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EE361: SIGNALS AND SYSTEMS II

CH3: MULTIPLE RANDOM VARIABLES
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BIVARIATE RANDOM VARIABLES AND 
JOINT DISTRIBUTION FUNCTIONS
CHAPTER 3.1-3.3
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 A pair of RV (𝑋, 𝑌) that 
associates two real numbers 
with every element in 𝑆

 Two-dimensional random vector

 Function that maps outcome 𝜉
to a point in the (x,y)-plane

 Range of (𝑋, 𝑌)

 𝑅𝑋𝑌 = { 𝑥, 𝑦 ; 𝜉 ∈ 𝑆 and 𝑋 𝜉 = 𝑥, 𝑌 𝜉 = 𝑦}
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BIVARIATE RANDOM VARIABLES



BIVARIATE RV TYPES

Bivariate discrete RV – both 𝑋, 𝑌 discrete

Bivariate continuous RV – both 𝑋, 𝑌 continuous

Bivariate mixed RV – one discrete other continuous 

 In this class will primarily focus on either bivariate 
discrete or continuous, not mixed
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 𝐹𝑋𝑌 𝑥, 𝑦 = 𝑃 𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦

= 𝑃 𝐴 ∩ 𝐵

 Event A: (𝑋 ≤ 𝑥); Event B: (𝑌 ≤ 𝑦)

 Formally, event (𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦)
= event (𝐴 ∩ 𝐵)

 𝐴 = 𝜉 ∈ 𝑆; 𝑋 𝜉 ≤ 𝑥

 𝑃 𝐴 = 𝐹𝑋(𝑥)

 𝐵 = {𝜉 ∈ 𝑆; 𝑌 𝜉 ≤ 𝑦}

 𝑃 𝐵 = 𝐹𝑌(𝑦)

 Independent RV

 𝐹𝑋𝑌 𝑥, 𝑦 = 𝐹𝑋 𝑥 𝐹𝑌 𝑦

= 𝑃 𝐴 𝑃(𝐵)

 Properties – same general idea 
as for single RV
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JOINT DISTRIBUTION FUNCTIONS (CDF)



MARGINAL DISTRIBUTION

 Given joint CDF,

 𝐹𝑋 𝑥 = 𝐹𝑋𝑌(𝑥,∞)

 𝐹𝑌 𝑦 = 𝐹𝑋𝑌(∞, 𝑦)

 These are the distribution taking into account all values of 
the other RV

 E.g. marginalizing/removing the effects/dependence on one variable

 Result comes from observation

 lim
𝑦→∞

𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦 = 𝑋 ≤ 𝑥, 𝑌 ≤ ∞ = (𝑋 ≤ 𝑥)

 The condition (𝑌 ≤ ∞) is always satisfied
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JOINT PMF, JOINT PDF, AND CONDITIONAL 
DISTRIBUTIONS
CHAPTER 3.4-3.6
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JOINT PMF

 Let (𝑋, 𝑌) be discrete RV with values (𝑥𝑖 , 𝑦𝑗) for an allowable set of 
integers 𝑖, 𝑗

 𝑝𝑋𝑌 𝑥𝑖 , 𝑦𝑗 = 𝑃 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗

 Properties

 1) 0 ≤ 𝑝𝑋𝑌 𝑥𝑖 , 𝑦𝑗 ≤ 1

 2) σ𝑥𝑖
σ𝑦𝑗 𝑝𝑋𝑌(𝑥𝑖 , 𝑦𝑗) = 1

 3) 𝑃 𝑋, 𝑌 ∈ 𝐴 = σσ(𝑥𝑖,𝑦𝑗)∈𝑅𝐴
𝑝𝑋𝑌(𝑥𝑖 , 𝑦𝑗)

 Points 𝑥𝑖 , 𝑦𝑗 ∈ 𝑅𝐴 are in range space corresponding to event A

 CDF from PMF

 𝐹𝑋𝑌 𝑥, 𝑦 = σ𝑥𝑖≤𝑥
σ𝑦𝑗≤𝑦 𝑝𝑋𝑌(𝑥𝑖 , 𝑦𝑗)
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MARGINAL PMF

