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EE361: SIGNALS AND SYSTEMS II

CH5: DISCRETE TIME FOURIER TRANSFORM
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FOURIER TRANSFORM DERIVATION
CHAPTER 5.1-5.2
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FOURIER SERIES REMINDER

Previously, FS allowed representation of a periodic 
signal as a linear combination of harmonically 
related exponentials

 𝑥[𝑛] = σ𝑘=<𝑁>𝑎𝑘𝑒
𝑗𝑘𝜔0𝑛 𝑎𝑘 =

1

𝑁
σ𝑛=<𝑁> 𝑥 𝑛 𝑒−𝑗𝑘𝜔0𝑛 𝑑𝑡

 𝜔0 =
2𝜋

𝑁

Would like to extend this (Transform Analysis) idea 
to aperiodic (non-periodic) signals
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DT FOURIER TRANSFORM DERIVATION

 Intuition (same idea as CTFT):

 Consider a finite signal 𝑥[𝑛]

 Periodic pad to get periodic signal ෤𝑥[𝑛]

 Find FS representation of ෤𝑥[𝑛]

 Analyze FS as 𝑁 → ∞ (𝜔0 → 0) to get DTFT

 Note DTFT is discrete in time domain – continuous in 
frequency domain

 Envelope 𝑋(𝑒𝑗𝜔) of normalized FS coefficients {𝑎𝑘𝑁}
defines the DTFT (spectrum of 𝑥[𝑛])
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DT FOURIER TRANSFORM PAIR

 𝑥[𝑛] =
1

2𝜋
2𝜋𝑋׬ 𝑒𝑗𝜔 𝑒𝑗𝜔𝑛𝑑𝜔 synthesis eq (inverse FT)

 𝑋 𝑒𝑗𝜔 = σ𝑛=−∞
∞ 𝑥 𝑛 𝑒−𝑗𝜔𝑛 analysis eq (FT)

 DTFT is discrete in time – continuous in frequency 

 Notice the DTFT 𝑋(𝑒𝑗𝜔) is period with period 2𝜋
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DTFT CONVERGENCE

The FT converges if

 σ𝑛 𝑥 𝑛 < ∞ absolutely summable

 σ𝑛 𝑥 𝑛 2 < ∞ finite energy

 iFT has not convergence issues because 𝑋 𝑒𝑗𝜔 is 
periodic

 Integral is over a finite 2𝜋 period (similar to FS)
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FT OF PERIODIC SIGNALS

 Important property

 𝑥 𝑛 = 𝑒𝑗𝑘𝜔0𝑛 ↔ 𝑋 𝑗𝜔 = σ𝑙=−∞
∞ 2𝜋𝛿 𝜔 − 𝑘𝜔0 − 2𝜋𝑙

 Impulse at frequency 𝑘𝜔0 and 2𝜋 shifts

Transform pair

σ𝑘=<𝑁>𝑎𝑘𝑒
𝑗𝑘𝜔0𝑛 ↔ 2𝜋σ𝑘=−∞

∞ 𝑎𝑘𝛿 𝜔 − 𝑘𝜔0

 Each 𝑎𝑘 coefficient gets turned into a delta at the 
harmonic frequency
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DTFT PROPERTIES AND PAIRS
CHAPTER 5.3-5.6
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PROPERTIES/PAIRS TABLES

Most often will use Tables to solve problems

Table 5.1 pg 391 – DTFT Properties

Table 5.2 pg 392 – DTFT Transform Pairs 
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NOTEWORTHY PROPERTIES

 Periodicity – 𝑋 𝑒𝑗𝜔 = 𝑋 𝑒𝑗 𝜔+2𝜋

 Time shift – 𝑥 𝑛 − 𝑛0 ↔ 𝑒−𝑗𝜔𝑛0𝑋 𝑒𝑗𝜔

 Frequency/phase shift – 𝑒𝑗𝜔0𝑛𝑥 𝑛 ↔ 𝑋 𝑒𝑗 𝜔−𝜔0

 Convolution – 𝑥 𝑛 ∗ 𝑦 𝑛 ↔ 𝑋 𝑒𝑗𝜔 𝑌 𝑒𝑗𝜔

 Multiplication – 𝑥 𝑛 𝑦 𝑛 ↔
1

2𝜋
2𝜋𝑋׬ 𝑒𝑗𝜃 𝑌 𝑒𝑗 𝜔−𝜃 𝑑𝜃

 Notice this is an integral over a single period  periodic 

convolution 
1

2𝜋
𝑋 𝑒𝑗𝜔 ∗ 𝑌 𝑒𝑗𝜔
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NOTEWORTHY PAIRS I

Decaying exponential

 ℎ 𝑛 = 𝑎𝑛𝑢[𝑛] 𝑎 < 1

Magnitude 
response
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 0 < 𝑎 < 1

 Lowpass filter

 −1 < 𝑎 < 0

 Highpass filter
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NOTEWORTHY PAIRS II

 Impulse 

 𝑥 𝑛 = 𝛿[𝑛] ↔ 𝑋 𝑒𝑗𝜔 = σ𝑛 𝛿 𝑛 𝑒−𝑗𝜔𝑛 = σ𝑛 𝛿 𝑛 𝑒−𝑗𝜔 0 = σ𝑛 𝛿 𝑛 = 1

 𝑥 𝑛 = 𝛿 𝑛 − 𝑛0 ↔ 𝑋 𝑒𝑗𝜔 = σ𝑛 𝛿 𝑛 − 𝑛0 𝑒
−𝑗𝜔𝑛 = σ𝑛 𝛿 𝑛 − 𝑛0 𝑒

−𝑗𝜔𝑛0 = 𝑒−𝑗𝜔𝑛0

 Rectangle pulse

 𝑥 𝑛 = ቊ
1 𝑛 ≤ 𝑁1
0 𝑛 > 𝑁1

↔ 𝑋 𝑒𝑗𝜔 = σ𝑛=−𝑁1

𝑁1 𝑒−𝑗𝜔𝑛 =
sin 𝜔

2𝑁1+1

2

sin
𝜔

2

 Periodic signal

 𝑥 𝑛 = σ𝑘=<𝑁>𝑎𝑘𝑒
𝑗𝑘𝜔0𝑛 ↔ 𝑋 𝑒𝑗𝜔 = 2𝜋σ𝑘=−∞

∞ 𝑎𝑘𝛿 𝜔 − 𝑘𝜔0

 One period of 𝑎𝑘 copied 
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DTFT AND LTI SYSTEMS
CHAPTER 5.8
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 Take FT of both sides

 Solve for frequency response

 Rational form – ratio of 

polynomials in e−𝑗𝜔

 Best solved using partial fraction 
expansion (Appendix A)

 Note special heavy-side cover-up 
approach for repeated root
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LTI SYSTEM APPROACH

Same techniques as in continuous case

𝑌 𝑒𝑗𝜔 = 𝐻 𝑒𝑗𝜔 𝑋 𝑒𝑗𝜔

Partial fraction expansion

 Inverse FT with tables
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