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Fourier Series

- Periodic signals
= x(t) = x(t+Typ)

- Periodic signal can be represented as a sum of an
infinite number of harmonically-related sinusoids

o x(t) = Y _ cpelkot
s ¢, - Fourier series coefficients

» Contribution of particular frequency sinusoid
= Qo = 2m/T, - fundamental frequency
= k — harmonic frequency index

- Coefficients can be obtained from signal
° Ck = TiofoT0 x(t)e kot

= Notice ¢, is the average over a period, the DC
component



Fourier Series Example

- Example 5.1 1 0
- Rectangular pulse train 08
A —1t<t<rt 06
- x(t) = { e
0 else 04"
oeq’eée?ele ele?eée‘?>
. ¢, = At sin(kQy7/2) %0 10 0 10 20
k TO k ‘QO T /2 frequency [rad/sec]
2
o T =1; '
1 1r (o}
. .Q0=2TL'*;=2T[ 0sl
0.6
- Magnitude spectrum is known o4t
as a line spectrum o2 : I I :
. . P  oleo s o ole o%0
> Only few specific frequencies MO RERS| I

represented 235 E 0 5 i0

frequency [Hz]
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Fourier Transform

- Generalization of Fourier - Fourier representation of
series to handle non-periodic signal
signals o x(t) = — [7 X(Q)eIMd0

o LetTy —» o©
= Spacing between lines in FS

= Inverse Fourier transform
» Fourier transform

go to zero o _
© Qg = 21/T, = X(Q) = f_oox(t)e‘]mdt
- Results in a continuous
frequency spectrum - Notice that a periodic function
= Continuous function has both a FS and FT
- The number of FS coefficients ° ¢y = TiOX (kQy)

to create “periodic” function

. .. = Notice a normalization
goes to infinity

constant to account for the
period



Discrete Time Fourier Transform

- Usetul theoretical tool for discrete
sequences/signals
« DTFT
o X(w) = X% _ox(nT)e JonT
> Periodic function with period 2n
* Only need to consider a 2r interval [0,27] or [—m, ]
» Inverse FT

s x(nT) = %f_nﬂX(a))ejw"T dw

= Notice this is an integral relationship
- X(w) 1s a continuous function
- Sequence x(n) is infinite length



Sampling Theorem

- Aliasing — signal distortion X
caused by sampling /\
= Loss of distinction between .t

~Iy 0 fur

different signal frequencies

- A bandlimited signal can be
recovered from its samples

when there is no aliasing 5 / AN
o fs = 2fm, Qs =20, /T\z \2/—\ :

~fw 0 My f,
£, Qg - signal bandwidth

(a) Spectrum of bandlimited analog signal.

X(f1f)

(b) Spectrum of discrete-time signal when the
sampling theorem fy, < f; /2 is satisfied.

. Copies of analog spectrum are X(F/,)

copied at f; intervals =R

= Smaller sampling frequency @~ 7 / \( \7\/ \
compresses spectrum into S o
overlap

(c) Spectrum of discrete-time signal that shows aliasing
when the sampling theorem is violated.

Figure 5.1 Spectrum replication of discrete-time signal caused by sampling



Discrete Fourier Transform

» Numerically computable transform used for
practical applications
= Sampled version of DTFT

« DFT definition

= X (k) = YnZg x(n)eJ(2m/Nkn
» k=0,1,..,N —1—frequency index
= Assumes x(n) = 0 outside bounds [0, N — 1]
- Equivalent to taking N samples of DTFT X (w) over
the range [0, 27]
= N equally spaced samples at frequencies w;, = 2mwk/N
- Resolution of DFT is 2 /N
» Inverse DFT

= x(n) = 2 N5 X (k)ed @m/Nkn



Relationships Between Transforms

A bird’s eye view of the relationship between

FT, DTFT, DTFS and DFT
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Relationships Between Transforms
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Relationships Between Transforms
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DFT Twidle Factors

- Rewrite DFT equation using - Properties of twidle factors

Euler’s = Wy - N roots of unity in
- X(k) = ¥NZ3 x(n)e =/ @mn/N)kn clockwise direction on unit
. X(k) = YNZ1 x(n) wkn circle

> k=01,..,N—1 ° Symmetry

- Wi = e—j@m/N)kn — ’ WIJHN/Z —W¥, 0<k<

cos (2) i (22
» Periodicity
. k+N _ k
- IDFT F qW VI;NI tion
- Frequency resoluti

