Engineering Probability and Stochastic Processes

1 Fourier Series of Continuous Periodic Signals

Suppose z(t) can be represented as a linear combination of harmonic complex exponentials
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x(t) = Z akejk“’ot synthesis equation
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then the coefficients {ax} can be found as
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where the aj values are known as the Fourier Series coefficients or spectral coefficieints, wqg is the

fundamental frequency and T = i—: is the fundamental period.

2 CTFS Pair Proof
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x(t) = Z akejkwot

k=—o00

multiply both sides by the complex exponential and integrate
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Consider the integral on right side of eq (5)
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When k =n
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This demonstrates the orthognoality of harmonically related complex exponentials. That is, the
inner product <ejk‘“0t, ejk””0t> =0.

Therefore

Returning to eq (5),

T e T
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because only the k = n term remains in eq (6)
= a, T

and solving for the F'S coefficients a,,
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