
Digital Signal Processing Applications EE482/682: Spring 24

Homework #3
Due W 2/14

You must turn in your code as well as output files. Please generate a report that contains the code
and output in a single readable format.

Visit the book website to download companion software, including all the example problems.

http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118414322.html

1. (KLT 4.5)

Solution

Note that this transfer function can be re-written as

H(z) =
(1 +

√
2z−1 + z−2)(1 + 2z−1 + z−2)

(1 + 0.8z−1 + 0.64z−2)(1 + 13
12z

−1 + 1
4z

−2)
=

(1 +
√
2z−1 + z−2)(1 + 2z−1 + z−2)

(1 + a−1
11 + a21z−2)(1 + a12z−1 + a22z−2)

.

Solving for the roots results in

zeros 1√
2
(1 + j) 1√

2
(1− j) −1 −1

poles 1
3

3
4

2
5(1 + j

√
3) 2

5(1− j
√
3)

For stability, the poles must all be inside the unit circle. This is true for this system. This
can also be verified by examining the second-order sections using the stability triangle. The
results are presented below.

Criterion Stage 1 Stage 2

|a2| < 1 |a21| = 0.64 < 1 |a22| = 0.25 < 1

|a1| < 1 + a2 |a11| = 0.8 < (1 + a21 = 1.64) |a12| = 1.0833 < (1 + a22 = 1.25)

2. (KLT 4.7)

Solution

(a) You should know how to do this.

(b) There are various ways to solve this problem. Remember H(ω) = H(z)|z=ejω .

Method 1:

|H(ω)|2 = H(ω)H∗(ω) =
e−jω − a

1− ae−jω

ejω − a

1− aejω

=
1− ae−jω − aejω + a2

1− aejω − ae−jω + a2
=

1 + a2 − 2a cosω

1 + a2 − 2a cosω

= 1

Method 2:

H(ω) = e−jω 1− aejω

1− ae−jω

|H(ω)| = |e−jω| |1− aejω|
|1− ae−jω|
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The term |e−jω| = 1 because it is on the unit circle and the fraction numerator and
denominator are complex conjugates of one another and therefore make the fraction 1.

(c)

∠H(ω) = ∠
e−jω − a

1− ae−jω
= −ω − 2 arctan

[
r sin (ω − θ)

1− r cos (ω − θ)

]
when a = rejθ is a complex number.

(d) The magnitude and phase plots are shown below.
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3. (KLT 4.9)

All realizations should use DFII. Cascade realizations should account for numerical effects.
Compare the result with Matlab’s cascade. Only one parallel realization is required.

Solution

(a) Factoring the transfer function results in the following paring

Stage 1 Stage 2

zeros 0.8070± j0.8439 −0.7236± j0.8360

poles 0.5± j0.5 0.5± j0.2887

based off the pole zero locations

(b) Two different cascade realization can be found by different stage ordering techniques

[sos1, G] = tf2sos(b,a, ’up’)

[sos2, G] = tf2sos(b,a, ’down’)

This results in the following systems

sos1 =

1.0000 1.4473 1.2225 1.0000 -1.0000 0.3333

1.0000 -1.6139 1.3633 1.0000 -1.0000 0.5000

sos2 =

1.0000 -1.6139 1.3633 1.0000 -1.0000 0.5000

1.0000 1.4473 1.2225 1.0000 -1.0000 0.3333
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The ordering in part (a) is from pole nearest the unit circle to furthest which is the
’down’ option for tf2sos.m. This is opposite the default ordering of pole nearest the
origin to furthest (’up’).

(c) The parallel implementation can be found using the residuez.m function. However,
since this only returns first order sections, this has to be transformed into DFII 2nd-
order.

[r, p, c] = residuez(b,a);

%make second order

sp(1,:) = [(r(1)*[1 -p(2)] + r(2)*[1 -p(1)]) conv([1 -p(1)], [1 -p(2)])];

sp(2,:) = [(r(3)*[1 -p(4)] + r(4)*[1 -p(3)]) conv([1 -p(3)], [1 -p(4)])]

sp =

33.0000 -35.0000 1.0000 -1.0000 0.5000

-51.0000 56.6667 1.0000 -1.0000 0.3333

c = 20

The rows of sp indicate the second order sections (2 terms for numerator and 3 terms
for denominator) and c is a constant term. Notice the gain is factored into each section
where in the cascade the gain is separated.

4. (KLT 4.10)

Please provide a 1 × 2 subplot of the magnitude and phase response as well as the a and b
coefficient vectors.

Solution

f = 8000;

fp = 1600;

fs = 2000;

dp = 0.5;

ds = 40;
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%determine order

[N, Wp] = ellipord(fp/f, fs/f, dp, ds);

[b,a] = ellip(N, dp, ds, Wp);

[H,w] = freqz(b,a,1024);

plot(w/pi, 20*log10(abs(H)), ’linewidth’, 2);

xlabel(’frequency [rad/\pi]’); ylabel(’magnitude’); grid on;

plot(w/pi, unwrap(angle(H)), ’linewidth’, 2);

xlabel(’frequency [rad/\pi]’); ylabel(’phase [radians]’); grid on;
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b =

0.0162 -0.0210 0.0156 0.0156 -0.0210 0.0162

a =

1.0000 -3.7791 6.1915 -5.3939 2.4879 -0.4847

5. (KLT 4.12)

Solution

When using fdatool.m, notice that the resulting filter is given in cascade form rather than
DF (click the [b,a] button in the top right to see the coefficients for three stages). Filter
quantization can be selected from the bottom left control panel. You should not see any
difference with the 16-bit fixed point quantization. Quantization only becomes noticable at
6-bits.

Note: FDATool should be replaced by filterDesigner.m.

6. (KLT 4.14)

Solution

f = 8000;

fp = [450 650];

fs = [350 750];
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dp = 1;

ds = 60;

%determine order

[N, Wn] = buttord(2*fp/f, 2*fs/f, dp, ds)

[b,a] = butter(N, Wn), ’bandpass’);

[H,w] = freqz(b,a,1024);

plot(w/pi, 20*log10(abs(H)), ’linewidth’, 2);

xlabel(’frequency [rad/\pi]’); ylabel(’magnitude’); grid on;

plot(w/pi, unwrap(angle(H)), ’linewidth’, 2);

xlabel(’frequency [rad/\pi]’); ylabel(’phase [radians]’); grid on;
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Notice that the design does not match the specifications. The gain is greater than 1 in the
pass band so there is some problem in the design specifications. However, if you use the
FDAtool you can do the design using fdesign.m from the signal processing toolbox as shown
below
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7. (KLT 4.18)

Solution

b = 0.0662*[1 3 3 1];

a = [1 -0.9356 0.5671 -0.1016];

%impulse input

x = zeros(100); x(10)=1;

y = filter(b,a,x);

stem([1:100]-10, y(1:100), ’linewidth’,2);

set(gca, ’xlim’, [-2 25]);

[H,w] = freqz(b,a,1048);

plot(w/pi, 20*log10(abs(H)), ’linewidth’, 2);

plot(w/pi, unwrap(angle(H)), ’linewidth’, 2);
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Notice that the impulse response does die down to zero indicating stability. Even though this
is an IIR design, practically, it has a finite length.
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