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INTRODUCTION TO FIR FILTERS

CHAPTER 3.1
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WHY FIR FILTERS?

= Always stable

® Finite length
= Linear phase property (delay) is guaranteed
= Even/odd symmetry

® Finite precision errors are less severe
= No feedback

= FIR filtering is efficient for implementation

= Modern filter design is FIR design



TRANSIENT RESPONSE
=" Remember the LTI system

x(n) >| h(n) |_> y(n)

" Transient response

= Rising-time — how fast output can change (changing
rate)

® Settling-time — how long to settle to stable value

® Overshoot — if output goes over the desired value



STEADY STATE RESPONSE

» Linear phase filters

*(n) >| h(n) I_> y() " Oy(w) =—aw,or T —aw

= All frequencies delayed by same
" Y(w) = Hw)X(w) amount

= Simple phase relationship indicates a

= Magnitude response time shift by «

= |[Y(w)| = |H(w)]|X(w)] = y(n) =x(n—a)
= Phase response = Group delay
| (by((,()) = (DH((,()) +(DX ((,()) m Td((,()) _ _dq):af(l))

= Constant group delay for linear
phase = no phase distortion



FILTER TYPES

m [deal filters
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(a) Lowpass filter. (b) Highpass filter.
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(c) Bandpass filter. (d) Bandstop filter.

Figure 3.2 Magnitude responses of four different ideal filters

Defined in terms of magnitude
response

= Note: only [0, ] given because
with real filter coefficients

H(w) is even symmetric across
w =10

® Remember this is 2 periodic

= Bandstop with a narrow band
is called a notch filter

= Allpass filter has |H(w)| = 1,
Vo



FILTER SPECIFICATIONS

® Defined by magnitude response

= Must give a tolerance scheme

= (Cannot practically make ideal filters
with sharp transitions

" w,- passband edge frequency
= w.- stopband edge frequency

" J, - passband ripple

u Ap = 20 logw (1ig§) dB

= §. - stopband attenuation
- AS = —20 10g10 65 dB

] Idealfilter

Actual filter

/
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Figure 3.4 Magnitude response and performance measurement of lowpass filter

" 1-46,<|Hw)=<1+6, 0<sw=<w
o |H(w)| < &, W <w<T



LINEAR PHASE FIR FILTERS

= Systems have symmetry which

can be exploited I U N e B e SRR A1
" Even g
. bl=bL—1—ll [=01,..,L—-1 x(n—L+1)
= Odd 00 I S I |
x(n—L+2)
u bl = _bL—l—ll [ = O, 1, ,L -1 bio K;bl by
\;ﬂ_\ y(ﬂ)=

= Group delay is constant

Figure 3.5 Signal-flow diagram of symmetric FIR filter; L is an even number

L/2 L even
s T,(w) =M=+ L-1 ® [ess multiplications are required
— L odd Co
because coetficients are shared



DESIGN OF FIR FILTERS

CHAPTER 3.2




FIR FILTER DESIGN

» Determine filter coefficients to
meet specifications

" a,, b, coeffiecents

Ideal filter
s VNN e

g T I fil
Actual filter
—
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Figure 3.4 Magnitude response and performance measurement of lowpass filter



FOURIER SERIES (WINDOWING) METHOD

®* Find a desired impulse response from desired frequency response
= Hy(w) = Yni_chg(m)e /"

= hg(m) = [7 Ha(w)e/*" dw

= Notice the impulse response is in general infinite

= (Can make this finite only taking some of the samples (truncate)
. h(n) = {hd(()n) —M eSlsT; <M
® This can be made causal by shifting to the right by M samples
= by=h(l—M), 1=0,..,2M
= Notice that h(n) can be thought of as F'S coefficients for H;(w)

= More coefficients, better approximation



EXAMPLES: LP FILTER WITH WINDOWING

= Example 3.5

1 ol <=w
) Hd(w):{O l Llse C

= Use FT equation or in a Table of
common pairs

. WeNn w . w-n
= hy(n) =sin ncn = nCSan( 7‘; )

* Window the impulse response
and shift to make causal

We . wc(I—M) .
= b = 7Tsmc( - ) 0<I<L-1

0 else

= Example 3.7

= Design a LP filter with w, = 0.4m
with L = 61.

