EE482/682: DSP APPLICATIONS CH4 IIR FILTER DESIGN

INTRODUCTION

CHAPTER 4.1

IIR DESIGN

- Reuse well studied analog filter design techniques (books and tables for design)
- Need to map between analog design and a digital design
 - Mapping between s-plane and z-plane

ANALOG BASICS

- Laplace transform
 - $X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} dt$
- Complex s-plane
 - $s = \sigma + j\Omega$
 - Complex number with σ and Ω real
 - $j\Omega$ imaginary axis
- Fourier transform for $\sigma = 0$
 - When region of convergence contains the $j\Omega$ axis

- Convolution relationship
 - $y(t) = x(t) * h(t) \rightarrow Y(s) = X(s)H(s)$
 - $H(s) = \frac{Y(s)}{X(s)} = \int_{-\infty}^{\infty} h(t)e^{-st} dt$
- Stability constraint requires poles to be in the left half splane

MAPPING PROPERTIES

 Z-transform from Laplace by change of variable

•
$$z = e^{sT} = e^{\sigma T} e^{j\Omega T} = |z|e^{j\omega}$$

•
$$|z| = e^{\sigma T}, \ \omega = \Omega T$$

- This mapping is not unique
 - $-\pi/T < \Omega < \pi/T \rightarrow$ unit circle
 - 2π multiples as well
 - Left half s-plane mapped inside unit circle
 - Right half s-plane mapped outside unit circle

FILTER CHARACTERISTICS

- Designed to meet a given/desired magnitude response
- Trade-off between:
 - Phase response
 - Roll-off rate how steep is the transition between pass and stopband (transition width)

BUTTERWORTH FILTER

All-pole approximation to ideal filter

•
$$|H(\Omega)|^2 = \frac{1}{1+(\Omega/\Omega_p)^{2L}}$$

- |H(0)| = 1
- $|H(\Omega_p)| = 1/\sqrt{2}$
 - -3 dB @ Ω_p
- Has flat magnitude response in pass and stopband (no ripple)
- Slow monotonic transition band
 - \blacksquare Generally needs larger L

Figure 4.2 Magnitude response of Butterworth lowpass filter

CHEBYSHEV FILTER

- Steeper roll-off at cutoff frequency than Butterworth
 - Allows certain number of ripples in either passband or stopband
- Type I equiripple in passband, monotonic in stopband
 - All-pole filter
- Type II equiripple in stopband, monotinic in passband
 - Poles and zeros
- Generally better magnitude response than Butterworth but at cost of poorer phase response
 Figure Figur

Figure 4.3 Magnitude responses of Chebyshev type I (top) and type II lowpass filters

ELLIPTIC FILTER

- Sharpest passband to stopband transition
- Equiripple in both pass and stopbands

- Phase response is highly non-linear in passband
 - Should only be used in situations where phase is not important to design

FREQUENCY TRANSFORMS

- Design lowpass filter and transform from LP to another type (HP, BP, BS)
- Define mapping
- $H(z) = H_{lp}(Z)|_{Z^{-1} = G(z^{-1})}$
 - Replace Z^{-1} in LP filter with $G(z^{-1})$
- θ frequency in LP
- ω frequency in new transformed filter

TABLE 7.1TRANSFORMATIONS FROM A LOWPASS DIGITAL FILTER PROTOTYPEOF CUTOFF FREQUENCY θ_{ρ} TO HIGHPASS, BANDPASS, AND BANDSTOP FILTERS

Filter Type	Transformations	Associated Design Formulas
Lowpass	$Z^{-1} = \frac{z^{-1} - \alpha}{1 - az^{-1}}$	$\alpha = \frac{\sin\left(\frac{\theta_p - \omega_p}{2}\right)}{\sin\left(\frac{\theta_p + \omega_p}{2}\right)}$ $\omega_p = \text{desired cutoff frequency}$
Highpass	$Z^{-1} = -\frac{z^{-1} + \alpha}{1 + \alpha z^{-1}}$	$\alpha = -\frac{\cos\left(\frac{\theta_p + \omega_p}{2}\right)}{\cos\left(\frac{\theta_p - \omega_p}{2}\right)}$ $\omega_p = \text{desired cutoff frequency}$
Bandpass	$Z^{-1} = -\frac{z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + \frac{k-1}{k+1}}{\frac{k-1}{k+1}z^{-2} - \frac{2\alpha k}{k+1}z^{-1} + 1}$	$\alpha = \frac{\cos\left(\frac{\omega_{p2} + \omega_{p1}}{2}\right)}{\cos\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)}$ $k = \cot\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)\tan\left(\frac{\theta_p}{2}\right)$ $\omega_{p1} = \text{desired lower cutoff frequency}$ $\omega_{p2} = \text{desired upper cutoff frequency}$
Bandstop	$Z^{-1} = \frac{z^{-2} - \frac{2\alpha}{1+k}z^{-1} + \frac{1-k}{1+k}}{\frac{1-k}{1+k}z^{-2} - \frac{2\alpha}{1+k}z^{-1} + 1}$	$\alpha = \frac{\cos\left(\frac{\omega_{p2} + \omega_{p1}}{2}\right)}{\cos\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)}$ $k = \tan\left(\frac{\omega_{p2} - \omega_{p1}}{2}\right)\tan\left(\frac{\theta_{p}}{2}\right)$ $\omega_{p1} = \text{desired lower cutoff frequency}$ $\omega_{p2} = \text{desired upper cutoff frequency}$

