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BIVARIATE RANDOM VARIABLES AND
JOINT DISTRIBUTION FUNCTIONS

CHAPTER 3.1-3.3
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BIVARIATE RANDOM VARIABLES

= A pair of RV (X,Y) that
associates two real numbers
with every element in S

®» T'wo-dimensional random vector

®* Function that maps outcome ¢
to a point in the (x,y)-plane

= Range of (X,Y)
* Ryy ={(x,y);§{ €Sand X(§) = x,Y($) =y}
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BIVARIATE RV TYPES

® Bivariate discrete RV — both X, Y discrete
® Bivariate continuous RV — both X, Y continuous

® Bivariate mixed RV — one discrete other continuous

® In this class will primarily focus on either bivariate
discrete or continuous, not mixed



JOINT DISTRIBUTION FUNCTIONS (CDF)

" Foy(x,y) =P(X < x,Y < y) ®* Independent RV
= P(AN B) = Fyy(x,y) = Fx(x)Fy (y)
= Event A: (X < x); Event B: (Y <) = P(A)P(B)

= Formally, event (X < x,Y < y)
— event (AN B)
" A={{ €S X(E) <x}
= P(A) = Fx(x)
= B={{€SY() <y}
= P(B) = Fy(y)

= Properties — same general idea
as for single RV



MARGINAL DISTRIBUTION

® Given joint CDF,
= Fy(x) = Fxy(x, )

" Fy(y) = Fxy(o0,y)

® These are the distribution taking into account all values of
the other RV

= E.g. marginalizing/removing the effects/dependence on one variable

® Result comes from observation

B limX<x,Y<y)=X<x,Y <o) =X<x)

y—00

= The condition (Y < ) is always satisfied



JOINT PMF, JOINT PDF, AND CONDITIONAL
DISTRIBUTIONS

CHAPTER 3.4-3.6




JOINT PMF

" Let (X,Y) be discrete RV with values (x;,y;) for an allowable set of
integers I, J

= pxy(x0y;) = P(X = x,Y = y;)
" Properties
= 1) 0 < pxy(xy;) <1
= 2) X 2y Pxy (X, y;) =1
= 3) PI(X,Y) € Al = X X (xyy)era Pxv (X0, ¥))

= Points (xl-, yj) € R, are in range space corresponding to event A

= CDF from PMF
" Fyy(x,y) = inSx Zijy PXY(xi»}’j)
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MARGINAL PMF

"PX =x;) = px(x;) = Zyj PXY(xi:Yj)

" Summation is over all possible Y = y; values

= Marginalize by removing influence of RV Y

=P(Y =y;) = Py(¥)) = X, Pxv (%0, 7))

" Independence:

= Py (%, v7) = px(x)py ()
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JOINT PDF

= (X,Y) is a continuous bivariate RV with CDF Fyy(x,y)

62
= fyy(x,y) = %3y Fxy(x,y)

= Fyy (e, y) = [7 [7 fev (& m)dndé
= Properties:
- 1) fxy(x,y) =0
2) f_oof fxy(x,y)dxdy =1
4) PIX, V) €Al =[ [, fay(x,y)dxdy
)

=5 P(a<X<bc<Y<d)—f f fxy (x, y)dxdy
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MARGINAL PDF

" Fy(x) = f_xoo fjooo fxy (€,n)dndé

= Integrate/marginalize over full range/all values of y
" fx(x) = f fxy(x,m)dn = f fxy(x,y)dy
" fy(y) = f_oofxy(x; y)dx

" Independence:
" Fyy(x,y) = Fx(X)Fy ()
" fxy (6, y) = fx(Ofy (¥)

dFX(x)
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CONDITIONAL PMF

" (X,Y) discrete bivariate RV with joint PMF pyy (x;, y;)

p (xi'y'
" leX(:VJ"xi) — );Yx(xi)]), px(x;) >0

» Conditional PMF of Y given X (= x;) = probability of ¥ = y;
knowing that X = x;

= Properties

= 2) Xy, prix(vjlx) =1
" Independence

= pyix(¥i|x:) = py(y;) and pyy(xi|y;) = px (%)
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CONDITIONAL PDF

= (X,Y) continuous bivariate RV with joint PMF fxy(x,y)

" frx Ol =BEEE £ > 0

= Conditional PDF of Y given X (= x)
= Properties

"1) fyix(ylx) =0

“2) [ frixOlx)dy = 1
" Independence

- fY|X(3’|X) = fy(y) and fX|Y(X»)’) = fx(x)




COVARIANCE/CORRELATION COEFFICIENT
AND CONDITIONAL MEANS/VARIANCES

CHAPTER 3.7-3.8
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(k,n)™" MOMENT

