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EE361: SIGNALS AND SYSTEMS II

CH3: FOURIER SERIES
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FOURIER SERIES OVERVIEW, MOTIVATION, 
AND HIGHLIGHTS
CHAPTER 3.1-3.2
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BIG IDEA: TRANSFORM ANALYSIS

Make use of properties of LTI system to simplify 
analysis

Represent signals as a linear combination of basic 
signals with two properties

 Simple response:  easy to characterize LTI system 
response to basic signal

 Representation power:  the set of basic signals can be 
use to construct a broad/useful class of signals
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 When plucking a string, length 
is divided into integer divisions 
or harmonics

 Frequency of each harmonic is an 
integer multiple of a 
“fundamental frequency”

 Also known as the normal modes

 Any string deflection could be 
built out of a linear 
combination of “modes”
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NORMAL MODES OF VIBRATING STRING
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NORMAL MODES OF VIBRATING STRING

Caution: turn your sound down

https://youtu.be/BSIw5SgUirg

https://youtu.be/BSIw5SgUirg


 Fourier argued that periodic 
signals (like the single period 
from a plucked string) were 
actually useful

 Represent complex periodic signals

 Examples of basic periodic signals

 Sinusoid: 𝑥 𝑡 = 𝑐𝑜𝑠𝜔0𝑡

 Complex exponential: 𝑥 𝑡 = 𝑒𝑗𝜔0t

 Fundamental frequency: 𝜔0

 Fundamental period: 𝑇 =
2𝜋

𝜔0

 Harmonically related period 
signals form family

 Integer multiple of fundamental 
frequency

 𝜙𝑘 𝑡 = 𝑒𝑗𝑘𝜔0𝑡 for 𝑘 = 0,±1,±2,…

 Fourier Series is a way to 
represent a periodic signal as a 
linear combination of harmonics

 𝑥 𝑡 = σ𝑘=−∞
∞ 𝑎𝑘𝑒

𝑗𝑘𝜔0𝑡

 𝑎𝑘 coefficient gives the contribution 
of a harmonic (periodic signal of 𝑘
times frequency)
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FOURIER SERIES 1 SLIDE OVERVIEW



SAWTOOTH EXAMPLE
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SQUARE WAVE EXAMPLE

 Better approximation of square 
wave with more coefficients

 Aligned approximations

 Animation of FS 
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http://upload.wikimedia.org/wikipedia/commons/2/2b/Fourier_series_and_transform.gif


ARBITRARY EXAMPLES

 Interactive examples [flash (dated)][html]
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https://1ucasvb.com/stuff/FourierToy.swf
http://beneskildsen.github.io/fourier/fourier.html


RESPONSE OF LTI SYSTEMS TO COMPLEX 
EXPONENTIALS 
CHAPTER 3.2
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TRANSFORM ANALYSIS OBJECTIVE

 Need family of signals 𝑥𝑘 𝑡 that have 1) simple response 
and 2) represent a broad (useful) class of signals

1. Family of signals Simple response – every signal in family pass 
through LTI system with scale change

2. “Any” signal can be represented as a linear combination of 
signals in the family

 Results in an output generated by input 𝑥(𝑡)
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𝑥𝑘(𝑡) ⟶ 𝜆𝑘𝑥𝑘(𝑡)

𝑥 𝑡 = ෍

𝑘=−∞

∞

𝑎𝑘𝑥𝑘(𝑡)

𝑥 𝑡 ⟶ ෍

𝑘=−∞

∞

𝑎𝑘𝜆𝑘𝑥𝑘(𝑡)



IMPULSE AS BASIC SIGNAL

Previously (Ch2), we used shifted and scaled deltas

 𝛿 𝑡 − 𝑡0 ⟹ 𝑥 𝑡 = ∫ 𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏 ⟶ 𝑦 𝑡 = ∫ 𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏

Thanks to Jean Baptiste Joseph Fourier in the early 
1800s we got Fourier analysis

 Consider signal family of complex exponentials

 𝑥 𝑡 = 𝑒𝑠𝑡 or 𝑥 𝑛 = 𝑧𝑛, 𝑠, 𝑧 ∈ ℂ
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 Using the convolution

