide 29

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004

y

Symmetry and periodicity:

$DFT \rightarrow FFT$

• Finally by exploiting the symmetry and periodicity, Equation 3 can be written as:

$$X\left(k+\frac{N}{2}\right) = \sum_{n=0}^{\frac{N}{2}-1} x_1[n] W_{\frac{N}{2}}^{nk} - W_{N}^{k} \sum_{n=0}^{\frac{N}{2}-1} x_2[n] W_{\frac{N}{2}}^{nk}$$
$$= Y(k) - W_{N}^{k} Z(k)$$

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004

[4]

Chapter 19, Slide 31

$$X(k) = Y(k) + W_N^k Z(k); \quad k = 0, \dots \left(\frac{N}{2} - 1\right)$$
$$X\left(k + \frac{N}{2}\right) = Y(k) - W_N^k Z(k); \quad k = 0, \dots \left(\frac{N}{2} - 1\right)$$

- Y(k) and W^k_NZ(k) only need to be calculated once and used for both equations.
- Note: the calculation is reduced from 0 to N-1 to 0 to (N/2 - 1).

$$X(k) = Y(k) + W_N^k Z(k); \quad k = 0, \dots \left(\frac{N}{2} - 1\right)$$
$$X\left(k + \frac{N}{2}\right) = Y(k) - W_N^k Z(k); \quad k = 0, \dots \left(\frac{N}{2} - 1\right)$$

 Y(k) and Z(k) can also be divided into N/4 point DFTs using the same process shown above:

$$Y(k) = U(k) + W_{\frac{N}{2}}^{k}V(k) \qquad \qquad Z(k) = P(k) + W_{\frac{N}{2}}^{k}Q(k)$$
$$Y\left(k + \frac{N}{4}\right) = U(k) - W_{\frac{N}{2}}^{k}V(k) \qquad \qquad Z\left(k + \frac{N}{4}\right) = P(k) - W_{\frac{N}{2}}^{k}Q(k)$$

• The process continues until we reach 2 point DFTs.

$DFT \rightarrow FFT$

 Illustration of the first decimation in time FFT.

- To efficiently implement the FFT algorithm a few observations are made:
 - Each stage has the same number of butterflies (number of butterflies = N/2, N is number of points).
 - The number of DFT groups per stage is equal to (N/2^{stage}).
 - The difference between the upper and lower leg is equal to 2^{stage-1}.
 - The number of butterflies in the group is equal to 2^{stage-1}.

Example: 8 point FFT

- **Decimation in time FFT:**
 - Number of stages = log_2N
 - Number of blocks/stage = N/2^{stage}
 - Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT (1) Number of stages:

- Number of stages = log₂N
- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT (1) Number of stages:

• $N_{stages} = 1$

- Number of stages = log₂N
- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT(1) Number of stages:

• N_{stages} = 2

- Number of stages = log₂N
- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT (1) Number of stages:

• $N_{stages} = 3$

- Number of stages = log₂N
- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT (1) Number of stages: • N_{stages} = 3 (2) Blocks/stage: • Stage 1:

- Number of stages = log₂N
- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT (1) Number of stages: • N_{stages} = 3 (2) Blocks/stage: • Stage 1: N_{blocks} = 1

- Number of stages = log₂N
- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT (1) Number of stages: • N_{stages} = 3 (2) Blocks/stage: • Stage 1: N_{blocks} = 2

- Number of stages = log₂N
- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT (1) Number of stages: • N_{stages} = 3 (2) Blocks/stage: • Stage 1: N_{blocks} = 3

- Number of stages = log₂N
- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT (1) Number of stages: • N_{stages} = 3 (2) Blocks/stage: • Stage 1: N_{blocks} = 4

- Number of stages = log_2N
- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT (1) Number of stages: • $N_{stages} = 3$ (2) Blocks/stage: • Stage 1: $N_{blocks} = 4$ • Stage 2: $N_{blocks} = 1$

- Number of stages = log₂N
- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT (1) Number of stages: • N_{stages} = 3 (2) Blocks/stage: • Stage 1: N_{blocks} = 4 • Stage 2: N_{blocks} = 2