"My, = E[X*Y"]
= Discrete: Myn = Zyj Dix; x{‘y}lpxy(xi,yj)
= Continuous: My, = f_oooo ffooo x®y™ firy (x, y)dxdy
= Note: mqyo = E|X]| = uy and my; = E[Y] = uy
px = Z;xiy?pxy(ﬂri,yj)
= %x;?pxy(%yﬂ = ;aﬁfapx(xz’)

N 7/
~

marginalize




CORRELATION

= Measure of relationship between ® Note: “correlation does not
two RV imply causation”
o = E(XY :
M11 [XY] | = Just because two variables are
N Meas.ur.e alway from independence correlated, does not mean that
(statistical) one causes the other
= If E[XY] =0, then X and Y are . .
orthogonal = E.g. increase in ice cream sales

correlated with increase shark
attacks. Probably not ice cream

, . . causing shark attacks but that ice
» Think of an inner product in RV cream and shark attacks happen

space =2 90 degree angle vs. :
S‘Ic)atistical inde%)endenge more often during the summer

= Note: orthogonal does not mean
independent
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COVARIANCE

"Cov(X,Y) = oxy = E[(X — ux)(Y — py)]
= E|XY| — E|X]E[Y]

2 If Cov(X,Y) =0 2 X and Y uncorrelated
= E[XY] = E[X]E[Y]

" Note that independent RV are uncorrelated but
uncorrelated does not imply independent




PEARSON’S CORRELATION COEFFICIENT

" Measure of linear dependence between X,Y

COU(X,Y) __ Oxy
Ox Oy OxO0y

.p(X,Y) = Pxy =

" pxyl <1
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CONDITIONAL MEAN/VARIANCE

= Discrete
= Mean (expectation)
"y = EYIxX] = Xy vioyix ) lx:)

= Variance
O aﬁxi =Var(Y|x;) = E [(Y — ,uy|xi)2‘xi]
= Zy,-(yj - 'uY|xi)2pY|X(yj|xi)
= E[Y?|x;] — E*[Y]x;]

= Note: these values are a function of
x; and do not depend on Y

= Defined for different x; values

= Continuous

= Mean

= uyix = E[YIx] = [ yfrix(vlx)dy
® Variance

o J,?lxl, = Var(Y|x)
= E|(Y = uyix)"|7]

= f_oooo(y — .uY|x)2fY|X(y|x)dy



N-VARIATE RVS AND SPECIAL
DISTRIBUTIONS

CHAPTER 3.8-3.9

20
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N-VARIATE RV

® Natural extension of bivariate discussion

= Give n-tuple of RVs (X{, X5, ..., X;;) — n-dim random
vector

" Fach X; i = 1,2, ...,n associates a real number to sample
point § € S

" We won’t really work beyond bivariate in class

N EX JOiIlt CDF FX1X2...Xn(X1:x2: ...,Xn) — P(Xl < Xl,Xz < X9, ...,Xn < xn)
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SPECIAL DISTRIBUTIONS

= Just like with single RV, there are important
distributions that show up in nature a lot

= Multinomial distribution — extension of binomial

= N-variate Normal distribution
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MULTINOMIAL DISTRIBUTION

= Multinomial trial (extension of binomial)

= 1) Experiment with k possible outcomes that are mutually
exclusive (44,45, ..., Ay)

=2) PA) =p; i=1..k Xi,p=1
® Multinomial RV

" (X, X5, ...,X,;) with X; be RV denoting number of trials with result
A;

= Count of number of each outcome

u (.'X,' X ) — n' X1,%X2 Xk
Px,Xx,.X; \X15 - X X, P1 Py Dy

= Probability of combination of different outcomes
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MULTINOMIAL EXAMPLE

= k different color balls in a bag = p; is the
probability of color i to be drawn

m Select a ball at random and record the color then
replace in bag

= Count of the colors at the end of the n ball draws is
a multinomial RV

® Distribution tells the probability of seeing e.g. 1 white, 2
red, 3 blue, and 4 green balls
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NORMAL DISTRIBUTION

= Bivariate = N-variate
far (@ 9) = (11_ i P [—%q(:r, y)} = Vector valued function (see book
e for details)
oz, )= - _192 [(m :-,z)z ey (m ;uz) (y ;yny) +(y :y)ﬂl 1 1 o
)= e © 50— K x = )]

= Covariance matrix

11 " Uln

K= ﬂ'ijj=CDV(Xi, XJ)

Opl " Opn

= Note: covariance controls shape
or orientation in bivariate case