𝑃 𝑋 = 𝑥𝑖 = 𝑝𝑋 𝑥𝑖 = σ𝑦𝑗 𝑝𝑋𝑌 𝑥𝑖 , 𝑦𝑗

 Summation is over all possible 𝑌 = 𝑦𝑗 values

 Marginalize by removing influence of RV 𝑌

𝑃 𝑌 = 𝑦𝑗 = 𝑃𝑌 𝑦𝑗 = σ𝑥𝑖 𝑝𝑋𝑌 𝑥𝑖 , 𝑦𝑗

 Independence:

 𝑃𝑋𝑌 𝑥𝑖 , 𝑦𝑗 = 𝑝𝑋 𝑥𝑖 𝑝𝑌(𝑦𝑗)
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JOINT PDF

 (𝑋, 𝑌) is a continuous bivariate RV with CDF 𝐹𝑋𝑌(𝑥, 𝑦)

 𝑓𝑋𝑌 𝑥, 𝑦 =
𝜕2

𝜕𝑥𝜕𝑦
𝐹𝑋𝑌(𝑥, 𝑦)

 𝐹𝑋𝑌 𝑥, 𝑦 = ∞−׬
𝑥

∞−׬
𝑦

𝑓𝑋𝑌 𝜉, 𝜂 𝑑𝜂𝑑𝜉

 Properties:

 1) 𝑓𝑋𝑌 𝑥, 𝑦 ≥ 0

 ∞−׬ (2
∞

∞−׬
∞

𝑓𝑋𝑌 𝑥, 𝑦 𝑑𝑥𝑑𝑦 = 1

 4) 𝑃 𝑋, 𝑌 ∈ 𝐴 = ׬ 𝑅𝐴׬
𝑓𝑋𝑌 𝑥, 𝑦 𝑑𝑥𝑑𝑦

 5) 𝑃 𝑎 < 𝑋 ≤ 𝑏, 𝑐 < 𝑌 ≤ 𝑑 = 𝑐׬
𝑑
𝑎׬
𝑏
𝑓𝑋𝑌 𝑥, 𝑦 𝑑𝑥𝑑𝑦
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MARGINAL PDF

 𝐹𝑋 𝑥 = ∞−׬
𝑥

∞−׬
∞

𝑓𝑋𝑌 𝜉, 𝜂 𝑑𝜂𝑑𝜉

 Integrate/marginalize over full range/all values of 𝑦

 𝑓𝑋 𝑥 =
𝑑𝐹𝑋 𝑥

𝑑𝑥
= ∞−׬

∞
𝑓𝑋𝑌 𝑥, 𝜂 𝑑𝜂 = ∞−׬

∞
𝑓𝑋𝑌 𝑥, 𝑦 𝑑𝑦

 𝑓𝑌 𝑦 = ∞−׬
∞

𝑓𝑋𝑌 𝑥, 𝑦 𝑑𝑥

 Independence:

 𝐹𝑋𝑌 𝑥, 𝑦 = 𝐹𝑋 𝑥 𝐹𝑌(𝑦)

 𝑓𝑋𝑌 𝑥, 𝑦 = 𝑓𝑋 𝑥 𝑓𝑌(𝑦)
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CONDITIONAL PMF

 (𝑋, 𝑌) discrete bivariate RV with joint PMF 𝑝𝑋𝑌(𝑥𝑖 , 𝑦𝑗)

