EE482: DSP APPLICATIONS CH2 DSP FUNDAMENTALS

DIGITAL SIGNALS AND SYSTEMS

CHAPTER 2.1

ELEMENTARY DIGITAL SIGNALS

- Digital signal
 - x(n) $n \in \mathbb{Z}$
 - Deterministic expressed mathematically (e.g. sinusoid)
 - Random cannot be described exactly by equations (e.g. noise, speech)
- Unit impulse (Kronecker delta)

•
$$\delta(n) = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

- Basic building block of all digital signals
- Unit step

•
$$u(n) = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases} = \sum_{k=-\infty}^{n} \delta(k)$$

SINUSOIDAL SIGNALS

Continuous

•
$$x(t) = A \sin(\Omega t + \phi) = A \sin(2\pi f t + \phi)$$

Sampled

•
$$x(n) = A \sin(\Omega nT + \phi) = A \sin(2\pi f nT + \phi)$$

• $\Omega = 2\pi f$

•
$$x(n) = A \sin(\omega n + \phi) = A \sin(F\pi n + \phi)$$

• $\omega = \Omega T$

RELATIONSHIPS BETWEEN FREQ VARIABLES

Table 2.1

Variable	Units	Relationships	Ranges
Ω	$\mathrm{rads/sec}$	$\Omega = 2\pi f$	$\infty > \Omega > \infty$
f	cycles/sec (Hz)	$f = \frac{\Omega}{2\pi} = \frac{\omega f_s}{2\pi}$	$-\infty < f < \infty$
ω	rads/sample	$\omega = \Omega T = \frac{2\pi f}{f_s}$	$-\pi \le \omega \le \pi$
F	cycles/sample	$F = \frac{f}{f_s/2} = \frac{\omega}{2}$	$-1 \le F \le 1$

- Normalized frequency measures
- Note: max frequency for π or definition over a 2π interval
 - \blacksquare Consider $e^{j(\omega+2\pi k)}$

EXAMPLE 2.1

- n=0:31;
- $\bullet \quad w = 2*pi*f/fs;$
- $\bullet \quad \mathbf{x} = \mathbf{A}^*\!\!\sin(\mathbf{w}^*\!\mathbf{n});$
- h=figure;
- %plot sampled sine
- subplot(2,1,1)
- plot(n,x,'-o','linewidth',2);
- xlabel('time index [n]'); ylabel('value'); legend('sampled sine')
- %plot analog sine
- subplot(2,1,2)
- t=0:1e-5:4e-3;
- $\bullet \quad \text{plot}(n^*(1/\text{fs}), x, \text{'-o'}, \text{'linewidth'}, 2);$
- hold all;
- plot(t, A*sin(2*pi*f*t), 'linewidth',2);
- xlabel('time [t=n(1/f_s)]'); ylabel('value'); legend('sampled sine', 'analog sine')

BLOCK DIAGRAM REPRESENTATION

- Processing accomplished with 3 basic operations
- Addition
 - $y(n) = x_1(n) + x_2(n)$
- Multiplication
 - y(n) = ax(n)
- Time shift (delay)
 - y(n) = x(n-L)
 - Multiple delays can be implemented with a shift register (first-in, first-out buffer)(tapped delay line)

Multiplication in z domain

SYSTEM CONCEPTS

CHAPTER 2.2

SYSTEMS

Generic system

$$x(n) \longrightarrow T \longrightarrow y(n)$$

- Linearity
 - Additive and homogeneity (scaling) properties
 - $T{ax_1(n) + bx_2(n)} = ay_1(n) + by_2(n)$

- Time invariance
 - Shift in input causes corresponding shift in output
 - $y(n n_0) = T\{x(n n_0)\}$
 - To test, check if $y_1(n) = y_2(n)$
 - $y_1(n) = y(n n_0)$
 - Replace n by n_0
 - $y_2(n) = T\{x(n n_0)\} = T\{g(n)\}$
 - Response of system to shifted input

LTI SYSTEMS

Impulse response

$$x(n) = \delta(n) \longrightarrow LTI \longrightarrow y(n) = h(n)$$

10

• Output of LTI system y(n) = h(n) to input $x(n) = \delta(n)$

Convolution

Input-output relationship of LTI system

$$y(n) = x(n) * h(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

GENERAL DIFFERENCE EQUATION SYSTEMS

$$\sum_{k=0}^{M} a_k y(n-k) = \sum_{k=0}^{L-1} b_k x(n-k)$$

- Infinite impulse response (IIR)
 - h(n) non-zero as $n \to \infty$
- Finite impulse response (FIR)
 - h(n) defined over finite set of n
 - Special case of above with $a_k = 0$
 - This system only has zeroes and poles at z = 0

$$y(n) = \sum_{k=0}^{L-1} b_k x(n-k) - \sum_{k=1}^{M} a_k y(n-k)$$

- Causality
 - Output only depends on previous input
 - h(n) = 0, n < 0
- Stability (BIBO)
 - $\sum |h(n)| < \infty$
 - Absolutely summable