- Number of stages = log_2N
- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT (1) Number of stages: • $N_{stages} = 3$ (2) Blocks/stage: • Stage 1: $N_{blocks} = 4$ • Stage 2: $N_{blocks} = 2$ • Stage 3: $N_{blocks} = 1$

- Number of stages = log₂N
- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT (1) Number of stages: • $N_{stages} = 3$ (2) Blocks/stage: • Stage 1: $N_{blocks} = 4$ • Stage 2: $N_{blocks} = 2$ • Stage 3: N_{blocks} = 1 **B'flies/block:** $(\mathbf{3})$ • Stage 1:

- Number of stages = log_2N
- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT (1) Number of stages: • $N_{stages} = 3$ (2) **Blocks/stage:** • Stage 1: $N_{blocks} = 4$ • Stage 2: $N_{\text{blocks}} = 2$ • Stage 3: $N_{blocks} = 1$ **B'flies/block:** $(\mathbf{3})$ • Stage 1: $N_{hff} = 1$

- Number of stages = log_2N
- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT (1) Number of stages: • $N_{stages} = 3$ (2) Blocks/stage: • Stage 1: $N_{blocks} = 4$ • Stage 2: $N_{blocks} = 2$ • Stage 3: $N_{blocks} = 1$

- (3) **B'flies/block:**
 - Stage 1: N_{btf} = 1
 - Stage 2: N_{btf} = 1

• Number of stages = log_2N

Decimation in time FFT:

- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT (1) Number of stages: • $N_{stages} = 3$ (2) Blocks/stage: • Stage 1: $N_{blocks} = 4$ • Stage 2: $N_{blocks} = 2$ • Stage 3: $N_{blocks} = 1$

- (3) **B'flies/block:**
 - Stage 1: N_{btf} = 1
 - Stage 2: N_{btf} = 2

• Number of stages = log_2N

Decimation in time FFT:

- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT (1) Number of stages: • $N_{stages} = 3$ (2) Blocks/stage: • Stage 1: $N_{blocks} = 4$ • Stage 2: $N_{blocks} = 2$

- Stage 3: N_{blocks} = 1
- (3) **B'flies/block:**
 - Stage 1: N_{btf} = 1
 - Stage 2: N_{btf} = 2
 - Stage 3: N_{btf} = 1

• Number of stages = log_2N

Decimation in time FFT:

- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT (1) Number of stages: • $N_{stages} = 3$ (2) Blocks/stage: • Stage 1: $N_{blocks} = 4$ • Stage 2: $N_{blocks} = 2$

- Stage 3: N_{blocks} = 1
- (3) **B'flies/block:**
 - Stage 1: N_{btf} = 1
 - Stage 2: N_{btf} = 2
 - Stage 3: N_{btf} = 2

• Number of stages = log₂N

Decimation in time FFT:

- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT (1) Number of stages: • $N_{stages} = 3$ (2) Blocks/stage: • Stage 1: $N_{blocks} = 4$ • Stage 2: $N_{blocks} = 2$

- Stage 3: N_{blocks} = 1
- (3) **B'flies/block:**
 - Stage 1: N_{btf} = 1
 - Stage 2: $N_{btf} = 2$
 - Stage 3: N_{btf} = 3

• Number of stages = log_2N

Decimation in time FFT:

- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Example: 8 point FFT (1) Number of stages: • $N_{stages} = 3$ (2) Blocks/stage: • Stage 1: $N_{blocks} = 4$ • Stage 2: $N_{blocks} = 2$

- Stage 3: N_{blocks} = 1
- (3) **B'flies/block:**
 - Stage 1: N_{btf} = 1
 - Stage 2: N_{btf} = 2
 - **Stage 3:** N_{btf} = 4

• Number of stages = log_2N

Decimation in time FFT:

- Number of blocks/stage = N/2^{stage}
- Number of butterflies/block = 2^{stage-1}

Start Index

Input Index

Start Index

Chapter 19, Slide 59

Start Index

Input Index

Start Index Input Index Twiddle Factor Index Indicies Used

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2004

Chapter 19, Slide 60

FFT DECIMATION IN FREQUENCY

- Similar divide and conquer strategy
 - Decimate in frequency domain
- $X(2k) = \sum_{n=0}^{N-1} x(n) W_N^{2nk}$

