
Digital Signal Processing Applications EE482/682: Spring 24

Homework #4
Due M 3/04

You must turn in your code as well as output files. Please generate a report that contains the code
and output in a single readable format.

Visit the book website to download companion software, including all the example problems.

http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118414322.html

1. (KLT 5.5)

Solution

No detailed solutions will be given. Please be sure you can solve these problems by hand.
The solutions are presented in Fig 1.

0 1 2 3 4 5 6
0

2

4

6

(a)

0 0.5 1 1.5 2 2.5 3
0

2

4

6

(b)

0 1 2 3 4 5 6 7
−2

0

2

4

6

(c)

Figure 1: KLT 5.5

(a) Compute the linear convolution using the flip-and-drag technique.

Case Summation Result
n < 1 y(n) = 0 0

n− 3 > 3
y(n) = 0 0

n > 6

1 ≤ n ≤ 3 y(n) =
∑n

k=1 k [1, 3, 6]

1 ≤ n− 3 < 3
y(n) =

∑3
k=n−3 k [6, 5, 3]

4 ≤ n ≤ 6

(b) Use circular convolution technique described in Figure 5.3 on pg 204 of the book.

(c) Repeat (b) after padding x1(n) and x2(n) with zeros to length 8 samples (4 zeros
padding)

(d) Matlab results plotted in Fig. 1

x1 = [1, 1, 1, 1]; % Define x(n)

x2 = [0, 1, 2, 3]; % Define h(n)

%a linear convolution

ylc = conv(x1,x2)

% b circular convolution

Xk = fft(x1); % Compute X(k)

Hk = fft(x2); % Compute H(k)

Yk = Xk.*Hk; % Y(k)=X(k)H(k)

ycc = ifft(Yk) % Compute and display circular convolution result

1

http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118414322.html


Digital Signal Processing Applications EE482/682: Spring 24

%c linear convolution using padding and circular evaluation

x1p = [x1, 0, 0, 0, 0];

x2p = [x2, 0, 0, 0, 0];

Xk = fft(x1p); % Compute X(k)

Hk = fft(x2p); % Compute H(k)

Yk = Xk.*Hk; % Y(k)=X(k)H(k)

ycl = ifft(Yk) % Compute and display circular convolution result

ylc =

0 1 3 6 6 5 3

ycc =

6 6 6 6

ycl =

0 1.0 3.0 6.0 6.0 5.0 3.0 -0.0

2. (KLT 5.6)

Solution

The structure can be obtained by stacking two 8-point DFT sections (Figure 5.6) together
and connecting the outputs through the butterfly. The full structure is shown in Fig. 2 where
each twiddle term is subscript 16. The ordering of the input signal x(n) can be obtained by
the bit-reversal process.

3. (KLT 5.10)

Solution

(a) The frequency resolution is computed as

∆ω =
2π

N
= 0.0491 ∆f =

fs
N

= 62.5Hz

(b) There are two peaks at k1 = fc/∆f = 16 and at k2 = N − k1 for the negative copy. See
the plot in Fig. 3a.

(c) The line spectrum exists because this is a periodic signal (shown in Fig. 3b).

(d) If spectral leakage occurs then the windowing function must be changed to smooth the
edge transitions to reduce the widow sidelobe height.

4. (KLT 5.12)

Solution

x = 1:8; % Define x(n)

h = [1, 0, 1, 0, 1, 0, 1, 0]; % Define h(n)

%a linear convolution

ylc = conv(x,h)

2



Digital Signal Processing Applications EE482/682: Spring 24

Figure 2: Decimation-in-time FFT signal flow diagram for N=16

0 20 40 60 80 100 120 140
−400

−200

0

200

freq index [k]

m
ag

ni
tu

de
 [d

B
]

(a)

0 2000 4000 6000 8000
−400

−200

0

200

freq [Hz]

m
ag

ni
tu

de
 [d

B
]

(b)

Figure 3: KLT 5.10

% b circular convolution

Xk = fft(x); % Compute X(k)

Hk = fft(h); % Compute H(k)

Yk = Xk.*Hk; % Y(k)=X(k)H(k)

ycc = ifft(Yk) % Compute and display circular convolution result

%c linear convolution using padding and circular evaluation

x1p = [x, zeros(size(x))];

x2p = [h, zeros(size(h))];

Xk = fft(x1p); % Compute X(k)

Hk = fft(x2p); % Compute H(k)

3



Digital Signal Processing Applications EE482/682: Spring 24

Yk = Xk.*Hk; % Y(k)=X(k)H(k)

ycl = ifft(Yk) % Compute and display circular convolution result

%d fast convolution

yff = fftfilt(x1p,x2p)

ylc =

1 2 4 6 9 12 16 20

15 18 12 14 7 8 0

ycc =

16 20 16 20 16 20 16 20

ycl =

1.0 2.0 4.0 6.0 9.0 12.0 16.0 20.0

15.0 18.0 12.0 14.0 7.0 8.0 0 0.0

yff =

1.0 2.0 4.0 6.0 9.0 12.0 16.0 20.0

15.0 18.0 12.0 14.0 7.0 8.0 0.0 0.0

5. (KLT 5.16)

Solution

In order to distinguish the two close sinusoids there must be sufficient resolution and limited
spectral leakage. The easiest way to distinguish the two sinusiods is to satisfy the frequency
separation condition which results in window length

N >
fs
∆f

= 256.

In Fig. 4a the window length is made twice the minimum length for clear separation. In
Fig. 4b the window length is set at the minimum but spectral leakage is controlled by using
a Blackman window. Notice the two peaks are just able to be distinguished.

118 119 120 121 122 123 124
0

100

200

Frequency index, k

M
ag

ni
tu

de

(a)

58 59 60 61 62 63 64
0

10

20

Frequency index, k

M
ag

ni
tu

de

(b)

Figure 4: KLT 5.16

6. (KLT 5.17)

Solution

(a) Window Size: When the window size is increased, each short-time Fourier transform
(column of spectrogram) is computed on longer speech segments. If the window is too

4



Digital Signal Processing Applications EE482/682: Spring 24

small (Fig. 5a) then spectral information does not capture the pitch of the speaker.
When the window is too long (Fig. 5c) too many harmonics are introduced between
changing tone resulting in too many spectral components or less smooth in time and
able to track changing pitch.

0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500

3000

3500

4000

Time

F
re

qu
en

cy
 (

H
z)

(a) window=16

0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500

3000

3500

4000

Time
F

re
qu

en
cy

 (
H

z)

(b) window=256

0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

3000

3500

4000

Time

F
re

qu
en

cy
 (

H
z)

(c) window=4096

Figure 5: KLT 5.17: Varying window size

(b) Overlap: Increasing the window overlap smooths the spectrum. This needs to be viewed
on screen to see effects.

(c) FFT Size: Increasing FFT size increases the frequency resolution making the spectrum
sharper. This needs to be viewed on screen to see effects.

% Speech sampled at 8 kHz, 16 bits

load(’timit2.asc’);

soundsc(timit2, 8000) % Play the speech

%examine 3 values for each parameter

wvals = 2.^[4 8 12];

oper = [0.25 0.5 0.75];

fvals = [1 2 4];

%% test window size

for win = wvals

ov = win * 0.5;

h=figure;

spectrogram(timit2,win,ov,win,8000,’yaxis’);

end

%% test overlap

for ov = oper

h=figure;

spectrogram(timit2,256,ov*256,256,8000,’yaxis’);

end

%% test fft size

for s = fvals

h=figure;

spectrogram(timit2,256,256*0.5,s*256,8000,’yaxis’);

end

5