Z-TRANSFORM

Very useful computational tool for studying digital systems

Definition
$$X(z) = \sum_{n=-\infty}^{\infty} x(n) z^{-n}$$
 $z = r e^{j\theta}$
Complex variable

- Has associated region of convergence (ROC)
 - \blacksquare Values of z where summation converges
- Useful summation formulas

$$\sum_{n=0}^{N} \alpha^n = \frac{1 - \alpha^{N+1}}{1 - \alpha} \qquad \qquad \sum_{n=0}^{\infty} \alpha^n = \frac{1}{1 - \alpha} \longleftarrow |\alpha| < 1$$

Z-TRANSFORM PROPERTIES

- Linearity
- $\mathbf{Z}\left\{ax_1(n) + bx_2(n)\right\} = aX_1(z) + bX_2(z)$ $\mathbf{Time shift}$

$$Z\{x(n-k)\} = z^{-k}X(z)$$

Convolution

•
$$x(n) = x_1(n) * x_2(n) \to X(z) = X_1(z)X_2(z)$$

 $\blacksquare \operatorname{ROC} = R_{x1} \cap R_{x2}$

TRANSFER FUNCTIONS

$$x(n) \longrightarrow h(n) \longrightarrow y(n) = x(n) * h(n)$$

- Note: convolution in time is multiplication in Z-domain
- Y(z) = X(z)H(z)

•
$$H(z) = \frac{Y(z)}{X(z)}$$

- General polynomial form from difference equation
 - Take Z-transform of both sides of general diff eq

$$H(z) = \frac{\sum_{k=0}^{L-1} b_k z^{-k}}{1 + \sum_{k=1}^{M} a_k z^{-k}}$$

POLES AND ZEROS

Zeros

- Roots of the numerator polynomial
- Locations in z-plane that make output zero

Poles

- Roots of the denominator polynomial
- Locations in z-plane that make output infinity (unstable)
 - System is considered unstable if the ROC doesn't contain the unit circle (no DTFT exists)
 - Causal system → poles should be inside unit circle

EXAMPLE 2.10

•
$$H(z) = \frac{1}{L} \left[\frac{1 - z^{-L}}{1 - z^{-1}} \right]$$

- Notice this is a polynomial in z^{-1}
- Convert to polynomial in z to get all poles and zeros

•
$$H(z) = \frac{1}{L} \left[\frac{z^{L} - 1}{z^{L} - z^{L-1}} \right] = \frac{1}{L} \left[\frac{z^{L} - 1}{z^{L-1}(z-1)} \right]$$

• $(z-1) = 0 \rightarrow z = 1$

•
$$z^{L-1} = 0 \rightarrow \text{L-1}$$
 poles at $z = 0$

Zeros

•
$$z^L - 1 = 0 \rightarrow z_l = e^{j\left(\frac{2\pi}{L}\right)l}$$

• L zeros even spaced around unit circle

Matlab

fvtool([1 0 0 0 0 0 0 0 -1], [1 -1]);

Figure 2.12 Pole–zero diagram of the moving-averaging filter, L=8

FREQUENCY RESPONSE

Discrete-time Fourier transform (DTFT)

$$H(\omega) = H(z)|_{z=e^{j\omega}} = \sum_{n=-\infty}^{\infty} h(n)e^{-j\omega n}$$

• Evaluate transfer function along the unit circle $|z| = |e^{j\omega}|$

$$H(\omega) = |H(\omega)|e^{\angle H(\omega)}$$
$$H(\omega)| = \sqrt{H(\omega)H^*(\omega)} \quad \angle H(\omega) = \arctan\left(\frac{\operatorname{Im} H(\omega)}{\operatorname{Re} H(\omega)}\right)$$

- Frequency response is periodic in 2π interval and symmetric
 - Only $[0, \pi]$ interval is required for evaluation

GRAPHICAL DTFT INTERPRETATION

- Poles
 - $|H(\omega)|$ gets larger closer to θ
- Zeros
 - $|H(\omega)|$ gets smaller closer to θ

- What does a highpass filter look like?
- What does a lowpass filter look like?

