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INTRODUCTION
CHAPTER 4.1
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Reuse well studied analog filter design techniques 
(books and tables for design)

Need to map between analog design and a digital 
design

 Mapping between s-plane and z-plane
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IIR DESIGN



 Laplace transform

 𝑋 𝑠 = ∞−
∞
𝑥 𝑡 𝑒−𝑠𝑡𝑑𝑡

 Complex s-plane

 𝑠 = 𝜎 + 𝑗Ω

 Complex number with 𝜎 and Ω real

 𝑗Ω – imaginary axis

 Fourier transform for 𝜎 = 0

 When region of convergence 
contains the 𝑗Ω axis

 Convolution relationship

 𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ 𝑡 → 𝑌 𝑠 = 𝑋 𝑠 𝐻(𝑠)

 𝐻 𝑠 =
𝑌 𝑠

𝑋 𝑠
= ∞−

∞
ℎ 𝑡 𝑒−𝑠𝑡 𝑑𝑡

 Stability constraint requires 
poles to be in the left half s-
plane
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ANALOG BASICS



 Z-transform from Laplace by 
change of variable

 𝑧 = 𝑒𝑠𝑇 = 𝑒𝜎𝑇𝑒 𝑗Ω𝑇 = 𝑧 𝑒 𝑗𝜔

 𝑧 = 𝑒𝜎𝑇 , 𝜔 = Ω𝑇

 This mapping is not unique

 −𝜋/𝑇 < Ω < 𝜋/𝑇 → unit circle

 2𝜋 multiples as well

 Left half s-plane mapped inside unit 
circle

 Right half s-plane mapped outside 
unit circle
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MAPPING PROPERTIES



Designed to meet a given/desired magnitude 
response

Trade-off between:

 Phase response 

 Roll-off rate – how steep is the transition between pass 
and stopband (transition width)
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FILTER CHARACTERISTICS



 All-pole approximation to ideal 
filter

 𝐻 Ω 2 =
1

1+ Ω/Ω𝑝
2𝐿

 𝐻 0 = 1

 𝐻 Ω𝑝 = 1/ 2

 -3 dB @ Ω𝑝

 Has flat magnitude response in 
pass and stopband (no ripple)

 Slow monotonic transition band

 Generally needs larger 𝐿
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BUTTERWORTH FILTER



 Steeper roll-off at cutoff 
frequency than Butterworth

 Allows certain number of ripples in 
either passband or stopband

 Type I – equiripple in passband, 
monotonic in stopband

 All-pole filter

 Type II – equiripple in stopband, 
monotinic in passband

 Poles and zeros

 Generally better magnitude 
response than Butterworth but at 
cost of poorer phase response
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CHEBYSHEV FILTER



 Sharpest passband to stopband
transition

 Equiripple in both pass and 
stopbands

 Phase response is highly non-linear 
in passband

 Should only be used in situations 
where phase is not important to 
design
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ELLIPTIC FILTER



 Design lowpass filter and 
transform from LP to another 
type (HP, BP, BS)

 Define mapping

 𝐻 𝑧 = 𝐻𝑙𝑝 𝑍 ȁ𝑍−1=𝐺 𝑧−1

 Replace 𝑍−1 in LP filter with 𝐺 𝑧−1

 𝜃 – frequency in LP

 𝜔 – frequency in new transformed 
filter
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FREQUENCY TRANSFORMS

OS 3e



DESIGN OF IIR FILTERS
CHAPTER4.2
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 IIR transfer function

 Need to find coefficients 𝑎𝑙 , 𝑏𝑙
 Impulse invariance – sample impulse response

 Have to deal with aliasing

 Bilinear transform 

 Match magnitude response

 “Warp” frequencies to prevent aliasing
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IIR FILTER DESIGN

𝐻 𝑧 =
σ𝑙=0
𝐿−1 𝑏𝑙𝑧

−𝑙

1 + σ𝑙=0
𝑀 𝑎𝑙𝑧

−𝑙



 Convert digital filter into an 
“equivalent” analog filter

 Use bilinear “warping”

 Design analog filter using IIR design 
techniques 

 Map analog filter into digital

 Use bilinear transform
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BILINEAR TRANSFORM DESIGN