•
$$X(2k) = \sum_{n=0}^{N/2-1} x(n) W_{N/2}^{nk} + \sum_{n=N/2}^{N-1} x(n) W_{N/2}^{nk}$$

• Divide into first half and second half of sequence

•
$$X(2k) = \sum_{n=0}^{N/2-1} x(n) W_{N/2}^{nk} + \sum_{n=0}^{N/2-1} x\left(n + \frac{N}{2}\right) W_{N/2}^{\left(n + \frac{N}{2}\right)k}$$

Simplifying with twiddle properties

•
$$X(2k) = \sum_{n=0}^{N/2-1} \left[x(n) + x\left(n + \frac{N}{2}\right) \right] W_{N/2}^{nk}$$

•
$$X(2k+1) = \sum_{n=0}^{N/2-1} W_N^n \left[x(n) - x \left(n + \frac{N}{2} \right) \right] W_{N/2}^{nk}$$

FFT DECIMATION IN FREQUENCY STRUCTURE

Stage structure

Figure 5.8 Decomposition of an N-point DFT into two N/2-point DFTs

 Bit reversal happens at output instead of input Full structure

INVERSE FFT

•
$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn}$$

- Notice this is the DFT with a scale factor and change in twiddle sign
- Can compute using the FFT with minor modifications

•
$$x^*(n) = \frac{1}{N} \sum_{k=0}^{N-1} X^*(k) W_N^{kn}$$

- Conjugate coefficients, compute FFT with scale factor, conjugate result
- For real signals, no final conjugate needed
- Can complex conjugate twiddle factors and use in butterfly structure

FFT EXAMPLE

- Example 5.10
- Sine wave with f = 50 Hz
 - $x(n) = \sin\left(\frac{2\pi fn}{f_s}\right)$ • $n = 0, 1, \dots, 127$

•
$$f_s = 256 \, {\rm Hz}$$

- Frequency resolution of DFT?
 - $\Delta = f_s / N = \frac{256}{128} = 2$ Hz
- Location of peak

•
$$50 = k\Delta \rightarrow k = \frac{50}{2} = 25$$

SPECTRAL LEAKAGE AND RESOLUTION

- Notice that a DFT is like windowing a signal to finite length
 - Longer window lengths (more samples) the closer DFT X(k) approximates DTFT $X(\omega)$
- Convolution relationship
 - $x_N(n) = w(n)x(n)$
 - $X_N(k) = W(k) * X(k)$
- Corruption of spectrum due to window properties (mainlobe/sidelobe)
 - Sidelobes result in spurious peaks in computed spectrum known as spectral leakage
 - Obviously, want to use smoother windows to minimize these effects
 - Spectral smearing is the loss in sharpness due to convolution which depends on mainlobe width

- Example 5.15
 - Two close sinusoids smeared together

- To avoid smearing:
 - Frequency separation should be greater than freq resolution

$$\qquad N > \frac{2\pi}{\Delta \omega}, \ N > f_S / \Delta f$$

POWER SPECTRAL DENSITY

Parseval's theorem

•
$$E = \sum_{n=0}^{N-1} |x(n)|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X(k)|^2$$

- $\blacksquare |X(k)|^2$ power spectrum or periodogram
- Power spectral density (PSD, or power density spectrum or power spectrum) is used to measure average power over frequencies
- Computed for time-varying signal by using a sliding window technique
 - Short-time Fourier transform
 - Grab N samples and compute FFT
 - Must have overlap and use windows

- Spectrogram
 - Each short FFT is arranged as a column in a matrix to give the time-varying properties of the signal
 - Viewed as an image

"She had your dark suit in greasy wash water all year"

FAST FFT CONVOLUTION

- Linear convolution is multiplication in frequency domain
 - Must take FFT of signal and filter, multiply, and iFFT
 - Operations in frequency domain can be much faster for large filters
 - Requires zero-padding because of circular convolution
- Typically, will do block processing
 - Segment a signal and process each segment individually before recombining