DISCRETE FOURIER TRANSFORM

- \blacksquare Notice the DTFT is a continuous function of ω
 - Requires an infinite number of samples to compute (infinite sum)

- DFT is a sampled version of the DTFT
 - \blacksquare Samples are taken at N equally spaced frequencies along unit circle

•
$$\omega_k = \frac{2\pi k}{N}, \ k = 0, 1, \dots, N-1$$

$$X(k) = X(\omega)|_{\omega = \frac{2\pi k}{N}} = \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi k}{N}n}$$

- n time index
- k frequency index

DFT IMPLEMENTATION

$$X(k) = X(\omega)|_{\omega = \frac{2\pi k}{N}} = \sum_{n=0}^{N-1} x(n) e^{-j\frac{2\pi k}{N}n}$$

- DFT can be computed very efficiently with the fast Fourier transform (FFT)
- Frequency resolution of DFT

•
$$\Delta_{\omega} = \frac{2\pi}{N}$$
, $\Delta_f = \frac{f_s}{N}$

Analog frequency mapping

•
$$f_k = k\Delta_f = \frac{kf_s}{N}, \quad k = 0, 1, ..., N - 1$$

• Nyquist frequency
$$\frac{f_s}{2}$$
 corresponds to $k = \frac{N}{2}$

EXAMPLE 2.16

- N = 100; A = 1; f=1000; fs = 10000;
- n=0:N-1;
- $\bullet \quad w = 2*pi*f/fs;$
- $\bullet \quad \mathbf{x} = \sin(\mathbf{w}^*\mathbf{n});$
- $\bullet \quad X = fft(x);$
- $\bullet \quad \mathrm{K} = \mathrm{length}(\mathrm{X});$
- h=figure;
- subplot(2,1,1)
- plot(0:K-1, 20*log10(abs(X)), 'linewidth', 2);
- xlabel('freq index [k]'); ylabel('magnitude [dB]');
- subplot(2,1,2)
- %convert index to freq
- f = (0:K-1) * fs/N;
- $\bullet \quad plot(f, 20*log10(abs(X)), 'linewidth', 2);$
- xlabel('freq [Hz]'); ylabel('magnitude [dB]');

EXAMPLE 2.16 – SHIFTED FREQUENCIES

- ind = -K/2:K/2-1;
- Xs = fftshift(X)
- h=figure;
- subplot(2,1,1)
- plot(ind, 20*log10(abs(Xs)), 'linewidth', 2);
- xlabel('freq index [k]');
- ylabel('magnitude [dB]');
- subplot(2,1,2)
- %convert index to freq
- f = ind * fs/N;

- plot(f, 20*log10(abs(Xs)), 'linewidth', 2);
- xlabel('freq [Hz]');
- ylabel('magnitude [dB]');

INTRO TO RANDOM VARIABLES

CHAPTER 2.3

RANDOM VARIABLES

Function that maps from a sample space to a real value

• $x: S \to \mathbb{R}$

- x random variable (does not have a value)
- S sample space
- Cumulative distribution function (CDF)
 - $F(X) = P(x \le X)$
 - E.g. probability $\{x \leq X\}$

 Probability density function (PDF)

•
$$f(X) = \frac{dF(X)}{dX}$$

•
$$\int_{-\infty}^{\infty} f(X) dX = 1$$

•
$$P(X_1 < x \le X_2) = F(X_2) - F(X_1)$$

 $P(X_1 < x \le X_2) = \int_{X_1}^{X_2} f(X) dX$

- Probability mass function (PMF)
 - For discrete x, takes values X_i , i = 1, 2, 3, ...

•
$$p_i = P(x = X_i)$$

UNIFORM RANDOM VARIABLE

• Variable takes on value in a range with equal probability

•
$$f(X) = \begin{cases} \frac{1}{X_2 - X_1} & X_1 \le x \le X_2 \\ 0 & else \end{cases}$$

 Be sure you can calculate mean and variance

- Be aware that the book is a little sloppy in notation
 - RV x vs X

Figure 2.17 The uniform density function

STATISTICS OF RANDOM VARIABLES

- Expected value (mean)
 - $m_x = E[x]$ expectation operator
 - $m_x = \int_{-\infty}^{\infty} Xf(X) dX$
 - $m_x = \sum_i X_i p_i$

continuous discrete

- Can be can computed with mean.m and var.m
 - Read help for info on finite sample versions

