EE482/682: DSP APPLICATIONS CH1 INTRODUCTION TO REAL-TIME DSP

OUTLINE

- Intro to DSP
- Real-time DSP system components
- Matlab primer

SIGNALS

- Continuous-time (CT or analog)
 - Everyday signals from nature
 - Defined continuously in "time" at all time instances
 - Infinite amplitude value resolution
 - Can be processed using analog electronics (active and passive circuit elements)
- Discrete-time (DT)
 - Only defined on particular set of "time" instances
 - Sequence of numbers with continuous value range
 - Used for theoretical study and mathematical convenience
- Digital
 - Both discrete "time" and discrete amplitude values
 - Processed with computers and DSP chips

WHAT IS DSP?

- Digital representation of signals (coding)
- Design and use of digital systems to
 - Analyze
 - Modify
 - Store
 - Transmit
 - Extract information

DSP ADVANTAGES

- Flexibility
 - Software implementation for upgrades, multiple tasks, etc.
- Reproducibility
 - Easier to repeat implementation, to store and transfer digital signals
- Reliability
 - DSP hardware design is quite robust due in modern computation age
- Complexity
 - Can implement sophisticated tasks on specialized hardware
- Cost
 - Moore's Law for semiconductors, software development cycle and powerful packages (e.g. Matlab, Python)

DSP DISADVANTAGES

- Unnatural
 - Our everyday signals come from analog processes
- Physical limitations
 - Bandwidth of DSP system limited by sampling rate, aliasing
- Numerical effects
 - Limited precision and dynamic range, quantization and arithmetic errors

REAL-TIME DSP SYSTEMS

- Non-real-time
 - Signals that are stored in digital form
 - Not necessarily for current or real-time data
- Real-time
 - Demands design to ensure tasks are completed within a given timeframe
 - Typically expect this to be related to the current time
- Emphasis on real-time in this class
 - Fun processing streaming data
 - See bandwidth processing time relationship in Section 1.3.4
 - Faster processing means less available bandwidth

REAL DSP SYSTEM

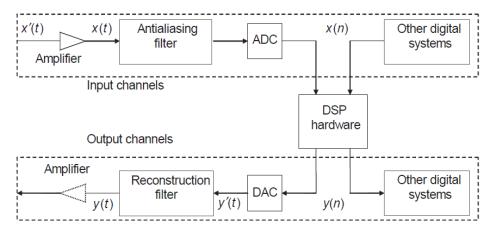
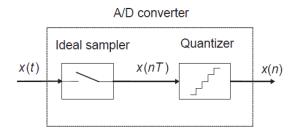
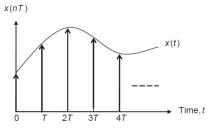
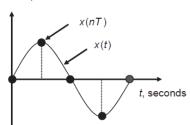



Figure 1.1 Basic functional block diagram of a real-time DSP system

- CT Analog signal
 - $\mathbf{x}(t)$ $t \in \mathbb{R}$
- DT/digital signal
 - $\mathbf{x}(n)$ $n \in \mathbb{Z}$
- ADC analog to digital conversion
- DAC digital to analog conversion


- Analog signals are converted to electrical by a transducer
 - E.g. Microphone
- Amplifier
 - Gain selected to match ADC
 - Often need auto gain control (e.g. white balance)
- Antialiasing filter
 - Deal with finite bandwidth of digital system
- Reconstruction filter
 - Interpolation between digital and analog signal

ADC – SAMPLING


Figure 1.2 Block diagram of an ADC

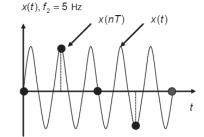
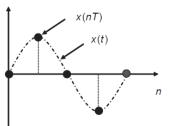
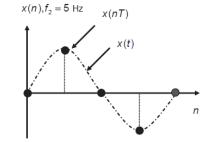

- Sampling
 - x[n] = x(nT)
 - \blacksquare T sampling period
 - Analog signal value extracted at fixed uniformly spaced times
- Shannon's sampling theorem
 - $f_S = \frac{1}{T} > 2f_M$
 - Sampling frequency must be twice the bandwidth to avoid aliasing
 - Nyquist rate $f_n = 2f_M$

Figure 1.3 Sampling of analog signal x(t) and the corresponding discrete-time signal x(nT)





(a) Original analog waveforms and digital samples for $f_1 = 1$ Hz and $f_2 = 5$ Hz.

$$x(n), f_1 = 1 \text{ Hz}$$

(b) Digital samples of $f_1 = 1$ Hz and $f_2 = 5$ Hz and the reconstructed waveforms

Figure 1.4 Example of the aliasing phenomenon

ADC - QUANTIZATION

Quantization

- Amplitude value is represented by one of 2^B binary levels
- Rounding set value to closest quantization level
- Truncation replaces by value below it (chop bits)

Quantization error/noise

- Difference between quantized value and original value
- Appears as random noise at output of converter
- Signal-to-quantization-noise ration(QNR)
 - $SQNR \approx 6B \text{ dB}$

Quantization level

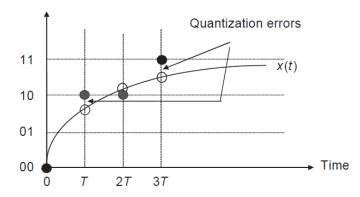


Figure 1.5 Digital samples using 2-bit quantizer

SMOOTHING FILTERS

- DACs are zero-order-hold
 - Keep fixed sample value until next sample

- Smoothing with low pass (LP) filter is done to remove high frequency components of "staircase"
 - LP filter in reconstruction block

