EE482: Digital Signal Processing Applications

Spring 2014
TTh 14:30-15:45 CBC C222

Lecture 01
Introduction
14/01/21

http://www.ee.unlv.edu/~b1morris/ee482/
Outline

• Intro to real-time DSP
• Real-time DSP system components
• Matlab primer
Signals

• Continuous-time (CT or analog)
 ▫ Everyday signals from nature
 ▫ Defined continuously in “time” – at all time instances
 ▫ Infinite amplitude value resolution
 ▫ Can be processed using analog electronics (active and passive circuit elements)

• Discrete-time (DT)
 ▫ Only defined on particular set of “time” instances
 ▫ Sequence of numbers with continuous value range
 ▫ Used for theoretical study and mathematical convenience

• Digital
 ▫ Both discrete “time” and discrete amplitude values
 ▫ Processed with computers and DSP chips
What is DSP?

- Digital representation of signals (coding)
- Design and use of digital systems to
 - Analyze
 - Modify
 - Store
 - Transmit
 - Extract information
DSP Advantages

● Flexibility
 ▫ Software implementation for upgrades, multiple tasks, etc.

● Reproducibility
 ▫ Easier to repeat implementation, to store and transfer digital signals

● Reliability
 ▫ DSP hardware design is quite robust due to modern computation age

● Complexity
 ▫ Can implement sophisticated tasks on specialized hardware

● Cost
 ▫ Moore’s Law for semiconductors, software development cycle and powerful packages (Matlab)
DSP Disadvantages

- **Unnatural**
 - Our everyday signals come from analog processes
- **Physical limitations**
 - Bandwidth of DSP system limited by sampling rate, aliasing
- **Numerical effects**
 - Limited precision and dynamic range, quantization and arithmetic errors
Real-Time DSP Systems

• Non-real-time
 ▫ Signals that are stored in digital form
 ▫ Not necessarily for a current or real time

• Real-time
 ▫ Demands design to ensure tasks are completed within a given timeframe
 ▫ Typically expect this to be related to the current time

• Emphasis on real-time in this class
 ▫ Fun processing streaming data
 ▫ See bandwidth processing time relationship in Section 1.3.4
 • Faster processing means less available bandwidth
Real DSP System

CT Analog signal
- $x(t)$ \ $t \in \mathbb{R}$

DT/digital signal
- $x(n)$ \ $n \in \mathbb{Z}$

ADC – analog to digital conversion

DAC – digital to analog conversion

- Analog signals are converted to electrical by a transducer
 - Eg. Microphone

- Amplifier
 - Gain selected to match ADC
 - Often need auto gain control (e.g. white balance)

- Anti-aliasing filter
 - Deal with finite bandwidth of digital system

- Reconstruction filter
 - Interpolation between digital and analog signal
ADC - Sampling

- Sampling
 - \(x[n] = x(nT) \)
 - \(T \) – sampling period
 - Analog signal value extracted at fixed uniformly spaced times
- Shannon’s sampling theorem
 - \(f_s = \frac{1}{T} > 2f_M \)
 - Sampling frequency must be twice the bandwidth to avoid aliasing
 - Nyquist rate - \(f_s = 2f_M \)
ADC - Quantization

- Quantization
 - Amplitude value is represented by one of 2^B binary levels
 - Rounding – set value to closest quantization level
 - Truncation – replaces by value below it (chop bits)

- Quantization error/noise
 - Difference between quantized value and original value
 - Appears as random noise at output of converter
 - Signal-to-quantization-noise ration (QNR)
 - $SQNR \approx 6B$ dB

\[SQNR \approx 6B \text{ dB} \]
Smoothing Filters

• DACs are zero-order-hold
 ▫ Keep fixed sample value until next sample

• Smoothing with low pass (LP) filter is done to remove high frequency components of “staircase”
 ▫ LP filter in reconstruction block

![Staircase waveform generated by DAC and the smoothed signal](image)
Matlab Primer

• See the web for many more tutorials and help

• Matlab has very good in program help
 ▫ Use the `help.m` and `doc.m` commands

• Go through tutorials
 ▫ Signal processing
 ▫ Image processing
Matlab Primer

- Command Window
 - Interactive interpreted area
 - The calculator space
Matlab Primer

- **Workplace**
 - Lists all variables in memory
 - All are currently available
Matlab Primer

- Editor
 - Build script files (m-files)
 - What makes Matlab so much more than a calculator

- M-files
 - Learn to write these, it will make your life much easier
 - Provides ability to document and re-run code quickly
 - Must submit for class assignments

- Note:
 - ; suppresses command window output
 - % is comment character
Matlab Primer

- Variables
 - Quick way to read contents of your workspace variables

- Useful for debugging
 - There is a debugger in Matlab!
 - Must write m-files to utilize this