1. (OS 2.23 a,b,c) + additional systems
 For each of the following systems, determine whether the system is (1) stable, (2) causal, (3) linear, and (4) time-invariant.
 (a) \(T(x[n]) = (\cos \pi n)x[n] \)
 (b) \(T(x[n]) = x[n^2] \)
 (c) \(T(x[n]) = x[n] \sum_{k=0}^{\infty} \delta[n-k] \)
 (d) \(T(x[n]) = e^{x[n]} \)
 (e) \(T(x[n]) = ax[n] + b \)

2. (OS 2.33)

3. (OS 2.47)

4. (OS 2.77)

5. For any \(0 < N_1, N_2 < \infty \),
 (a) For \(a \neq 1 \), find a closed form expression for \(\sum_{n=N_1}^{N_2} a^n \)
 (b) For \(|a| < 1 \), find a closed form expression for \(\sum_{n=N_1}^{\infty} a^n \).

6. Given the two sequences
 \(x[n] = \left(-\frac{1}{2} \right)^n u[n-4] \)
 \(h[n] = 4^n u[2-n] \)
 (a) Use the convolution sum formula to find \(y[n] = h[n] \ast x[n] \).
 (b) Calculate the correlation between \(x[n] \) and \(h[n] \) where the correlation is defined as
 \(c_{xh}[l] = \sum_{k=-\infty}^{\infty} x[k]h[l+k] \).