EE482: Digital Signal Processing Applications

Adaptive Filtering

http://www.ee.unlv.edu/~b1morris/ee482/
Outline

• Random Processes
• Adaptive Filters
• LMS Algorithm
Adaptive Filtering

• FIR and IIR filters are designed for linear time-invariant signals

• How can we handle signals when the characteristics are unknown or changing?

• Need ways to update filter coefficients automatically and continually
 ▫ Track time-varying signals and systems
Random Processes

• Real-world signals are time varying and have randomness in nature
 ▫ E.g. speech, music, noise

• Need to characterize a signal even if full deterministic mathematical definition does not exist

• Random process – sequence of random variables
Autocorrelation

- Specifies statistical relationship of signal at different time lags \((n - k)\)
 - \(r_{xx}(n, k) = E[x(n)x(k)]\)
 - Similarity of observations as a function of the time lag between them
- Mathematical tool for detecting signals
 - Repeating patterns (noise in sinusoid)
 - Measuring time-delay between signals
 - Radar, sonar, lidar
 - Estimation of impulse response
 - Etc.
Wide Sense Stationary (WSS) Process

- Random process statistics do not change with time
- Mean independent of time
 - $E[x(n)] = m_x$
- Autocorrelation only depends only on time lag
 - $r_{xx}(k) = E[x(n + k)x(n)]$
- WSS autocorrelation properties
 - Even function
 - $r_{xx}(-k) = r_{xx}(k)$
 - Bounded by 0 time lag
 - $|r_{xx}(k)| \leq r_{xx}(0) = E[x^2(n)]$
 - Zero mean process: $E[x^2(n)] = \sigma_x^2$
- Cross-correlation
 - $r_{xy}(k) = E[x(n + k)y(n)]$
Expected Value

- Value of random variable “expected” if random variable process repeated infinite number of times
 - Weighted average of all possible values
- Expectation operator
 - $E[.] = \int_{-\infty}^{\infty} f(x) dx$
 - $f(x)$ – probability density function of random variable X
White Noise

- $\nu(n)$ with zero mean and variance σ_v^2
- Very popular random signal
 - Typical noise model
- Autocorrelation
 - $r_{\nu\nu}(k) = \sigma_v^2 \delta(k)$
 - Statistically uncorrelated except at zero time lag
- Power spectrum
 - $P_{\nu\nu}(\omega) = \sigma_v^2, \quad |\omega| \leq \pi$
 - Uniformly distributed over entire frequency range
Example 6.2

- Second-order FIR filter with white noise input \((N(0, \sigma^2))\)
 - \(y(n) = x(n) + ax(n - 1) + bx(n - 2)\)

- Mean
 - \(E[y(n)] = E[x(n) + ax(n - 1) + bx(n - 2)]\)
 - \(E[y(n)] = E[x(n)] + aE[x(n - 1)] + bE[x(n - 2)]\)
 - \(E[y(n)] = 0 + a \cdot 0 + b \cdot 0 = 0\)

- Autocorrelation
 - \(r_{yy}(k) = E[y(n + k)y(n)]\)
 - \(r_{yy}(k) = E\left[\left((x(n + k) + ax(n + k - 1) + bx(n + k - 2)) \cdot \right.\right.\)
 - \(\left.\left.\left.(x(n) + ax(n - 1) + bx(n - 2))\right)\right]\)
 - \(r_{yy}(k) = E[x(n + k)x(n)] + E[ax(n + k)x(n - 1)] + \ldots\)
 - \(r_{yy}(k) = r_{xx}(k) + ar_{xx}(k - 1) + \ldots\)
 - \(r_{yy}(k) = \begin{cases}
(1 + a^2 + b^2)\sigma_x^2 & k = 0 \\
(a + ab)\sigma_x^2 & k = \pm 1 \\
b\sigma_x^2 & k = \pm 2 \\
0 & \text{else}
\end{cases}\)
Practical Estimation

• Practical applications have finite length sequences

• Sample mean
 \[\overline{m_x} = \frac{1}{N} \sum_{n=0}^{N-1} x(n) \]

• Sample autocorrelation
 \[\overline{r_{xx}(k)} = \frac{1}{N-k} \sum_{n=0}^{N-k-1} x(n + k)x(n) \]
 Only produces a good estimate of lags < 10% of \(N \)

• Use Matlab (mean.m, xcorr.m, etc.) to calculate
Adaptive Filters

- Signal characteristics in practical applications are time varying and/or unknown
- Must modify filter coefficients adaptively in an automated fashion to meet objectives

