EE482/682: DSP APPLICATIONS

CH4 IIR FILTER DESIGN

http://www.ee.unlv.edu/~b1morris/ee482
INTRODUCTION

CHAPTER 4.1
IIR DESIGN

- Reuse well studied analog filter design techniques (books and tables for design)
- Need to map between analog design and a digital design
 - Mapping between s-plane and z-plane
Laplace transform

\[X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt \]

Complex s-plane

\[s = \sigma + j\Omega \]
- Complex number with \(\sigma \) and \(\Omega \) real
- \(j\Omega \) – imaginary axis

Fourier transform for \(\sigma = 0 \)
- When region of convergence contains the \(j\Omega \) axis

Convolution relationship

\[y(t) = x(t) \ast h(t) \rightarrow Y(s) = X(s)H(s) \]

\[H(s) = \frac{Y(s)}{X(s)} = \int_{-\infty}^{\infty} h(t)e^{-st} dt \]

Stability constraint requires poles to be in the left half s-plane
Z-transform from Laplace by change of variable

\[z = e^{sT} = e^{\sigma T} e^{j\Omega T} = |z|e^{j\omega} \]

\[|z| = e^{\sigma T}, \ \omega = \Omega T \]

This mapping is not unique

\[-\pi / T < \Omega < \pi / T \rightarrow \text{unit circle} \]

\[2\pi \ \text{multiples as well} \]

Left half s-plane mapped inside unit circle

Right half s-plane mapped outside unit circle

Figure 4.1 Mapping properties between the s-plane and the z-plane
FILTER CHARACTERISTICS

- Designed to meet a given/desired magnitude response

- Trade-off between:
 - Phase response
 - Roll-off rate – how steep is the transition between pass and stopband (transition width)
BUTTERWORTH FILTER

- All-pole approximation to ideal filter

- $|H(\Omega)|^2 = \frac{1}{1 + (\Omega/\Omega_p)^{2L}}$
 - $|H(0)| = 1$
 - $|H(\Omega_p)| = 1/\sqrt{2}$
 - -3 dB @ Ω_p
 - Has flat magnitude response in pass and stopband (no ripple)

- Slow monotonic transition band
 - Generally needs larger L

Figure 4.2 Magnitude response of Butterworth lowpass filter
CHEBYSHEV FILTER

- Steeper roll-off at cutoff frequency than Butterworth
 - Allows certain number of ripples in either passband or stopband
- Type I – equiripple in passband, monotonic in stopband
 - All-pole filter
- Type II – equiripple in stopband, monotonic in passband
 - Poles and zeros
- Generally better magnitude response than Butterworth but at cost of poorer phase response

Figure 4.3 Magnitude responses of Chebyshev type I (top) and type II lowpass filters
ELLIPTIC FILTER

- Sharpest passband to stopband transition
- Equiripple in both pass and stopbands
- Phase response is highly non-linear in passband
 - Should only be used in situations where phase is not important to design

Figure 4.4 Magnitude response of elliptic lowpass filter
Design lowpass filter and transform from LP to another type (HP, BP, BS)

Define mapping

\[H(z) = H_{lp}(z)|_{z^{-1} = G(z^{-1})} \]

Replace \(Z^{-1} \) in LP filter with \(G(z^{-1}) \)

\(\theta \) – frequency in LP

\(\omega \) – frequency in new transformed filter

TABLE 7.1 TRANSFORMATIONS FROM A LOWPASS DIGITAL FILTER Prototype OF CUTOFF FREQUENCY \(\omega_p \) TO HIGHPASS, BANDPASS, AND BANDSTOP FILTERS

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Transformations</th>
<th>Associated Design Formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowpass</td>
<td>(Z^{-1} = \frac{z^{-1} - \alpha}{1 - \alpha z^{-1}})</td>
<td>(\alpha = \frac{\sin \left(\frac{\theta_p - \theta}{2} \right)}{\sin \left(\frac{\omega_p - \omega}{2} \right)})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\omega_p = \text{desired cutoff frequency})</td>
</tr>
<tr>
<td>Highpass</td>
<td>(Z^{-1} = \frac{z^{-1} + \alpha}{1 + \alpha z^{-1}})</td>
<td>(\alpha = -\frac{\cos \left(\frac{\theta_p + \theta}{2} \right)}{\cos \left(\frac{\omega_p + \omega}{2} \right)})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\omega_p = \text{desired cutoff frequency})</td>
</tr>
<tr>
<td>Bandpass</td>
<td>(Z^{-1} = \frac{z^{-2} - \frac{2k}{k+1} z^{-1} + \frac{k+1}{k+1} z^{-1}}{z^{-2} - \frac{2k}{k+1} z^{-1} - \frac{k+1}{k+1} z^{-1} + 1})</td>
<td>(\alpha = \frac{\cos \left(\frac{\theta_p + \theta}{2} + \theta_p \right)}{\cos \left(\frac{\omega_p + \omega}{2} + \omega_p \right)})</td>
</tr>
<tr>
<td></td>
<td>(k = \cos \left(\frac{\theta_p - \theta_p^1}{2} \right) \tan \left(\frac{\theta_p}{2} \right))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\omega_p^1 = \text{desired lower cutoff frequency})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\omega_p^2 = \text{desired upper cutoff frequency})</td>
<td></td>
</tr>
<tr>
<td>Bandstop</td>
<td>(Z^{-1} = \frac{z^{-2} - \frac{2k}{k+1} z^{-1} + \frac{k+1}{k+1} z^{-1} + 1}{\frac{1}{k+1} z^{-2} - \frac{2k}{k+1} z^{-1} - \frac{k+1}{k+1} z^{-1} + 1})</td>
<td>(\alpha = \frac{\cos \left(\frac{\theta_p + \theta}{2} + \theta_p \right)}{\cos \left(\frac{\omega_p + \omega}{2} + \omega_p \right)})</td>
</tr>
<tr>
<td></td>
<td>(k = \tan \left(\frac{\theta_p - \theta_p^1}{2} \right) \tan \left(\frac{\theta_p}{2} \right))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\omega_p^1 = \text{desired lower cutoff frequency})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\omega_p^2 = \text{desired upper cutoff frequency})</td>
<td></td>
</tr>
</tbody>
</table>
DESIGN OF IIR FILTERS