 𝑒𝑠𝑡 ⟶𝐻 𝑠 𝑒𝑠𝑡

 𝑧𝑛 ⟶𝐻 𝑧 𝑧𝑛

 Notice the eigenvalue 𝐻 𝑠
depends on the value of ℎ(𝑡)
and 𝑠

 Transfer function of LTI system

 Laplace transform of impulse 
response
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COMPLEX EXPONENTIAL AS EIGENSIGNAL



TRANSFORM OBJECTIVE

 Simple response

 𝑥 𝑡 = 𝑒𝑠𝑡 ⟶ 𝑦 𝑡 = 𝐻 𝑠 𝑥 𝑡

 Useful representation?

 𝑥 𝑡 = σ𝑎𝑘𝑒
𝑠𝑘𝑡 ⟶ 𝑦 𝑡 = σ𝑎𝑘𝐻 𝑠𝑘 𝑒𝑠𝑘𝑡

 Input linear combination of complex exponentials leads to output linear 
combination of complex exponentials

 Fourier suggested limiting to subclass of period complex exponentials 
𝑒𝑗𝑘𝜔0𝑡 , 𝑘 ∈ ℤ,𝜔0 ∈ ℝ

 𝑥 𝑡 = σ𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 ⟶ 𝑦 𝑡 = σ𝑎𝑘𝐻 𝑗𝑘𝜔0 𝑒𝑠𝑘𝑡

 Periodic input leads to periodic output.

 𝐻 𝑗𝜔 = 𝐻 𝑠 ȁ𝑠=𝑗𝜔 is the frequency response of the system
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CONTINUOUS TIME FOURIER SERIES
CHAPTER 3.3-3.8
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CTFS TRANSFORM PAIR

 Suppose 𝑥(𝑡) can be expressed as a linear combination of 
harmonic complex exponentials

 𝑥 𝑡 = σ𝑘=−∞
∞ 𝑎𝑘𝑒

𝑗𝑘𝜔0𝑡 synthesis equation

 Then the FS coefficients {𝑎𝑘} can be found as

 𝑎𝑘 =
1

𝑇
∫𝑇 𝑥(𝑡) 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡 analysis equation

 𝜔0 - fundamental frequency

 𝑇 = 2𝜋/𝜔0 - fundamental period 

 𝑎𝑘 known as FS coefficients or spectral coefficients
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CTFS PROOF

While we can prove this, it is not well suited for 
slides.

 See additional handout for details

Key observation from proof: Complex exponentials 
are orthogonal
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VECTOR SPACE OF PERIODIC SIGNALS

All signals

Periodic signals, 𝜔0



 Each of the harmonic 
exponentials are orthogonal to 
each other and span the space 
of periodic signals

 The projection of 𝑥(𝑡) onto a 
particular harmonic (𝑎𝑘) gives 
the contribution of that 
complex exponential to 
building 𝑥 𝑡

 𝑎𝑘 is how much of each harmonic 
is required to construct the 
periodic signal 𝑥(𝑡)
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VECTOR SPACE OF PERIODIC SIGNALS

Periodic signals, 𝜔0

𝑥(𝑡)

𝑒𝑗0𝑡 = 1
𝑎0

𝑒𝑗(−𝜔0)𝑡

𝑒𝑗𝜔0𝑡

𝑒𝑗2𝜔0𝑡

𝑒𝑗𝑘𝜔0𝑡

𝑎−1

𝑎1

𝑎2

𝑎𝑘



HARMONICS

 𝑘 = ±1 ⇒ fundamental component (first harmonic) 

 Frequency 𝜔0, period 𝑇 = 2𝜋/𝜔0

 𝑘 = ±2 ⇒ second harmonic

 Frequency 𝜔2 = 2𝜔0, period 𝑇2 = 𝑇/2 (half period)

 …

 𝑘 = ±𝑁 ⇒ Nth harmonic

 Frequency 𝜔𝑁 = 𝑁𝜔0, period 𝑇𝑁 = 𝑇/𝑁 (1/N period)