= p; = 0.4sinc(0.4(1 — 30)), 1=0,1,..,60

[}
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Figure 3.10 Magnitude response of lowpass filter designed by Fourier series method



WINDOWING APPROXIMATION

ACCURACY

= Notice the rippling effect known as Gibbs phenomenon

= Windowing is equivalent to multiplication
in time domain

= h(n) = hgy(M)w(n)
= Rectangular window

(1 —M<n<Mm
= win) = 0 else

= Multiplication in time is convolution
in frequency domain

" H(W) = - Hy(0) * W (@)

. W(a)) _ sin((z.wgl))w

SIn—=
2
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Figure 3.10 Magnitude response of lowpass filter designed by Fourier series method
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sin (w/2)

M=7)

Peak sidelobe

27 2 T 2
M+1)  (M+1)

—> Aw, [<— Mainlobe
width

Figure 7.28 Magnitude of the Fourier transform
of a rectangular window (M = 7).



WINDOWING IN FREQUENCY DOMAIN

1
" H() = 5= Ha(@) * W (@)

i [
H (e’
sin (w(M +1)/2) — Hy(e) :
ol sin @) (M=7) |
|
Ry | P | | L~ —

Peak sidelobe

l

2w 2 T 2 10}

TM+1) | (M+1)
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width

m

Figure 7.28 Magnitude of the Fourier transform
of a rectangular window (M = 7).

. (b)
N Ideal frequency l“eSpOIlSG 1S Figure 7.27 (a) Convolution process implied by truncation of the ideal

impulse response. (b) Typical approximation resulting from windowing the

SmOOthed by WlndOW DTFT ideal impulse response.



RECTANGULAR WINDOW

sin((ZIVIZH))a)
" W(w) =——=
SIn—
2 40
» This window spectrum has ripples which _—
causes ripples in H(w) at sharp transitions g :
0 - npme e &
= (Can’t make perfectly sharp edges 5 "
g
= Mainlobe — centered at w = 0 s
. -1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1
= Care about width Normalized frequency
= Sidelobes — all other ripples .
| T S ey ST FER .
= Care about height s d
g ----- dabhadadaia
= Gibbs phenomenon can be managed by e | LA O TR §
smoothing the window edges B EEEEREER
-4

0
-1 -08 -06 -04 -02 0 02 04 06 08 1

=  Results in lower sidelobe height and increased s N

mainlobe width

L. . . . . Figure 3.11 Magnitude responses of the rectangular windows for M =8 (top) and M =20 (bottom).
= Larger transition width at discontinuity but less

ringing



WINDOWING DESIGN CONSIDERATIONS

1 ’ ,
= H(w) = ng((U) * W(w) . (W)
= [deal frequency response is smoothed by window
DTFT
= The quality of the FIR approximation is e
dependent on two factors g
= The width of the main lobe % e e Sl
. The peak Side_lObe amplitUde Fig. 9-2. The DTFT of a typical window, which is characterii:lt:y the width of its main lobe, A,

and the peak amplitude of its side lobes, A, relative to the amplitude of W(e/”) at w = 0.

= Want narrow main-lobe width with small

side lobe amplitude = Increasing length of window the decreases
= More impulse-like the width of the mainlobe
=  Cannot optimize both at the same time m  Decreases width of the transition band

= Peak sidelobe amplitude is practically
independent of length only depends on
= NAf=c shape of window

" N -length of filter = Decrease in sidelobe amplitude results in greater
= See Shaum’s DSP notes mainlobe width



17

WINDOW FUNCTIONS

» Many windows have been designed to trade otf
mainlobe width and sidelobe height