CHAPTER 4.2
IIR FILTER DESIGN

- IIR transfer function

\[H(z) = \frac{\sum_{l=0}^{L-1} b_l z^{-l}}{1 + \sum_{l=0}^{M} a_l z^{-l}} \]

- Need to find coefficients \(a_l, b_l \)
 - Impulse invariance – sample impulse response
 - Have to deal with aliasing
 - Bilinear transform
 - Match magnitude response
 - “Warp” frequencies to prevent aliasing
BILINEAR TRANSFORM DESIGN

- Convert digital filter into an “equivalent” analog filter
 - Use bilinear “warping”
- Design analog filter using IIR design techniques
- Map analog filter into digital
 - Use bilinear transform

Figure 4.5 Digital IIR filter design using the bilinear transform
BILINEAR TRANSFORMATION

- Mapping from s-plane to z-plane

 \[s = \frac{2}{T} \left(\frac{z-1}{z+1} \right) = \frac{2}{T} \left(\frac{1-z^{-1}}{1+z^{-1}} \right) \]

- Frequency mapping

 \[\Omega = \frac{2}{T} \tan \left(\frac{\omega}{2} \right) \]

 \[\omega = 2 \arctan \left(\frac{\Omega T}{2} \right) \]

- Entire \(j\omega \)-axis is squished into \([-\pi/T, \pi/T]\) to prevent aliasing

 - Unique mapping
 - Highly non-linear which requires “pre-warp” in design

Figure 4.6 Frequency warping of bilinear transform defined by (4.27)
BILINEAR DESIGN STEPS

- Convert digital filter into an “equivalent” analog filter
 - Pre-warp using: \(\Omega = \frac{2}{T} \tan \left(\frac{\omega}{2} \right) \)
- Design analog filter using IIR design techniques
 - Butterworth, Chebyshev, Elliptical
- Map analog filter into digital
 - \(H(z) = H(s) \bigg|_{s = \frac{2}{T} \frac{1 - z^{-1}}{1 + z^{-1}}} \)
Example 4.2

Design filter using bilinear transform

- $H(s) = 1/(s + 1)$
- Bandwidth 1000 Hz
- $f_s = 8000$ Hz
- DT parameters
 - $\omega_c = 2\pi(1000/8000) = 0.25\pi$

1. Pre-warp: $\Omega = \frac{2}{T} \tan \left(\frac{\omega}{2} \right)$
 - $\Omega_c = \frac{2}{T} \tan (0.125\pi) = \frac{0.8284}{T}$

2. Scale frequency (normalize scale)
 - $\hat{H}(s) = H \left(\frac{s}{\Omega_c} \right) = \frac{0.8284}{sT + 0.8284}$

3. Bilinear transform:
 - $H(z) = H(s)|_{s=\frac{2}{T}(\frac{1-z^{-1}}{1+z^{-1}})}$
 - $H(z) = \frac{0.2929(1+z^{-1})}{1-0.4141z^{-1}}$
REALIZATION OF IIR FILTERS

CHAPTER 4.3
Different forms or structures can implement an IIR filter

- All are equivalent mathematically (infinite precision)
- Different practical behavior when considering numerical effects

Want structures to minimize error
DIRECT FORM I (DFI)

- Straight-forward implementation of diff. eq.
 - b_l - feed forward coefficients
 - From $x(n)$ terms
 - a_l - feedback coefficients
 - From $y(n)$ terms
- Requires $(L + M)$ coefficients and delays
Notice that we can decompose the transfer function

\[H(z) = H_1(z)H_2(z) \]

Section to implement zeros and section to implement poles

Can switch order of operations

\[H(z) = H_2(z)H_1(p) \]