 𝑘 = 0 ⇒ 𝑎0 =
1

𝑇
∫𝑇 𝑥 𝑡 𝑑𝑡, DC, constant component, average 

over a single period
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HOW TO FIND FS REPRESENTATION

Will use important examples to demonstrate 
common techniques

Sinusoidal signals – Euler’s relationship

Direct FS integral evaluation

FS properties table and transform pairs
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 𝑥 𝑡 = 1 +
1

2
cos 2𝜋𝑡 + sin 3𝜋𝑡

 First find the period 

 Constant 1 has arbitrary period

 cos 2𝜋𝑡 has period 𝑇1 = 1

 sin 3𝜋𝑡 has period 𝑇2 = 2/3

 𝑇 = 2, 𝜔0 = 2𝜋/𝑇 = 𝜋

 Rewrite 𝑥 𝑡 using Euler’s and read off 𝑎𝑘
coefficients by inspection

 𝑥 𝑡 = 1 +
1

4
𝑒𝑗2𝜔0𝑡 + 𝑒−𝑗2𝜔0𝑡 +

1

2𝑗
𝑒𝑗3𝜔0𝑡 − 𝑒−𝑗3𝜔0𝑡

 Read off coeff. directly

 𝑎0 = 1

 𝑎1 = 𝑎−1 = 0

 𝑎2 = 𝑎−2 = 1/4

 𝑎3 = 1/2𝑗, 𝑎−3 = −1/2𝑗

 𝑎𝑘 = 0, else
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SINUSOIDAL SIGNAL



 𝑥 𝑡 = ቐ
1 𝑡 < 𝑇1

0 𝑇1 < 𝑡 <
𝑇

2

23

PERIODIC RECTANGLE WAVE



 Important signal/function in 
DSP and communication

 sinc 𝑥 =
sin 𝜋𝑥

𝜋𝑥
normalized

 sinc 𝑥 =
sin 𝑥

𝑥
unnormalized

 Modulated sine function

 Amplitude follows 1/x

 Must use L’Hopital’s rule to get 
x=0 time

24

SINC FUNCTION



 Consider different “duty cycle” for 
the rectangle wave

 𝑇 = 4𝑇1 50% (square wave)

 𝑇 = 8𝑇1 25%

 𝑇 = 16𝑇1 12.5%

 Note all plots are still a sinc
shape

 Difference is how the sync is sampled

 Longer in time (larger T) smaller 
spacing in frequency  more samples 
between zero crossings
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RECTANGLE WAVE COEFFICIENTS



 Special case of rectangle wave 
with 𝑇 = 4𝑇1

 One sample between zero-crossing

 𝑎𝑘 = ቐ
1/2 𝑘 = 0

sin(𝑘𝜋/2)

𝑘𝜋
𝑒𝑙𝑠𝑒
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SQUARE WAVE



 𝑥 𝑡 = σ𝑘=−∞
∞ 𝛿(𝑡 − 𝑘𝑇)

 Using FS integral

 Notice only one impulse in the interval
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PERIODIC IMPULSE TRAIN



PROPERTIES OF CTFS

Since these are very similar between CT and DT, 
will save until after DT

Note: As for LT and Z Transform, properties are 
used to avoid direct evaluation of FS integral

 Be sure to bookmark properties in Table 3.1 on page 206
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DISCRETE TIME FOURIER SERIES
CHAPTER 3.6
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DTFS VS CTFS DIFFERENCES

While quite similar to the CT case,

 DTFS is a finite series, 𝑎𝑘 , k < K

 Does not have convergence issues

Good News: motivation and intuition from CT 
applies for DT case
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DTFS TRANSFORM PAIR

 Consider the discrete time periodic signal 𝑥 𝑛 = 𝑥 𝑛 + 𝑁

 𝑥 𝑛 = σ𝑘=<𝑁> 𝑎𝑘𝑒
𝑗𝑘𝜔0𝑛 synthesis equation

 𝑎𝑘 =
1

𝑁
σ𝑛=<𝑁> 𝑥 𝑛 𝑒−𝑗𝑘𝜔0𝑛 analysis equation

 𝑁 – fundamental period (smallest value such that periodicity 
constraint holds)