Example: Channel equalization
- High-speed data communication via media channel (e.g. wireless network)
- Channel equalization compensates for channel distortion (e.g. path from wifi router and phone)
- Channel must be continually tracked and characterized to compensate for distortion (e.g. moving around a room)
General Adaptive Filter

- **Two components**
 - Digital filter – defined by coefficients
 - Adaptive algorithm – automatically update filter coefficients (weights)

- Adaption occurs by comparing filtered signal $y(n)$ with a desired (reference) signal $d(n)$
 - Minimize error $e(n)$ using a cost function (e.g. mean-square error)
 - Continually lower error and get $y(n)$ closer to $d(n)$
FIR Adaptive Filter

\[y(n) = \sum_{l=0}^{L-1} w_l(n)x(n - l) \]
- Notice time-varying weights

- In vector form
 - \[y(n) = w^T(n)x(n) = x^T(n)w(n) \]
 - \[x(n) = [x(n), x(n - 1), \ldots, x(n - L + 1)]^T \]
 - \[w(n) = [w_0(n), w_1(n), \ldots, w_{L-1}(n)]^T \]

- Error signal
 - \[e(n) = d(n) - y(n) = d(n) - w^T(n)x(n) \]
Performance Function

- Use mean-square error (MSE) cost function
- \(\xi(n) = E[e^2(n)] \)
- \(\xi(n) = E[d^2(n)] - 2p^T w(n) + w^T(n)Rw(n) \)
 - \(p = E[d(n)x(n)] = [r_{dx}(0), r_{dx}(1), ..., r_{dx}(L - 1)]^T \)
 - \(R \) – autocorrelation matrix
 - \(R = E[x(n)x^T(n)] \)

- Toeplitz matrix – symmetric across main diagonal
Steepest Descent Optimization

- Error function is a quadratic surface
 - $\xi(n) = E[d^2(n)] - 2p^T w(n) + w^T(n) R w(n)$
- Therefore gradient descent search techniques can be used
 - Gradient points in direction of greatest change
- Iterative optimization to “step” toward the bottom of error surface
 - $w(n + 1) = w(n) - \frac{\mu}{2} \nabla \xi(n)$

Figure 6.4 Examples of error surface (top) and error contours (bottom), $L = 2$
LMS Algorithm

- Practical applications do not have knowledge of $d(n), x(n)$
 - Cannot directly compute MSE and gradient
 - Stochastic gradient algorithm
- Use instantaneous squared error to estimate MSE
 - $\hat{\xi}(n) = e^2(n)$
- Gradient estimate
 - $\nabla \hat{\xi}(n) = 2[\nabla e(n)]e(n)$
 - $e(n) = d(n) - w^T(n)x(n)$
 - $\nabla \hat{\xi}(n) = -2x(n)e(n)$
- Steepest descent algorithm
 - $w(n + 1) = w(n) + \mu x(n)e(n)$

LMS Steps

1. Set $L, \mu,$ and $w(0)$
 - L – filter length
 - μ – step size (small e.g. 0.01)
 - $w(0)$ – initial filter weights
2. Compute filter output
 - $y(n) = w^T(n)x(n)$
3. Compute error signal
 - $e(n) = d(n) - y(n)$
4. Update weight vector
 - $w_l(n + 1) = w_l(n) + \mu x(n - l)e(n), l = 0, 1, \ldots, L - 1$

- Notice this requires a reference signal
LMS Stability

• Convergence of LMS algorithm
 ▪ $0 < \mu < \frac{2}{\lambda_{max}}$
 • λ_{max} - largest eigenvalue of autocorrelation matrix R
 • Not easy to compute eigenvalues

• Eigenvalue approximation
 ▪ $0 < \mu < \frac{2}{LP_x}$
 • L – length of data window, filter length
 • $P_x = r_{xx}(0) = E[x^2(n)]$

• Step size is inversely proportional to filter length
 ▪ Smaller μ for higher order filters

• Step size inversely proportional to input signal power
 ▪ Larger μ for lower power signal
Convergence Speed

- Convergence of filter weights is defined by the time τ_{MSE} to go from initial MSE to min
 - Plot of MSE vs. time is known as the learning curve
- Convergence time related to the minimum eigenvalue of R
 - $\tau_{MSE} \approx \frac{1}{\mu \lambda_{\text{min}}}$
 - Smaller step size results in longer convergence time
- In practice, weights will not converge to a fixed optimum value but will vary around it
Example 6.7