+ x(n) =~ TNZ3 X (k) el @m/Nkn

= Coefficients equally spaced
- x(n) = _Z L X (k) wykn, on unit circle
- k=01,..,N—1 © A= fs/N



DFT Properties

- Linearity - Z-transform connection
> DFTlax(n) + by(n)] = aX (k) + o X(k) = X(2)|,_pien/mk
bY (k) > Obtain DFT coefficients by
- Complex conjugate evaluating z-transform on the unit

circle at N equally spaced

= X(=k) = X" (k) frequencies w;, = 2wk /N

1<k<N-1 « Circular convolution
For x(n) real valued - Y(k) = HU)X (k)
e s o it © y(n) = h(n)®x(n)
L= | o y(n) = ENE Am)x((n = M)oa n)
Garmior e - Note: both sequences must be
o Wi aneven rmber = 2 padded to same length

Real Middle

X0} X(1) ... X(M-1) X(M)EX(M*-‘) X(M+2) ... X(N-1)
L= ]

Complex conjugate

(b) Nis an odd number, M= (N-1)/2.

Figure 5.2 Complex-conjugate property for N is (2) an even number and (b) an odd number

= Only first M + 1 coefficients are
unique

= Notice the magnitude spectrum is
even and phase spectrum is odd
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Fast Fourier Transform

- DFT is computationally expensive

= Requires many complex multiplications and
additions

> Complexity ~4N?
- Can reduce this time considerably by using the
twidle factors

> Complex periodicity limits the number of distinct
values

= Some factors have no real or no imaginary parts
- FFT algorithms operate in N log, N time
= Utilize radix-2 algorithm so N = 2™ is a power of 2
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FFT Decimation in Time

- Compute smaller DFTs on subsequences of x(n)
« X(k) = $NZ2 x(n) WiT
- X(k) =
S L (m) W™ 4+ T2 (m) Wy O
= x;(m) = g(n) = x(2m) - even samples
= x,(m) = h(n) = x(Zm + 1) — odd samples
- Since W™ = W5

= X(k) = X2 3 (m) W5 + Wil B0/25 xp (m) W,
- N /2-point DFT of even and out parts of x(n)
= X(k) = G(k) + Wy¥H (k)

- Full N sequence is obtained by periodicity of each N /2
DFT



FFT Butterfly Structure

- Full butterfly (8-point) - Simplified structure
G(0)
z(0) O—— Q

BN /w"xm) ] O * X(0)
f X
=GO +Point '(\1) \/ / 0 e \\ 4 X(1)
= s 4 point | x (o

ol 55‘3)\ | & ) | VR T xe NN LS e

W »

z(4) O——| = 5 x6) | Xi(3) \\\,'(/ /

X(3)
WO
2(1) ;’; C C \Af ;Oxm X[ | X0 T8 .
20 ! - TRV SN
O—— ' -point — =
z(3) 4-Point H‘(l) /\ | DFT Xo(2} P?E-// \S\ . X6)
T B L X(6) 6o We/ 2N X(7)
H:V
H(3) We

Fig.7-2. An eight-point decimation-in-time FFT algorithm after the first decimation.

|

!

X(5)

3

&

Figure 5.4 Decomposition of N-point DFT into two N/2-point DFTs, N=8

(m~1)th mth
stage stage

Wi 1

Figure 5.5 Flow graph for butterfly computation



FFT Decimation

- Repeated application of - Complete 8-point DFT
even/odd signal split structure
= Stop at simple 2-point DFT

X

e

n H
CIC)
o

3

— " N/'4-point * X(0) 5

.“jﬂ_. DFT X(1) -1 &5 g
2

i‘?‘ N4-point| X(2) z(2) O O o
X oFT | X@) wo ><wg

z(6) O———0O : O-

1

ﬁ#’ Nfd-point] X(4) z(1) O O O
20, | DoFT

3 > ) ><

| Md-point xey #6)0 N B
M0 oFr X(7) Wy

=1 -1 -1
Fig. 7-6. A complete eight-point radix-2 decimation-in-time FFT.