 𝜔0 = 2𝜋/𝑁 – fundamental frequency

 σ𝑛=<𝑁> indicates summation over a period (𝑁 samples)
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DTFS REMARKS

DTFS representation is a finite sum, so there is 
always pointwise convergence

FS coefficients are periodic with period N
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DTFS PROOF

Proof for the DTFS pair is similar to the CT case

Relies on orthogonality of harmonically related DT 
period complex exponentials

Will not show in class
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HOW TO FIND DTFS REPRESENTATION

Like CTFS, will use important examples to 
demonstrate common techniques

Sinusoidal signals – Euler’s relationship

Direct FS summation evaluation – periodic 
rectangular wave and impulse train

FS properties table and transform pairs
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 𝑥[𝑛] = 1 +
1

2
cos

2𝜋

𝑁
𝑛 + sin

4𝜋

𝑁
𝑛

 First find the period

 Rewrite 𝑥[𝑛] using Euler’s and 
read off 𝑎𝑘 coefficients by 
inspection

 Shortcut here

 𝑎0 = 1, 𝑎±1 =
1

4
, 𝑎2 = 𝑎−2

∗ =
1

2𝑗
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SINUSOIDAL SIGNAL



 𝑥(𝑡) = cos𝜔0𝑡

 𝑎𝑘 = ቊ
1/2 𝑘 = ±1
0 𝑒𝑙𝑠𝑒

 𝑥 𝑛 = cos𝜔0𝑛

 𝑎𝑘 = ቊ
1/2 𝑘 = ±1
0 𝑒𝑙𝑠𝑒

 Over a single period  must 
specify period with period N
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SINUSOIDAL COMPARISON



 Type equation here.

37

PERIODIC RECTANGLE WAVE



 Consider different “duty cycle” for 
the rectangle wave

 50% (square wave)

 25%

 12.5%

 Note all plots are still a sinc
shaped, but periodic

 Difference is how the sync is sampled

 Longer in time (larger N) smaller 
spacing in frequency  more samples 
between zero crossings
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RECTANGLE WAVE COEFFICIENTS



 𝑥[𝑛] = σ𝑘=−∞
∞ 𝛿[𝑛 − 𝑘𝑁]

 Using FS integral

 Notice only one impulse in the interval
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PERIODIC IMPULSE TRAIN



PROPERTIES OF FOURIER SERIES
CHAPTER 3.5, 3.7

40



PROPERTIES OF FOURIER SERIES

 See Table 3.1 pg. 206 (CT) and Table 3.2 pg. 221 (DT)

 In the following slides, suppose:

 Most times, will only show proof for one of CT or DT
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 CT

 𝐴𝑥 𝑡 + 𝐵𝑦 𝑡 ⟷ 𝐴𝑎𝑘 + 𝐵𝑏𝑘

 DT

 𝐴𝑥 𝑛 + 𝐵𝑦 𝑛 ⟷ 𝐴𝑎𝑘 + 𝐵𝑏𝑘

42

LINEARITY



 CT

 𝑥(𝑡 − 𝑡0) ⟷ 𝑎𝑘𝑒
−𝑗𝑘𝜔0𝑡0

 Proof

 Let 𝑦 𝑡 = 𝑥(𝑡 − 𝑡0)

 DT

 𝑥[𝑛 − 𝑛0] ⟷ 𝑎𝑘𝑒
−𝑗𝑘𝜔0𝑛0
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TIME-SHIFT



 CT

 𝑒𝑗𝑀𝜔0𝑡𝑥 𝑡 ⟷ 𝑎𝑘−𝑀

 DT

 𝑒𝑗𝑀𝜔0𝑛𝑥 𝑛 ⟷ 𝑎𝑘−𝑀
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FREQUENCY SHIFT

Note: Similar relationship with Time Shift (dualilty).  Multiplication 
by exponential in time is a shift in frequency. Shift in time is a 
multiplication by exponential in frequency.