10

DESIGN OF IIR FILTERS

CHAPTER4.2

11

IIR FILTER DESIGN

IIR transfer function

$$H(z) = \frac{\sum_{l=0}^{L-1} b_l z^{-l}}{1 + \sum_{l=0}^{M} a_l z^{-l}}$$

- Need to find coefficients a_l, b_l
 - Impulse invariance sample impulse response
 - Have to deal with aliasing
 - Bilinear transform
 - Match magnitude response
 - "Warp" frequencies to prevent aliasing

BILINEAR TRANSFORM DESIGN

- Convert digital filter into an "equivalent" analog filter
 - Use bilinear "warping"
- Design analog filter using IIR design techniques
- Map analog filter into digital
 - Use bilinear transform

Figure 4.5 Digital IIR filter design using the bilinear transform

BILINEAR TRANSFORMATION

Mapping from s-plane to z-plane

•
$$s = \frac{2}{T} \left(\frac{z-1}{z+1} \right) = \frac{2}{T} \left(\frac{1-z^{-1}}{1+z^{-1}} \right)$$

- Frequency mapping
 - $\Omega = \frac{2}{T} \tan\left(\frac{\omega}{2}\right)$

•
$$\omega = 2 \arctan\left(\frac{\Omega T}{2}\right)$$

- Entire $j\omega$ -axis is squished into $[-\pi/T, \pi/T]$ to prevent aliasing
 - Unique mapping
 - Highly non-linear which requires "pre-warp" in design

14

Figure 4.6 Frequency warping of bilinear transform defined by (4.27)

BILINEAR DESIGN STEPS

- Convert digital filter into an "equivalent" analog filter
 - Pre-warp using: $\Omega = \frac{2}{T} \tan\left(\frac{\omega}{2}\right)$
- Design analog filter using IIR design techniques
 - Butterworth, Chebyshev, Elliptical
- Map analog filter into digital

•
$$H(z) = H(s)|_{s = \frac{2}{T}\left(\frac{1-z^{-1}}{1+z^{-1}}\right)}$$

BILINEAR DESIGN EXAMPLE

- Example 4.2
- Design filter using bilinear transform
 - H(s) = 1/(s+1)
 - Bandwith 1000 Hz
 - $f_s = 8000 \text{ Hz}$
- DT parameters
 - $\omega_c = 2\pi (1000/8000) = 0.25\pi$

1. Pre-warp:
$$\Omega = \frac{2}{T} \tan\left(\frac{\omega}{2}\right)$$

•
$$\Omega_c = \frac{2}{T} \tan(0.125\pi) = \frac{0.8284}{T}$$

2. Scale frequency (normalize scale)

•
$$\widehat{H}(s) = H\left(\frac{s}{\Omega_c}\right) = \frac{0.8284}{sT + 0.8284}$$

3. Bilinear transform:

•
$$H(z) = H(s)|_{s=\frac{2}{T}\left(\frac{1-z^{-1}}{1+z^{-1}}\right)}$$

 $0.2929(1+z^{-1})$

•
$$H(z) = \frac{0.2929(1+z)}{1-0.4141z^{-1}}$$

REALIZATION OF IIR FILTERS

CHAPTER4.3

17

IIR FILTER REALIZATIONS

Different forms or structures can implement an IIR filter

- All are equivalent mathematically (infinite precision)
- Different practical behavior when considering numerical effects

• Want structures to minimize error

DIRECT FORM I (DFI)

- Straight-forward implementation of diff. eq.
 - \blacksquare b_l feed forward coefficients
 - From x(n) terms
 - a_l feedback coefficients
 - From y(n) terms
- Requires (L + M) coefficients and delays

19

DIRECT FORM II (DFII)

- Notice that we can decompose the transfer function
 - $H(z) = H_1(z)H_2(z)$
 - Section to implement zeros and section to implement poles

- Can switch order of operations
 - $H(z) = H_2(z)H_1(p)$
 - This allows sharing of delays and saving in memory

CASCADE (FACTORED) FORM

- Factor transfer function and decompose into smaller sub-systems
 - $H(z) = H_1(z)H_2(z) \dots H_K(z)$
- Make each subsystem second order
 - Complex conjugate roots have real coefficients
 - Limit the order of subsystem (numerical effects)
 - Effects limited to single subsystem stage
 - Change in a single coefficient affects all poles in DF
- Preferred over DF because of numerical stability