Figure 5.7 Flow graph of two-point DFT



FFT Decimation in Time Implementation

- Notice arrangement of samples is not in sequence — requires
shuffling
= Use bit reversal to figure out pairing of samples in 2-bit DFT
Table 5.1 Example of bit-reversal process, N = 8 (3-bit)

Input sample index Bit-reversed sample index
Decimal Binary Binary Decimal
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

- Input values to DFT block are not needed after calculation
> Enables in-place operation
- Save FFT output in same register as input
» Reduce memory requirements
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FFT Decimation in Frequency

- Similar divide and conquer strategy
= Decimate in frequency domain

« X(2k) = XNt x(m)wignk
c X(2k) = A xmywk, + INZL L x(mywp

= Divide into first half and second half of sequence
- X(2k) =

N
N N N — )k
E: /2 1 ( )WP",/"2+§: /2-1 (n+—2)W(72+2)

° Slmphfylng with twidle properties

> X(2k) = ZNKZ ! [x(n) + x (n + )]
» X2k + 1) = ZN/Z 1WN [x(n) — X (n + )]



FFT Decimation in Frequency Structure

- Stage structure - Full structure
X(0) x(0) 1 X0) ‘(°)<‘\ 0- o O——0 X(0)
) N\ /. x) N2-point z(1) Z .’ i O X(4)
2 N\N\__// %@ oot [ Xy, N £ T
X(3) [ Xxe) 2(2) v‘v' ¢l 1 - O———0X(2)
z(3) Q i O il -0 X (6)
x(4) x(0) W3 LX) 'XXA e 3, 5
x(5) x%(1) Wi LX) 2(4)d 7 o 0o~ x()
WAL - /XX T
x(7) -\ %@ wi | xa@ NG AN i
’ @) IA\“AA Wl 0 o

.-

0 X(3)
Figure 5.8 Decomposition of an N-point DFT into two N/2-point DFT's Wi W’?’_:><: Wy
z(7) 0 X(7)

S N e “/ ~

-] -1
Fig. 7-8. Eight-point radix-2 decimation-in-frequency FFT.

- Bit reversal happens at output
instead of input
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Inverse FFT

1 — _
- x(n) =~ NI X (k) Wi

» Notice this is the DFT with a scale factor and
change in twidle sign

- Can compute using the FFT with minor
modifications

X 1 - k
° x"(n) =~ Xkzo X (k) Wy™
- Conjugate coefficients, compute FFT with scale
factor, conjugate result

- For real signals, no final conjugate needed

= Can complex conjugate twidle factors and use in
butterfly structure



FFT Example
- Example 5.10 50f v
- Sine wave with f = 50 Hz o 401
(2 E
H x(Tl) = Sln( 7;5”) % 30
© n=0,1,..,128 =
20~
- f¢ =256 Hz
10
- Frequency resolution of DFT? 0 , , , e
256 10 20 30 40 50 60
= A= f/N = o8 = = 2 Hz Frequency index, k
- Location of peak 6¥10"
¢ 50 =kA >k =2"=25 4

error
o

0 50 100 150
sample n
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Spectral Leakage and Resolution

- Notice that a DFT is like windowing - Example 5.15
a signal to finite length = Two close sinusoids smeared

= Longer window lengths (more together
samples) the closer DFT X (k) L
approximates DTFT X (w)

- Convolution relationship

= xy(m) = w)x(n)
o Xn(k) = W(k) * X (k)

« Corruption of spectrum due to
window properties
(mainlobe/sidelobe)

= Sidelobes result in spurious peaks
in computed spectrum known as J
spectral leakage 0 s 10 o o
* Obviously, want to use smoother Frequency index, k
windows to minimize these effects . .
= Spectral smearing is the loss in » To avoid smearing:
sharpness due to convolution > Frequency separation should be
which depends on mainlobe width greater than freq resolution

2
= N>—, N> f/Af

Magnitude

w B a 2] ~
o o o o o
T T T T

N
o
T

[EEN
o
7
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Power Spectral Density

- Parseval’s theorem - Spectrogram
o E = > Each short FFT is arranged as a
SN=11x ()2 = EZ’X;&IX(k)IZ cplumn in a matrix to give the
N time-varying properties of the
= |X(k)|? - power spectrum or signal
periodogram > Viewed as an imag
- Power spectral density (PSD, or RNGT VT
power density spectrum or
power spectrum) is used to
measure average power over - i
frequencies < 2500 o hl
- Computed for time-varying 2000 e
signal by using a sliding window 3 . “E 4
technique £ 10
= Short-time Fourier transform 100068 |
o Grab N samples and compute 500 | = - s

+ Must have overlap and use
windows “She had your dark suit in greasy wash water all year”
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Fast FFT Convolution

- Linear convolution is multiplication in frequency
domain
= Must take FFT of signal and filter, multiply, and
1FFT
= Operations in frequency domain can be much
faster for large filters
= Requires zero-padding because of circular
convolution
- Typically, will do block processing

= Segment a signal and process each segment
individually before recombining