 CT

 𝑥(−𝑡) ⟷ 𝑎−𝑘

 DT

 𝑥[−𝑛] ⟷ 𝑎−𝑘
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TIME REVERSAL



 CT

 ∫𝑇 𝑥 𝜏 𝑦 𝑡 − 𝜏 𝑑𝜏 ⟷ 𝑇𝑎𝑘𝑏𝑘

 DT

 σ𝑟=<𝑁> 𝑥 𝑟 𝑦[𝑛 − 𝑟] ⟷ 𝑁𝑎𝑘𝑏𝑘
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PERIODIC CONVOLUTION



 CT

 𝑥 𝑡 𝑦(𝑡) ⟷ σ𝑙=−∞
∞ 𝑎𝑙𝑏𝑘−𝑙 = 𝑎𝑘 ∗ 𝑏𝑘

 DT

 𝑥 𝑛 𝑦[𝑛] ⟷ σ𝑙=<𝑁>𝑎𝑙𝑏𝑘−𝑙 = 𝑎𝑘 ∗ 𝑏𝑘

 Convolution over a single period 
(DT FS is periodic)
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MULTIPLICATION

Note: Similar relationship with Convolution (dualilty). Convolution 
in time results in multiplication in frequency domain. Multiplication 
in time results in convolution in frequency domain.



 CT


1

𝑇
∫𝑇 𝑥 𝑡 2𝑑𝑡 = σ𝑘=−∞

∞ 𝑎𝑘
2

 DT


1

𝑁
σ𝑛=<𝑁> 𝑥 𝑛 2 = σ𝑘=<𝑁> 𝑎𝑘

2
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PARSEVAL’S RELATION

Note: Total average power in a periodic signal equals the sum of the 
average power in all its harmonic components

1

T
න
𝑇

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡

2
𝑑𝑡 =

1

𝑇
න
𝑇

𝑎𝑘
2𝑑𝑡 = 𝑎𝑘

2

Average power in the 𝑘th harmonic



 CT

 𝑥(𝛼𝑡) ⟷ 𝑎𝑘

 𝛼 > 0

 Periodic with period 𝑇/𝛼

 DT

 𝑥(𝑚) 𝑛 = ቊ
𝑥[𝑛/𝑚] 𝑛 multiple of 𝑚

0 𝑒𝑙𝑠𝑒

 Periodic with period 𝑚𝑁

 𝑥(𝑚)[𝑛] ⟷
1

𝑚
𝑎𝑘

 Periodic with period 𝑚𝑁
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TIME SCALING

Note: Not all properties are exactly the same. Must be careful due to 
constraints on periodicity for DT signal.



FOURIER SERIES AND LTI SYSTEMS
CHAPTER 3.8
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EIGENSIGNAL REMINDER

 𝑥 𝑡 = 𝑒𝑠𝑡 ⟷ 𝑦 𝑡 = 𝐻 𝑠 𝑒𝑠𝑡 𝑥 𝑛 = 𝑧𝑛 ⟷ 𝑦 𝑛 = 𝐻 𝑧 𝑧𝑛

 𝐻 𝑠 = ∫−∞
∞
ℎ 𝑡 𝑒−𝑠𝑡𝑑𝑡 𝐻 𝑧 = σ𝑛=−∞

∞ ℎ 𝑛 𝑧−𝑘

 𝐻 𝑠 ,𝐻 𝑧 known as system function (𝑠, 𝑧 ∈ ℂ)

 For Fourier Analysis (e.g. FS)

 Let 𝑠 = 𝑗𝜔 and 𝑧 = 𝑒𝑗𝜔

 Frequency response (system response to particular input frequency)

 𝐻 𝑗𝜔 = 𝐻 𝑠 ȁ𝑠=𝑗𝜔 = ∫−∞
∞
ℎ 𝑡 𝑒−𝑗𝜔𝑡𝑑𝑡

 𝐻 𝑒𝑗𝜔 = 𝐻 𝑧 ȁ
𝑧=𝑒𝑗𝜔 = σ𝑛=−∞

∞ ℎ 𝑛 𝑒−𝑗𝜔𝑛
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FOURIER SERIES AND LTI SYSTEMS I