PARALLEL (PARTIAL FRACTION) FORM

- Decompose transfer function using a partial fraction expansion
 - $H(z) = H_1(z) + H_2(z) + ... + H_K(z)$

•
$$H_k(z) = \frac{b_{0k} + b_{1k}z^{-1}}{1 + a_{1k}z^{-1} + a_{2k}z^{-2}}$$

- Be sure to remember that PFE requires numerator order less than denominator
 - Use polynomial long division

DESIGN OF IIR FILTERS USING MATLAB

CHAPTER4.4

MATLAB FILTER DESIGN

- Realization tools:
- Finding polynomial roots
 - roots.m
 - tf2zp.m
- Cascade form

•
$$H(z) = G \prod_{k=1}^{K} \frac{b_{0k} + b_{1k} z^{-1} + b_{2k} z^{-2}}{1 + a_{1k} z^{-1} + a_{2k} z^{-2}}$$

- zp2sos.m
- Parallel form
 - Residuez.m

- Filter design tools:
- Order estimation tool
 - butterord.m
- Coefficient tool
 - butter.m
- Frequency transforms
 - lp2hp.m, lp2bp.m, lp2bs.m
- Useful exploration tool
 - fvtool.m
- Useful design tool
 - fdatool.m
- Useful processing tool
 - sptool.m

IMPLEMENTATION CONSIDERATIONS

CHAPTER4.5

STABILITY

- (Causal) IIR filters are stable if all poles are within the unit circle
 - $|p_m| < 1$
 - We will not consider marginally stable (single pole on unit circle)
- Consider poles of 2nd order filter (used in cascade and parallel forms)
 - $A(z) = 1 + a_1 z^{-1} + a_2 z^{-2}$
- Factor
 - $A(z) = (1 p_1 z^{-1})(1 p_2 z^{-1})$
 - $A(z) = 1 (p_1 + p_2)z^{-1} + p_1p_2z^{-2}$
- Because poles must be inside the unit circle
 - $|a_2| = |p_1p_2| < 1$

• $|a_1| < 1 + a_2$

Figure 4.15 Region of coefficient values for the stable second-order IIR filters

COEFFICIENT QUANTIZATION

 Using fixed word lengths results in a quantized approximation of a filter

•
$$H'(z) = \frac{\sum_{k=0}^{L-1} b'_{k} z^{-k}}{1 + \sum_{k=1}^{M} a'_{k} z^{-k}}$$

- This can cause a mismatch from desired system H(z)
- Poles that are close to the unit circle may move outside and cause instability
 - This is exacerbated with higher order systems

ROUNDING EFFECTS

- \blacksquare Using B bit architecture, products require 2B bits
 - Must be rounded into smaller B bit container
- This results in noise error terms
 - Can be simply modeled as additive term
- The order of cascade sections influences power of noise at output
 - How should sections be paired and ordered?
- Need to optimize SQNR
 - Trade-off with probability of arithmetic overflow
 - Need to use scaling factors to prevent overflow
 - Optimality when signal level is maximized without overflow

CASCADE ORDERING AND PAIRING

- Good results are obtained using simple rules
- Cascade ordering and pairing algorithm:
- Pair pole closest to unit circle with zero that is closest in z-plane
 - Minimize the chance of overflow
- Apply 1 repeatedly until all poles and zeros are paired
- Resulting 2nd-order sections can be ordered in two alternative ways
 - Increasing closeness to unit circle
 - Decreasing closeness to unit circle

Figure 6.67 Output noise power spectrum for 123 ordering (solid line) and 321 ordering (dashed line) of 2nd-order sections.

PRACTICAL APPLICATIONS

CHAPTER4.6

30

RECURSIVE RESONATOR

- Filter with frequency response dominated at a single peak
 - Use complex-conjugate pole pair inside unit circle

•
$$H(z) = \frac{A}{(1 - r_p e^{j\omega_0} z^{-1})(1 - r_p e^{-j\omega_0} z^{-1})}$$

•
$$H(z) = \frac{A}{1 - 2r_p \cos(\omega_0) z^{-1} + r_p^2 z^{-2}}$$

- A normalization constant for unity gain at ω_0
- $0 < r_p < 1$
- Close to unit circle
 - Bandwidth $\cong 2(1 r_p)$
 - Closer to $r_p = 1$, more peaked

PARAMETRIC EQUALIZER

- Add nearby zeros to the resonator
 - At same angle as poles ω_0 with similar radius
- Pole and zero counter balance one another
- $r_z < r_p$
 - Pole dominates because it is closer to unit circle
 - Generates peak at $\omega = \omega_0 \rightarrow$ Provides boost to freq
- $r_z > r_p$
 - Zero dominates pole
 - Generates dip at $\omega = \omega_0 \rightarrow$ Cuts freq
- Bandwidth still determined by r_p

• Ex 4.18

 Create equalizer by changing gain at given frequency