 Mapping from s-plane to z-plane

 𝑠 =
2

𝑇

𝑧−1

𝑧+1
=

2

𝑇

1−𝑧−1

1+𝑧−1

 Frequency mapping

 Ω =
2

𝑇
tan

𝜔

2

 𝜔 = 2arctan
Ω𝑇

2

 Entire 𝑗𝜔-axis is squished into 
[−𝜋/𝑇, 𝜋/𝑇] to prevent aliasing

 Unique mapping

 Highly non-linear which requires 
“pre-warp” in design 
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BILINEAR TRANSFORMATION



 Convert digital filter into an 
“equivalent” analog filter

 Pre-warp using: Ω =
2

𝑇
tan

𝜔

2

 Design analog filter using IIR 
design techniques 

 Butterworth, Chebyshev, 
Elliptical 

 Map analog filter into digital

 𝐻 𝑧 = 𝐻 𝑠 ȁ
𝑠=

2

𝑇

1−𝑧−1

1+𝑧−1
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BILINEAR DESIGN STEPS

OS 3e



 Example 4.2

 Design filter using bilinear 
transform 

 𝐻 𝑠 = 1/(𝑠 + 1)

 Bandwith 1000 Hz

 𝑓𝑠 = 8000 Hz

 DT parameters

 𝜔𝑐 = 2𝜋 1000/8000 = 0.25𝜋

1. Pre-warp: Ω =
2

𝑇
tan

𝜔

2

 Ω𝑐 =
2

𝑇
tan 0.125𝜋 =

0.8284

𝑇

2. Scale frequency (normalize 
scale)

 𝐻 𝑠 = 𝐻
𝑠

Ω𝑐
=

0.8284

𝑠𝑇+0.8284

3. Bilinear transform: 

 𝐻 𝑧 = 𝐻 𝑠 ȁ
𝑠=

2

𝑇

1−𝑧−1

1+𝑧−1

 𝐻 𝑧 =
0.2929 1+𝑧−1

1−0.4141𝑧−1
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BILINEAR DESIGN EXAMPLE



REALIZATION OF IIR FILTERS
CHAPTER4.3
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Different forms or structures can implement an IIR 
filter

 All are equivalent mathematically (infinite precision)

 Different practical behavior when considering numerical 
effects

Want structures to minimize error
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IIR FILTER REALIZATIONS



DIRECT FORM I (DFI)

 Straight-forward 
implementation of diff. eq.

 𝑏𝑙 - feed forward coefficients

 From 𝑥(𝑛) terms

 𝑎𝑙 - feedback coefficients 

 From 𝑦 𝑛 terms

 Requires 𝐿 +𝑀 coefficients 
and delays
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OS 3e



 Notice that we can decompose 
the transfer function

 𝐻 𝑧 = 𝐻1 𝑧 𝐻2(𝑧)

 Section to implement zeros and 
section to implement poles

 Can switch order of operations

 𝐻 𝑧 = 𝐻2 𝑧 𝐻1(𝑝)

 This allows sharing of delays and 
saving in memory
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DIRECT FORM II (DFII)

OS 3e



OS 3e

 Factor transfer function and decompose 
into smaller sub-systems

 𝐻 𝑧 = 𝐻1 𝑧 𝐻2 𝑧 …𝐻𝐾 𝑧

 Make each subsystem second order

 Complex conjugate roots have real 
coefficients

 Limit the order of subsystem (numerical 
effects)

 Effects limited to single subsystem stage

 Change in a single coefficient affects all 
poles in DF

 Preferred over DF because of numerical 
stability
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CASCADE (FACTORED) FORM



 Decompose transfer function 
using a partial fraction 
expansion

 𝐻 𝑧 = 𝐻1 𝑧 + 𝐻2 𝑧 + …+ 𝐻𝐾 𝑧

 𝐻𝑘 𝑧 =
𝑏0𝑘+𝑏1𝑘𝑧

−1

1+𝑎1𝑘𝑧
−1+𝑎2𝑘𝑧

−2

 Be sure to remember that PFE 
requires numerator order less 
than denominator

 Use polynomial long division
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PARALLEL (PARTIAL FRACTION) FORM

OS 3e



DESIGN OF IIR FILTERS USING MATLAB
CHAPTER4.4
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 Realization tools:

 Finding polynomial roots

 roots.m

 tf2zp.m

 Cascade form

 𝐻 𝑧 = 𝐺ς𝑘=1
𝐾 𝑏0𝑘+𝑏1𝑘𝑧

−1+𝑏2𝑘𝑧
−2

1+𝑎1𝑘𝑧
−1+𝑎2𝑘𝑧

−2

 zp2sos.m

 Parallel form

 Residuez.m

 Filter design tools:

 Order estimation tool

 butterord.m

 Coefficient tool

 butter.m

 Frequency transforms

 lp2hp.m, lp2bp.m, lp2bs.m

 Useful exploration tool

 fvtool.m

 Useful design tool

 fdatool.m

 Useful processing tool

 sptool.m
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MATLAB FILTER DESIGN



IMPLEMENTATION CONSIDERATIONS
CHAPTER4.5
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 (Causal) IIR filters are stable if all poles are within the unit circle

 ȁ𝑝𝑚ȁ < 1

 We will not consider marginally stable (single pole on unit circle)

 Consider poles of 2nd order filter (used in cascade and parallel forms)

 𝐴 𝑧 = 1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2

 Factor

 𝐴 𝑧 = (1 − 𝑝1𝑧
−1)(1 − 𝑝2𝑧

−1)

 𝐴 𝑧 = 1 − 𝑝1 + 𝑝2 𝑧−1 + 𝑝1𝑝2𝑧
−2

 Because poles must be inside 
the unit circle

 𝑎2 = 𝑝1𝑝2 < 1

 𝑎1 < 1 + 𝑎2
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STABILITY



 Using fixed word lengths results in a quantized 
approximation of a filter

 𝐻′ 𝑧 =
σ𝑘=0
𝐿−1 𝑏𝑘

′ 𝑧−𝑘

1+σ𝑘=1
𝑀 𝑎𝑘

′ 𝑧−𝑘

 This can cause a mismatch from desired system 𝐻 𝑧

 Poles that are close to the unit circle may move outside 
and cause instability

 This is exacerbated with higher order systems
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COEFFICIENT QUANTIZATION



 Using 𝐵 bit architecture, products require 2𝐵 bits

 Must be rounded into smaller 𝐵 bit container

 This results in noise error terms

 Can be simply modeled as additive term

 The order of cascade sections influences power of noise at output

 How should sections be paired and ordered?

 Need to optimize SQNR

 Trade-off with probability of arithmetic overflow

 Need to use scaling factors to prevent overflow

 Optimality when signal level is maximized without overflow
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ROUNDING EFFECTS



 Good results are obtained using 
simple rules

 Cascade ordering and pairing 
algorithm:

 Pair pole closest to unit circle with 
zero that is closest in z-plane

 Minimize the chance of overflow

 Apply 1 repeatedly until all poles 
and zeros are paired

 Resulting 2nd-order sections can be 
ordered in two alternative ways

 Increasing closeness to unit circle

 Decreasing closeness to unit circle
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CASCADE ORDERING AND PAIRING

Figure 6.67   Output noise power spectrum for 123 ordering (solid 

line) and 321 ordering (dashed line) of 2nd-order sections.

OS



PRACTICAL APPLICATIONS
CHAPTER4.6
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RECURSIVE RESONATOR
 Filter with frequency response dominated at 

a single peak

 Use complex-conjugate pole pair inside unit 
circle

 𝐻 𝑧 =
𝐴

(1−𝑟𝑝𝑒
𝑗𝜔0𝑧−1)(1−𝑟𝑝𝑒

−𝑗𝜔0𝑧−1)

 𝐻(𝑧) =
𝐴

1−2𝑟𝑝 cos 𝜔0 𝑧−1+𝑟𝑝
2𝑧−2

 𝐴 – normalization constant for unity gain at 𝜔0

 0 < 𝑟𝑝 < 1

 Close to unit circle

 Bandwidth ≅ 2(1 − 𝑟𝑝)

 Closer to 𝑟𝑝 = 1, more peaked
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 Add nearby zeros to the resonator

 At same angle as poles 𝜔0 with similar 
radius

 Pole and zero counter balance one 
another

 𝑟𝑧 < 𝑟𝑝
 Pole dominates because it is closer to unit 

circle

 Generates peak at 𝜔 = 𝜔0  Provides 
boost to freq

 𝑟𝑧 > 𝑟𝑝
 Zero dominates pole

 Generates dip at 𝜔 = 𝜔0  Cuts freq

 Bandwidth still determined by 𝑟𝑝

 Ex 4.18

 Create equalizer by changing gain 
at given frequency
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PARAMETRIC EQUALIZER