 𝑝𝑌|𝑋 𝑦𝑗 𝑥𝑖 =
𝑝𝑋𝑌 𝑥𝑖,𝑦𝑗

𝑝𝑋(𝑥𝑖)
, 𝑝𝑋 𝑥𝑖 > 0

 Conditional PMF of 𝑌 given 𝑋 = 𝑥𝑖  probability of 𝑌 = 𝑦𝑗
knowing that 𝑋 = 𝑥𝑖

 Properties

 1) 0 ≤ 𝑝𝑌|𝑋 𝑦𝑗 𝑥𝑖 ≤ 1

 2) σ𝑦𝑗 𝑝𝑌|𝑋 𝑦𝑗 𝑥𝑖 = 1

 Independence 

 𝑝𝑌|𝑋 𝑦𝑗 𝑥𝑖 = 𝑝𝑌 𝑦𝑗 and   𝑝𝑋|𝑌 𝑥𝑖 𝑦𝑗 = 𝑝𝑋(𝑥𝑖)
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CONDITIONAL PDF

 𝑋, 𝑌 continuous bivariate RV with joint PMF 𝑓𝑋𝑌(𝑥, 𝑦)

 𝑓𝑌|𝑋 𝑦 𝑥 =
𝑓𝑋𝑌 𝑥,𝑦

𝑓𝑋(𝑥)
, 𝑓𝑋 𝑥 > 0

 Conditional PDF of 𝑌 given 𝑋 (= 𝑥)

 Properties

 1) 𝑓𝑌|𝑋 𝑦 𝑥 ≥ 0

 ∞−׬ (2
∞

𝑓𝑌|𝑋 𝑦 𝑥 𝑑𝑦 = 1

 Independence

 𝑓𝑌|𝑋 𝑦 𝑥 = 𝑓𝑌 𝑦 and   𝑓𝑋|𝑌 𝑥, 𝑦 = 𝑓𝑋(𝑥)
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COVARIANCE/CORRELATION COEFFICIENT 
AND CONDITIONAL MEANS/VARIANCES
CHAPTER 3.7-3.8
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(k,n)th MOMENT

𝑚𝑘𝑛 = 𝐸 𝑋𝑘𝑌𝑛

 Discrete: 𝑚𝑘𝑛 = σ𝑦𝑗
σ𝑥𝑖 𝑥𝑖

𝑘𝑦𝑗
𝑛𝑝𝑋𝑌(𝑥𝑖 , 𝑦𝑗)

 Continuous: 𝑚𝑘𝑛 = ∞−׬
∞

∞−׬
∞

𝑥𝑘𝑦𝑛𝑓𝑋𝑌 𝑥, 𝑦 𝑑𝑥𝑑𝑦

Note: 𝑚10 = 𝐸 𝑋 = 𝜇𝑋 and 𝑚01 = 𝐸 𝑌 = 𝜇𝑌
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 Measure of relationship between 
two RV

 𝑚11 = 𝐸[𝑋𝑌]

 Measure away from independence 
(statistical)

 If 𝐸 𝑋𝑌 = 0, then X and Y are 
orthogonal

 Note: orthogonal does not mean 
independent

 Think of an inner product in RV 
space  90 degree angle vs. 
statistical independence

 Note: “correlation does not 
imply causation”

 Just because two variables are 
correlated, does not mean that 
one causes the other

 E.g. increase in ice cream sales 
correlated with increase shark 
attacks.  Probably not ice cream 
causing shark attacks but that ice 
cream and shark attacks happen 
more often during the summer
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CORRELATION



COVARIANCE

𝐶𝑜𝑣 𝑋, 𝑌 = 𝜎𝑋𝑌 = 𝐸 𝑋 − 𝜇𝑋 𝑌 − 𝜇𝑌

= 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸[𝑌]

 If 𝐶𝑜𝑣 𝑋, 𝑌 = 0  X and Y uncorrelated

 𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸[𝑌]

 Note that independent RV are uncorrelated but 
uncorrelated does not imply independent
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PEARSON’S CORRELATION COEFFICIENT

Measure of linear dependence between X,Y

𝜌 𝑋, 𝑌 = 𝜌𝑋𝑌 =
𝐶𝑜𝑣 𝑋,𝑌

𝜎𝑋𝜎𝑌
=

𝜎𝑋𝑌

𝜎𝑋𝜎𝑌

 𝜌𝑋𝑌 ≤ 1
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 Discrete

 Mean (expectation)