 Consider now a FS representation of a periodic signals

 𝑥 𝑡 = σ𝑘 𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡

 → 𝑦 𝑡 = σ𝑘 𝑎𝑘𝐻 𝑗𝑘𝜔0 𝑒𝑗𝑘𝜔0𝑡

 Due to superposition (LTI system)

 Each harmonic in results in harmonic out with eigenvalue 

 𝑦(𝑡) periodic with same fundamental frequency as 𝑥(𝑡) ⇒ 𝜔0

 𝑇 =
2𝜋

𝜔0
- fundamental period

 FS coefficients for 𝑦 𝑡

 𝑏𝑘 = 𝑎𝑘𝐻(𝑗𝑘𝜔0)

 𝑏𝑘 is the FS coefficient 𝑎𝑘 multiplied/affected by frequency response at 𝑘𝜔0
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FOURIER SERIES AND LTI SYSTEMS III

System block diagram

53

𝑎−𝑘𝑒
−𝑗𝑘𝜔0𝑡 𝐻(𝑗𝜔)

𝑥 𝑡 =

𝑦(𝑡)𝑎0𝑒
𝑗(0)𝜔0𝑡 𝐻(𝑗𝜔)

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 𝐻(𝑗𝜔)

⋮

⋮

𝑎−𝑘𝐻(−𝑗𝑘𝜔0)𝑒
−𝑗𝑘𝜔0𝑡

𝑎𝑘𝐻(𝑗𝑘𝜔0)𝑒
−𝑗𝑘𝜔0𝑡

𝑎0𝐻(−𝑗0)



DTFS AND LTI SYSTEMS

 𝑥 𝑛 = σ𝑘=<𝑁>𝑎𝑘𝑒
𝑗𝑘2𝜋/𝑁𝑛 →

𝑦 𝑛 = ෍

𝑘=<𝑁>

𝑎𝑘𝐻(𝑒
𝑗
2𝜋
𝑁
𝑘)𝑒𝑗𝑘2𝜋/𝑁𝑛

Same idea as in the continuous case

 Each harmonic is modified by the Frequency Response 
at the harmonic frequency
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 LTI system with 

 ℎ 𝑛 = 𝛼𝑛𝑢 𝑛 ,−1 < 𝛼 < 1

 Find FS of 𝑦[𝑛] given input

 𝑥 𝑛 = cos
2𝜋𝑛

𝑁

 Find FS representation of 𝑥[𝑛]