• sd = 12357; rng(sd); % Set seed value
• x = randn(1,128); % Reference signal x(n)
• b = [0.1,0.2,0.4,0.2,0.1]; % An FIR filter to be identified
• d = filter(b,1,x); % Desired signal d(n)
• mu = 0.05; % Step size mu
• h = adaptfilt.lms(5,mu); % LMS algorithm
• [y,e] = filter(h,x,d); % Adaptive filtering
• n = 1:128;
• h1=figure;
• hold all;
• plot(n,d,'-','linewidth', 3);
• plot(n,y,'-.','linewidth', 3);
• plot(n,e,'--','linewidth', 2);
• axis([1 128 -inf inf]);
• xlabel('Time index, n');
• ylabel('Amplitude');
• legend('d[n]', 'y[n]', 'e[n]');

Coefficients
• b = [0.1000 0.2000 0.4000 0.2000 0.1000]
• w = [0.1005 0.1999 0.3996 0.1995 0.0996]
Practical Applications

- Four classes of adaptive filtering applications
 - System identification
 - Prediction
 - Noise cancellation
 - Inverse modeling

- Differences based on configuration of control signals $x(n), d(n), y(n), e(n)$
System Identification

- Given an unknown system, try to determine (identify) coefficients
- Excite unknown system and adaptive system with same input
 - Input signal: white noise
 - Reference signal: output of unknown system
 - Error is difference between adaptive filter and the output of unknown system

Figure 6.7 Adaptive system identification using the LMS algorithm
Prediction

• Linear predictor estimates signal values at future times

• Reference signal: signal of interest
 • Input signal: delayed reference signal
 • Error is difference between current sample and predicted sample (using past samples)
 ▫ Leverage correlation between samples

• Broadband output: noise component
• Narrowband output: signal of interest (high correlation)
Example 6.9

- $Fs = 1000$;
- $f_0 = 150$;
- $L = 64$;
- $N = 256$;
- $A = \sqrt{2}$;
- $w_0 = 2 \pi f_0 / Fs$;
- $n = [0:N-1]$;
- $s_n = A \cdot \sin(w_0 \cdot n)$;
- $v_n = 0.1 \cdot (\text{rand}(1,N) - 0.5) \cdot \sqrt{12}$
- $x = s_n + v_n$
- $d = [0, x(2:256)]$
- $\mu = 0.001$;
- $h = \text{adaptfilt.lms}(L, \mu)$;
- $[y, e] = \text{filter}(h, x, d)$
- $h1 = \text{figure}$;
- hold all;
- $\text{plot}(n, x, '-', 'linewidth', 2)$
- $\text{plot}(n, y, '-', 'linewidth', 2)$
- $\text{plot}(n, e, '--', 'linewidth', 2)$
- $\text{axis}([1 N -inf inf])$
- $\text{xlabel('Time index, n')}$
- $\text{ylabel('Amplitude')}$
- $\text{legend('x[n]', 'y[n]', 'e[n]')}$
Noise Cancellation

• Remove (cancel) noise components embedded in a primary signal
 ▫ E.g. background noise in speech signal

• Flip idea of reference and input signals
 ▫ Reference signal: primary signal + noise
 • Close to primary source
 ▫ Input signal: noise signal
 • Far from primary source to measure noise
 ▫ Adaptive filter tracks correlated noise
 • Error signal is the desired cleaned primary signal

Figure 6.11 Basic concept of adaptive noise canceling
Example 6.10

- Fs = 1000;
- f0 = 110;
- L = 3;
- N = 128;
- w0 = 2*pi*f0/Fs;
- pz = [0.1, 0.3, 0.2]; % Define noise path
- n = [0:N-1]; % Time index
- sd = 12357; rng(sd); % Set seed value
- sn = 0.5*sin(w0*n); % Sine sequence
- xn = 2.5*(rand(1,N)-0.5); % Zero-mean white noise
- xpn = filter(pz, 1, xn); % Generate x'(n)
- dn = sn+xpn; % Sinewave embedded in white noise
- mu = 0.025; % Step size mu
- h = adaptfilt.lms(L,mu); % LMS algorithm
- [y,e] = filter(h,xn,dn); % Adaptive filtering

h1=figure;
hold all;
plot(n,dn,'-','linewidth', 2);
plot(n,sn,'-.', 'linewidth', 2);
plot(n,e,'--', 'linewidth', 2);
axis([1 N -inf inf]);
xlabel('Time index, n');
ylabel('Amplitude');
legend('d[n] - noisy signal', 's[n] primary', 'e[n] - output');
Inverse Modeling

- Method to estimate the inverse of an unknown system
 - E.g. a communication channel is unknown but its distortion needs to be corrected

- Reference signal: a known training signal
- Input signal: training signal after going through unknown system

![Diagram](image.png)

Figure 6.14 An adaptive channel equalizer as an example of inverse modeling