This allows sharing of delays and saving in memory
CASCADE (FACTORED) FORM

- Factor transfer function and decompose into smaller sub-systems
 - \(H(z) = H_1(z)H_2(z) \ldots H_K(z) \)
- Make each subsystem second order
 - Complex conjugate roots have real coefficients
 - Limit the order of subsystem (numerical effects)
 - Effects limited to single subsystem stage
 - Change in a single coefficient affects all poles in DF
- Preferred over DF because of numerical stability

Figure 4.10 Cascade realization of digital filter
Decompose transfer function using a partial fraction expansion

- \(H(z) = H_1(z) + H_2(z) + ... + H_K(z) \)
- \(H_k(z) = \frac{b_{0k}+b_{1k}z^{-1}}{1+a_{1k}z^{-1}+a_{2k}z^{-2}} \)

Be sure to remember that PFE requires numerator order less than denominator

- Use polynomial long division
DESIGN OF IIR FILTERS USING MATLAB

CHAPTER 4.4
MATLAB FILTER DESIGN

- **Realization tools:**
 - Finding polynomial roots
 - roots.m
 - tf2zp.m
 - Cascade form
 - $H(z) = G \prod_{k=1}^{K} \frac{b_{0k} + b_{1k}z^{-1} + b_{2k}z^{-2}}{1 + a_{1k}z^{-1} + a_{2k}z^{-2}}$
 - zp2sos.m
 - Parallel form
 - Residuez.m

- **Filter design tools:**
 - Order estimation tool
 - butterord.m
 - Coefficient tool
 - butter.m
 - Frequency transforms
 - lp2hp.m, lp2bp.m, lp2bs.m
 - Useful exploration tool
 - fvtool.m
 - Useful design tool
 - fdatool.m
 - Useful processing tool
 - sptool.m
(Causal) IIR filters are stable if all poles are within the unit circle
- $|p_m| < 1$
- We will not consider marginally stable (single pole on unit circle)
Consider poles of 2nd order filter (used in cascade and parallel forms)
- $A(z) = 1 + a_1 z^{-1} + a_2 z^{-2}$
Factor
- $A(z) = (1 - p_1 z^{-1})(1 - p_2 z^{-1})$
- $A(z) = 1 - (p_1 + p_2) z^{-1} + p_1 p_2 z^{-2}$
- Because poles must be inside the unit circle
 - $|a_2| = |p_1 p_2| < 1$
 - $|a_1| < 1 + a_2$

Figure 4.15 Region of coefficient values for the stable second-order IIR filters
Using fixed word lengths results in a quantized approximation of a filter

\[H'(z) = \frac{\sum_{k=0}^{L-1} b'_k z^{-k}}{1+\sum_{k=1}^{M} a'_k z^{-k}} \]

This can cause a mismatch from desired system \(H(z) \)

Poles that are close to the unit circle may move outside and cause instability

This is exacerbated with higher order systems
ROUNDING EFFECTS

- Using B bit architecture, products require $2B$ bits
 - Must be rounded into smaller B bit container
- This results in noise error terms
 - Can be simply modeled as additive term
- The order of cascade sections influences power of noise at output
 - How should sections be paired and ordered?
- Need to optimize SQNR
 - Trade-off with probability of arithmetic overflow
 - Need to use scaling factors to prevent overflow
 - Optimality when signal level is maximized without overflow
Good results are obtained using simple rules

Cascade ordering and pairing algorithm:

Pair pole closest to unit circle with zero that is closest in z-plane

- Minimize the chance of overflow

Apply 1 repeatedly until all poles and zeros are paired

Resulting 2nd-order sections can be ordered in two alternative ways

- Increasing closeness to unit circle
- Decreasing closeness to unit circle
PRACTICAL APPLICATIONS
CHAPTER 4.6
RECURSIVE RESONATOR

- Filter with frequency response dominated at a single peak
 - Use complex-conjugate pole pair inside unit circle

- $H(z) = \frac{A}{(1-r_pe^{j\omega_0}z^{-1})(1-r_pe^{-j\omega_0}z^{-1})}$

- $H(z) = \frac{A}{1-2r_p \cos(\omega_0)z^{-1}+r_p^2z^{-2}}$
 - A – normalization constant for unity gain at ω_0
 - $0 < r_p < 1$

- Close to unit circle
 - Bandwidth $\cong 2(1-r_p)$
 - Closer to $r_p = 1$, more peaked

Figure 4.17 Signal-flow diagram of the second-order resonator filter
PARAMETRIC EQUALIZER

- Add nearby zeros to the resonator
 - At same angle as poles ω_0 with similar radius
- Pole and zero counter balance one another
- $r_z < r_p$
 - Pole dominates because it is closer to unit circle
 - Generates peak at $\omega = \omega_0 \rightarrow$ Provides boost to freq
- $r_z > r_p$
 - Zero dominates pole
 - Generates dip at $\omega = \omega_0 \rightarrow$ Cuts freq
- Bandwidth still determined by r_p

- **Ex 4.18**
 - Create equalizer by changing gain at given frequency