1 Fourier Series of Continuous Periodic Signals

Suppose x(t) can be represented as a linear combination of harmonic complex exponentials

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$
 synthesis equation

then the coefficients $\{a_k\}$ can be found as

$$a_k = \frac{1}{T} \int_T x(t)e^{-jk\omega_0 t} dt$$
 analysis equation

where the a_k values are known as the Fourier Series coefficients or spectral coefficients, ω_0 is the fundamental frequency and $T = \frac{2\pi}{\omega_0}$ is the fundamental period.

2 CTFS Pair Proof

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} \tag{1}$$

multiply both sides by the complex exponential and integrate

$$x(t)e^{-jn\omega_0 t} = e^{-jn\omega_0 t} \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$
(2)

$$\int_0^T x(t)e^{-jn\omega_0 t}dt = \int_0^T e^{-jn\omega_0 t} \sum_{k=-\infty}^\infty a_k e^{jk\omega_0 t}dt$$
(3)

$$= \int_0^T \sum_{k=-\infty}^\infty a_k e^{j(k-n)\omega_0 t} dt \tag{4}$$

$$= \sum_{k=-\infty}^{\infty} a_k \int_0^T e^{j(k-n)\omega_0 t} dt$$
 (5)

Consider the integral on right side of eq (5)

$$\begin{split} \int_0^T e^{j(k-n)\omega_0 t} dt &= \left[\frac{1}{j(k-n)\omega_0} e^{j(k-n)\omega_0 t} \right]_0^T \\ &= \frac{1}{j(k-n)\omega_0} \left[e^{j(k-n)\omega_0 T} - 1 \right] \\ &= \frac{1}{j(k-n)\omega_0} \left[e^{j(k-n)\omega_0 \frac{2\pi}{\omega_0}} - 1 \right] \end{split}$$

let m = k - n

$$= \frac{1}{j(k-n)\omega_0} \left[e^{jm2\pi} - 1 \right]$$
$$= \frac{1}{j(k-n)\omega_0} [1-1]$$
$$= 0 \qquad \text{for } k \neq n$$

When k = n

$$\int_{0}^{T} e^{j(k-n)\omega_{0}t} dt = \int_{0}^{T} e^{j(0)\omega_{0}t} dt = \int_{0}^{T} dt = T$$

Therefore

$$\int_0^T e^{j(k-n)\omega_0 t} dt = \begin{cases} T & k=n\\ 0 & k \neq n \end{cases}$$
 (6)

This demonstrates the orthogonality of harmonically related complex exponentials. That is, the inner product $\langle e^{jk\omega_0t}, e^{jkn\omega_0t} \rangle = 0$.

Returning to eq (5),

$$\int_0^T x(t)e^{-jn\omega_0 t}dt = \sum_{k=-\infty}^\infty a_k \int_0^T e^{j(k-n)\omega_0 t}dt$$

because only the k = n term remains in eq (6)

$$=a_nT$$

and solving for the FS coefficients a_n

$$\Rightarrow a_n = \frac{1}{T} \int_0^T x(t)e^{-jn\omega_0 t}dt$$