Variance (spread around mean)

•
$$\sigma_x^2 = E[(x - m_x)^2] = E[x^2] - m_x^2$$

Continuous

•
$$\sigma_x^2 = \int_{-\infty}^{\infty} (X - m_x)^2 f(X) dX$$

- Discrete
 - $\sigma_x^2 = \sum_i p_i (X_i m_x)^2$
- For $m_x = 0$,
 - $\sigma_x^2 = E[x^2] = P_x$
 - Second moment, power

FIXED-POINT REPRESENTATION AND QUANTIZATION EFFECTS

CHAPTER 2.4

FIXED-POINT NUMERICAL EFFECTS

Fractional numbers are represented in 2's complement with B = M + 1 bits

•
$$x = b_0 \cdot b_1 b_2 \dots b_{M-1} b_M$$

sign bit binary point msb lsb

•
$$b_0 = \begin{cases} 0 & x \ge 0 & \text{positive} \\ 1 & x < 0 & \text{negative} \end{cases}$$

• Value =
$$-b_0 + \sum_{m=1}^{M} b_m 2^{-m}$$

■
$$-1 \le x \le (1 - 2^{-M})$$

Unbalanced range with more negative than positive numbers

GENERAL FRACTIONAL FORMAT Qn.m

- Q format
 - Qn.m = Q#integer.#fraction
 - Larger n increases dynamic range but at cost of reduced precision (smallest fractional resolution)
 - b₀ is not counted as part of integer just as a sign-bit

- Example 2.25
- $x = 0100\ 1000\ 0001\ 1000b$ = 0x4818
- **Q**0.15
 - $x = 2^{-1} + 2^{-4} + 2^{-11} + 2^{-12} = 0.56323$
- **Q**2.13
 - $x = 2^1 + 2^{-2} + 2^{-9} + 2^{-10} = 2.25293$
- Q5.10 • $x = 2^4 + 2^1 + 2^{-6} + 2^{-7} = 18.02344$

FINITE WORD LENGTH EFFECTS

- 1. Quantization errors
 - Signal quantization
 - Coefficient quantization
- 2. Arithmetic errors
 - Roundoff (truncation)
 - Overflow

SIGNAL QUANTIZATION

- ADC conversion of sampled signals to fixed levels
- Using Q15 and B bits
 - Dynamic range $-1 \le x < 1$
 - Quantization step
 - $\Delta = \frac{2}{2^B} = 2^{-B+1} = 2^{-M}$
- Quantization error
 - $e(n) = x(n) x_B(n)$
 - $x_B(n) = Q[x(n)]$
 - $|e(n)| \leq \frac{\Delta}{2} = 2^{-B}$ (rounding)
 - Error dependent on word length B
 - More bits for better resolution, less error (noise)
- Signal to quantization noise (SQNR)
 - $SQNR = \frac{\sigma_x^2}{\sigma_e^2} = 3.2^{2B}\sigma_x^2$
 - $SQNR = 4.77 + 6.02B + 10 \log_{10} \sigma_x^2 dB$

Figure 2.21 Quantization process related to a 3-bit ADC

COEFFICIENT QUANTIZATION

- Same error issues as for signals
- Results in movement of the locations of poles/zeros

- Changes system function polynomials
- Can lead to instability if poles go outside the unit circle
 - Generally, more a problem with IIR filters
- Can limit coefficient quantization effects by using lower-order filters
 - Use of cascade and parallel filter structures

ROUNDOFF NOISE

• A product must be represented in B bits by rounding (truncation)

33

•
$$y(n) = \alpha x(n)$$

 $\uparrow \qquad \uparrow \qquad \checkmark$
 $2B \text{ bits} \qquad B \text{ bits} \qquad B \text{ bits}$

Error model

•
$$y(n) = Q[\alpha x(n)] = \alpha x(n) + e(n)$$

• e(n) is uniformly distributed zero mean noise (rounding)

OVERFLOW AND SOLUTIONS

CHAPTER 2.5

OVERFLOW

- $y(n) = x_1(n) + x_2(n)$
 - $-1 \le x_i(n) < 1$
 - $-1 \le y(n) < 1$
- Overflow occurs when the sum cannot fit in the word container
- Signals need to be scaled to prevent overflow

- Notice: this reduces the SQNR
 - $SQNR = 10 \log_{10}(\frac{\beta^2 \sigma_x^2}{\sigma_e^2})$

Figure 2.24 Block diagram of simple FIR filter with scaling factor β