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FOURIER TRANSFORM DERIVATION

CHAPTER 5.1-5.2
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FOURIER SERIES REMINDER

® Previously, FS allowed representation of a periodic
signal as a linear combination of harmonically
related exponentials
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= Would like to extend this (Transform Analysis) idea
to aperiodic (non-periodic) signals



DT FOURIER TRANSFORM DERIVATION

= [ntuition (same idea as CTFT):
= Consider a finite signal x|n] JIJHHL
= Periodic pad to get periodic signal X|n]
= Find F'S representation of X|[n] - M I Ml
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= Analyze FS as N = o (wg = 0) to get DTFT

= Note DTFT is discrete in time domain — continuous in
frequency domain

= Envelope X(e/?) of normalized FS coefficients {a;N}
defines the DTFT (spectrum of x[n])



DT FOURIER TRANSFORM PAIR

= x[n] = %onX(ej“’)ej“mdw synthesis eq (inverse FT)

" X(e/?) = ¥w _,x[n]e/em analysis eq (FT)

= DTFT is discrete in time — continuous in frequency

= Notice the DTFT X(e’/®) is period with period 2m

oo oo

X (ej(w—|—27r)) _ i x[n]e—j(w+2w)n _ Z w[n]e—jwn p—J2mn Z m[n]e—jwn _ X(ejw)

n——oo =1 n=—o
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DTFT CONVERGENCE

" The F'T converges if

= Yalx[n]] < oo absolutely summable

=Y |x[n]|? < oo finite energy

= iF'T" has not convergence issues because X (ef ‘“) 1S
periodic

= Integral is over a finite 2 period (similar to FS)
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FT OF PERIODIC SIGNALS

= [mportant property

= x[n] = /90" o X(jw) = X2 _ o 216 (w — kwy — 2ml)

® Impulse at frequency kwy and 2w shifts

® Transform pair

- Zk=<N> akejkwon © 21 Zicio=—oo a,d(w — kwg)

= Each a; coefficient gets turned into a delta at the
harmonic frequency




DTFT PROPERTIES AND PAIRS

CHAPTER 5.3-5.6
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PROPERTIES /PAIRS TABLES

= Most often will use Tables to solve problems

= Table 5.1 pg 391 — DTFT Properties

® Table 5.2 pg 392 — DTFT Transform Pairs



NOTEWORTHY PROPERTIES

= Periodicity — X(ej“’) = X(ej(w”ﬂ))

= Time shift — x[n — ny] © e_jwnOX(ejw)

= Frequency /phase shift — e/?0"x[n] < X(ej(w_w(’))

= Convolution — x[n] * y[n] X(ejw)y(ejw)

= Multiplication — x|n]y[n] < %fmx(ef@)y(ej(w—e))dg

= Notice this is an integral over a single period = periodic
convolution iX(ej“’) * Y(ej“’)
2T



NOTEWORTHY PAIRS I

= Decaying exponential
= h|n] = a”u[n] lal < 1

_ B o 1
ejw § : a” u jwn __ E :an Jwn __ E :(CLG jw)fn, _ .
1l — ae— %

n——oo n=0

= Magnitude |H(e“)|? = H(e?)H*(e)¥) = (1 . al,e—jw) (1 — ;eﬂ‘“’)
response !

1+ a? — ael¥ —ae™I¥
1
1 4+ a? — 2a cos(w)




DECAYING EXPONENTIAL
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= Lowpass filter = Highpass filter



NOTEWORTHY PAIRS II

= Impulse
= x[n] = 8[n] & X(e/?) = X, 8[nle /" = 3, 8[n]le 700 =3, 6[n] = 1

= x[n] =8[n—ng] & X(e/?) =X, 8[n —ngle 79" = ¥, 5[n — nyle /@0 = e~/

= Rectangle pulse

1 |nl<N . Ljom _ S(e(5F)
- x[n]={0 ml > N, < X(7) =Zal_y e = (Sin(;) )

2

® Periodic signal

o x[n] = Tpeans axe/FO0m & X(eJ°) = 20 3o, 8w — ko)

= One period of a; copied



DTFT AND LTI SYSTEMS

CHAPTER 5.8
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GENERAL DIFFERENCE EQUATION SYSTEM

N M = Solve for frequency response
Z aryln — k| = Z brz[n — k|

W M —7kw
— H(ejw) _ Y(ej ) L Zk:O bke /

= Take F'T of both sides X (ed@) o Efk\f | ape—ike

> (ufn k) = 3 b {aln )

= Rational form — ratio of
polynomials in e~/

Zake gka egw Zbke kaX(ejw)

k=0 k=0 = Best solved using partial fraction

al M expansion (Appendix A
Y (e?%) [Z a,kejkw] — X (%) [Z bkejkw] p (App )
k=0 k=0

= Note special heavy-side cover-up
approach for repeated root



LTI SYSTEM APPROACH

® Same techniques as in continuous case

“Y(e/?) = H(e/*)X(e))
® Partial fraction expansion

= Inverse F'T with tables
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