 𝜇𝑌|𝑥𝑖 = 𝐸 𝑌 𝑥𝑖 = σ𝑦𝑗 𝑦𝑗𝑝𝑌|𝑋(𝑦𝑗|𝑥𝑖)

 Variance 

 𝜎𝑌|𝑥𝑖
2 = 𝑉𝑎𝑟 𝑌 𝑥𝑖 = 𝐸 𝑌 − 𝜇𝑌|𝑥𝑖

2
𝑥𝑖

= σ𝑦𝑗 𝑦𝑗 − 𝜇𝑌|𝑥𝑖
2
𝑝𝑌|𝑋 𝑦𝑗 𝑥𝑖

= 𝐸 𝑌2 𝑥𝑖 − 𝐸2 𝑌 𝑥𝑖

 Note: these values are a function of 
𝑥𝑖 and do not depend on 𝑌

 Defined for different 𝑥𝑖 values

 Continuous

 Mean

 𝜇𝑌|𝑋 = 𝐸 𝑌 𝑥 = ∞−׬
∞

𝑦𝑓𝑌|𝑋 𝑦 𝑥 𝑑𝑦

 Variance

 𝜎𝑌|𝑥𝑖
2 = 𝑉𝑎𝑟 𝑌 𝑥

= 𝐸 𝑌 − 𝜇𝑌|𝑋
2
𝑥

= ∞−׬
∞

𝑦 − 𝜇𝑌|𝑥
2
𝑓𝑌|𝑋 𝑦 𝑥 𝑑𝑦
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N-VARIATE RVS AND SPECIAL 
DISTRIBUTIONS
CHAPTER 3.8-3.9
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N-VARIATE RV

 Natural extension of bivariate discussion

 Give n-tuple of RVs (𝑋1, 𝑋2, … , 𝑋𝑛) – n-dim random 
vector

 Each 𝑋𝑖 𝑖 = 1,2, … , 𝑛 associates a real number to sample 
point 𝜉 ∈ 𝑆

 We won’t really work beyond bivariate in class

 Ex: Joint CDF 𝐹𝑋1𝑋2…𝑋𝑛 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑃(𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2, … , 𝑋𝑛 ≤ 𝑥𝑛)
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SPECIAL DISTRIBUTIONS

 Just like with single RV, there are important 
distributions that show up in nature a lot

 Multinomial distribution – extension of binomial

 N-variate Normal distribution 
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MULTINOMIAL DISTRIBUTION

 Multinomial trial (extension of binomial)

 1) Experiment with 𝑘 possible outcomes that are mutually 
exclusive (𝐴1, 𝐴2, … , 𝐴𝑘)

 2) 𝑃 𝐴𝑖 = 𝑝𝑖;   𝑖 = 1,… , 𝑘;   σ𝑖=1
𝑘 𝑝𝑖 = 1

 Multinomial RV

 (𝑋1, 𝑋2, … , 𝑋𝑛) with 𝑋𝑖 be RV denoting number of trials with result 
𝐴𝑖
 Count of number of each outcome

 𝑝𝑋1𝑋2…𝑋𝑘 𝑥1, … , 𝑥𝑘 =
𝑛!

𝑥1!𝑥2!…𝑥𝑘!
𝑝1
𝑥1𝑝2

𝑥2 …𝑝𝑘
𝑥𝑘

 Probability of combination of different outcomes
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MULTINOMIAL EXAMPLE

𝑘 different color balls in a bag  𝑝𝑖 is the 
probability of color 𝑖 to be drawn

Select a ball at random and record the color then 
replace in bag

Count of the colors at the end of the 𝑛 ball draws is 
a multinomial RV

 Distribution tells the probability of seeing e.g. 1 white, 2 
red, 3 blue, and 4 green balls
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 Bivariate  N-variate

 Vector valued function (see book 
for details)

 Covariance matrix

 Note: covariance controls shape 
or orientation in bivariate case
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NORMAL DISTRIBUTION