= All have smooth transitions at edge of window

Table 9-1 Some Common Windows

1 0<n<N
Rectangular | w(n) =
0 else

0.8

2nn E
05-05 — 0 <
Hanning' w(n) = ( N ) T v f; 0.5 "-."-.___
0 else = o
1]
2mn " / * -
0.54 — 0.46 _— 0<n< Fo04r- ' f : _
Hamming w(n) = x cos( N ) snsN = ; Rectangular —\;— y
0 else = a4 Ba rtI tt—
. 0.2 bt
2nn 4mn 4 .
0.42 - 0. 8 cos[ —— <n<N FpA L hammin
Blackman | w(n) = 5°°s( N ) A ( N ) O=nz # ac
0 else 01

0 S 10 15 20 25
!In the literature, this window is also called a Hann window or a von Hann window. Weight number, n



WINDOW PERFORMANCE

Table 9-2 The Peak Side-Lobe Amplitude of Some Common Windows and the Approximate

Transition Width and Stopband Attenuation of an Nth-Order Low-Pass Filter
Designed Using the Given Window.
Window Side-Lobe Amplitude (dB) Transition Width (Af) Stopband Attenuation (dB)
Rectangular -13 0.9/N =21
Hanning -31 3.1/N —44
Hamming —41 3.3/N -53
Blackman -57 55/N -74
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http://www.labbookpages.co.uk/audio/firWindowing.html

: ; Rectangular
' Bartlett —
Hanning —
Harmrming
Blackman —
| | | | |

0 5 10 15 20 25
Weight number, n


http://www.labbookpages.co.uk/audio/firWindowing.html

FIR DESIGN STEPS

Select window type to satisty
stopband attenuation requirements

Determine window size L based on
transition width (N in Schaum’s)

Calculate window values/coefficients

Calculate impulse response of
desired filter

= Truncate to fixed length L

= Shift to make causal

Calculate final filter coetficients as
product of window and desired
response

= by = hyll — M]wl[l]

Weight value, win) Weight Walue, win)

Weight value, win)

0.5
0.4

03
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I
— Sinc function
weights
- ‘T"*l t t l*' S——
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Weight number, n
—Window
— weights
t t
0 5 15 20
Weight number, n
n 1 I -
|_Final filter weights
- ¥ hi b L
R B I
0 ] 10 15 20

Weight number, n



APPLICATIONS: INTERPOLATION AND
DECIMATION FILTERS

CHAPTER 3.4

20



UPSAMPLING/INTERPOLATION

= Increase the sampling rate of a signal A
by factor L

» Accomplished by inserting zeros into a
sequence and then lowpass filtering 1

" iy Q

= Zero insertion is upsampling > '

(b)

n
- xu(n) =% E)Z) n =0, ilL; +2L, ...
eLse

=  Resulting signal has more samples but gaps
between values

= LP filtering is interpolation to fill gaps

w=QT;

K ™ ™
L

= LP filter using gain L and cutoff = /L

= (Gain of L to “spread” sample energy to
neighbor zeros

27 - _m T T 2w w=Q0T;

(e)
Figure 4.24 Frequency-domain illustration of interpolation.



DOWNSAMPLING/DECIMATION

X()

= Reduce the sampling rate of a signal AN

by factor M i
= Accomplished by dropping samples N /\ A

= xg(n) = x(nM) . i
= Remember bandwidth is controlled /y '

by sampling rate B I N I R

= Both sampling rate and bandwidth |

decrease by factor M S

= This may result in aliasing of the signal “
= Avoid aliasing by pre-filtering signal N N O,
with LP filter with cutoff = n/M R
before decimation 7 s
/\/

| | | |
2 2 w=0T,
(H)

Figure 4.21 (a)—(c) Downsampling with aliasing. (d)—(f) Downsampling with prefiltering to avoid aliasing.



ARBITRARY SAMPLE RATE CONVERSION

= Conversion to arbitrary sample rate is possible
= R=U/D
= Must find appropriate upsample factor U and downsample factor D
» First perform interpolation followed by decimation

® Minimize reduction in signal bandwidth

= No fear of aliasing in upsample

®» Downsampling first could result in loss of high frequency content
= Can combine interpolation LP filter with LP for decimation
= Cuttott should be minimum of either operation

= Use Matlab interp.m, decimate.m, and upfindn.m/resample.m