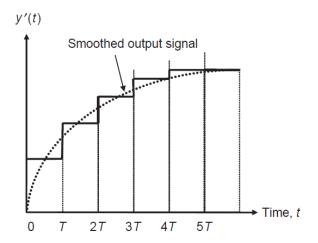
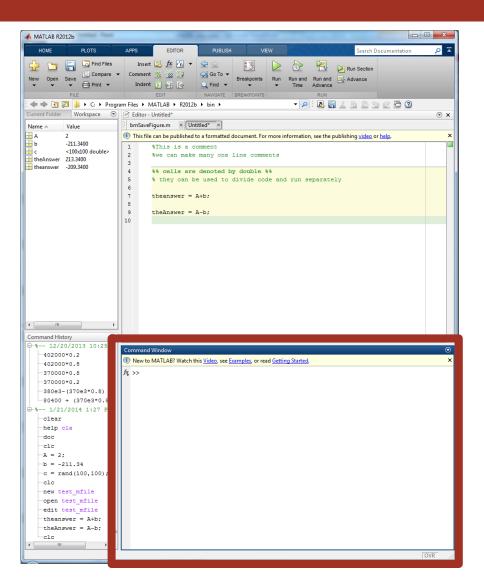
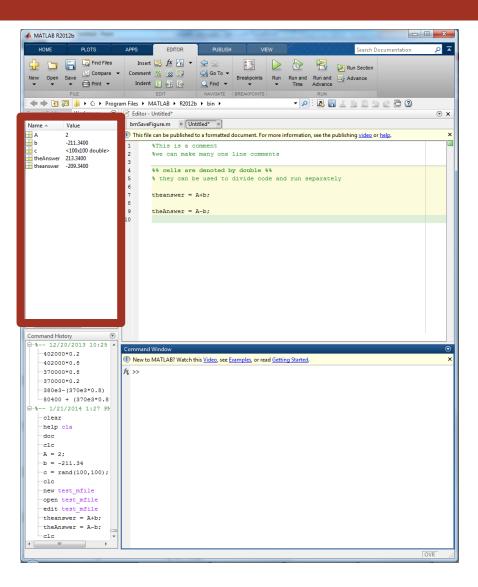
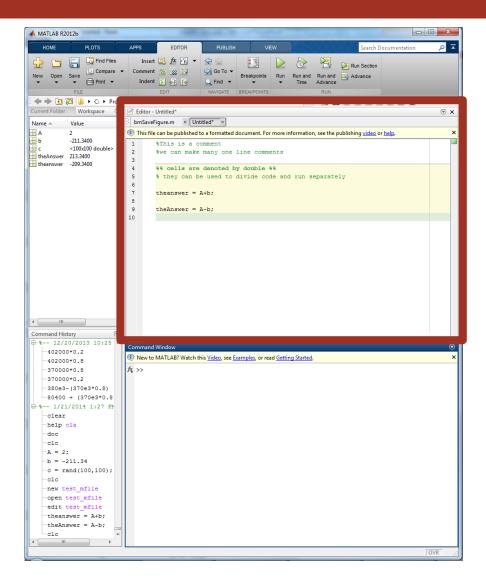



Figure 1.6 Staircase waveform generated by DAC and the smoothed signal


- See the web for many tutorials and help
 - https://matlabacademy.mathworks.com/

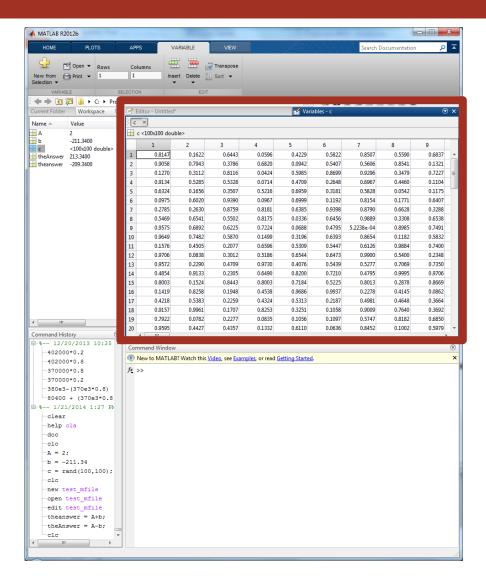
- Matlab has very good in program help
 - Use the help.m and doc.m commands


- Go through tutorials
 - Signal processing
 - Image processing

- Command Window
 - Interactive interpreted area
 - The calculator space

- Workspace
 - Lists all variables in memory
 - All Are currently available

Editor


- Build script files (m-files)
- What makes Matlab so much more than a calculator

M-files

- Learn to write these, it will make your life much easier
- Provides ability to document and re-run code quickly
- Must submit for class assignments

Note:

- ; suppresses command window output
- % is comment character

- Variables
 - Quick way to read contents of your workspace variables

- Useful for debugging
 - There is a <u>debugger</u> in Matlab!
 - Use the keyboard shortcuts (F5 run, shift-F5 stop, F10 step, F11 step-in)
 - Must write m-files to utilize this

■ Ctrl+c to kill running code

PYTHON

- If you aren't familiar with Matlab (and even if you are), it is highly recommended to use Python
 - Free and lots of tutorials and support online
 - In heavy use for ML/AI
- We will not teach it in class so you'll have to look online for resources
 - Use Python virtual environments (<u>venv</u>) or <u>Anaconda/Miniconda</u>
 - Use a notebook like <u>Juptyer</u> or <u>Google Colab</u> to have an interactive interface