 𝜔0 = 2𝜋/𝑁

 𝑥 𝑛 =
1

2
𝑒𝑗2𝜋/𝑁𝑛 +

1

2
𝑒−𝑗2𝜋/𝑁𝑛

 𝑎𝑘 = ൝
1

2
𝑘 = ±1,± 𝑁 + 1 ,…

0 else

 Find frequency response 

 𝐻 𝑒𝑗𝜔 = σ𝑛 ℎ 𝑛 𝑒−𝑗𝜔𝑛

 𝐻 𝑒𝑗𝜔 = σ𝑛𝛼
𝑛𝑢[𝑛]𝑒−𝑗𝜔𝑛

55

EXAMPLE 1

𝐻 𝑗𝜔 = ෍

𝑛=0

∞

𝛼𝑛𝑒−𝑗𝜔𝑛

𝐻 𝑗𝜔 = ෍

𝑛=0

∞

𝛼𝑒−𝑗𝜔
𝑛

Let 𝛽 = 𝛼𝑒−𝑗𝜔

𝐻 𝑗𝜔 =
1

1 − 𝛽

𝐻 𝑗𝜔 =
1

1 − 𝛼𝑒−𝑗𝜔



EXAMPLE 1 II

 Use FS LTI relationship to find output

 𝑦 𝑛 = σ𝑘=<𝑁> 𝑎𝑘𝐻(𝑒
𝑗𝑘𝜔0) 𝑒𝑗𝑘𝜔0𝑛

 𝑦 𝑛 =
1

2
𝐻 𝑒𝑗1

2𝜋

𝑁
𝑛 𝑒𝑗1

2𝜋

𝑁
𝑛 +

1

2
𝐻 𝑒−𝑗1

2𝜋

𝑁
𝑛 𝑒−𝑗1

2𝜋

𝑁
𝑛

 𝑦 𝑛 =
1

2

1

1−𝛼𝑒−𝑗𝑘2𝜋/𝑁
𝑒𝑗

2𝜋

𝑁
𝑛 +

1

2

1

1−𝛼𝑒𝑗𝑘2𝜋/𝑁
𝑒−𝑗

2𝜋

𝑁
𝑛

 Output FS coefficients

 𝑏𝑘 = ൝
1

2

1

1−𝛼𝑒−𝑗𝑘2𝜋/𝑁
𝑘 = ±1

0 𝑒𝑙𝑠𝑒
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Periodic with period 𝑁



 𝑥(𝑡) has fundamental period 𝑇
and FS 𝑎𝑘

 Sometimes direct calculation of 
𝑎𝑘 is difficult, at times easier 
to calculate transformation

 𝑏𝑘 ↔ 𝑔 𝑡 =
𝑑𝑥 𝑡

𝑑𝑡

 Find 𝑎𝑘 in terms of 𝑏𝑘 and 𝑇, 
given

 ∫𝑇
2𝑇
𝑥 𝑡 𝑑𝑡 = 2

 𝑎0 =
1

𝑇
∫𝑇 𝑥 𝑡 𝑒−𝑗 0 𝜔0𝑡𝑑𝑡 =

1

𝑇
∫𝑇 𝑥 𝑡 𝑑𝑡 ⇒

2

𝑇

 From Table 3.1 pg 206

 𝑏𝑘 ↔ 𝑗𝑘
2𝜋

𝑇
𝑎𝑘 ⇒ 𝑎𝑘 =

𝑏𝑘

𝑗𝑘2𝜋/𝑇

 𝑎𝑘 = ቐ
2/𝑇 𝑘 = 0
𝑏𝑘

𝑗𝑘2𝜋/𝑇
𝑘 ≠ 0
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EXAMPLE PROBLEM 3.7



EXAMPLE PROBLEM 3.7 II

 Find FS of periodic sawtooth wave

 Take derivative of sawtooth

 Results in sum of rectangular waves

 FS coefficients of rectangular waves from Table 3.2 to get 𝑏𝑘 ↔ 𝑔(𝑡)

 Then use previous result to find 𝑎𝑘 ↔ 𝑥(𝑡)

 See examples 3.6, 3.7 for similar treatment
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CHAPTER 3.9
FILTERING
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FILTERING

 Important process in many applications

The goal is to change the relative amplitudes of 
frequency components in a signal

 In EE480: DSP you can learn how to design a filter with 
desired properties/specifications
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LTI FILTERS

 Frequency-shaping filters – general LTI systems

 Frequency-selective filters – pass some frequencies and 
eliminate others

 Common examples include low-pass (LP), high-pass (HP), 
bandpass (BP), and bandstop (BS) [notch]
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MOTIVATION: AUDIO EQUALIZER

 Basic equalizer gives user ability to adjust sound from to 
match taste – e.g. bass (low freq) and treble (high freq)
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 Log-log plot to show larger 
range of frequencies and 
response

dB = 20 log10 𝐻 𝑗𝜔

 Magnitude response matches are 
intuition
 Boost low and high frequencies 

but attenuate mid frequencies 



EXAMPLE: DERIVATIVE FILTER

𝑦 𝑡 =
𝑑

𝑑𝑡
𝑥 𝑡 ⟷ 𝐻 𝑗𝜔 = 𝑗𝜔

High-pass filter used for “edge” detection
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EXAMPLE: AVERAGE FILTER

 𝑦 𝑛 =
1

2
𝑥 𝑛 + 𝑥 𝑛 − 1

 Low-pass filter used for smoothing
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MATLAB FOR FILTERS

Very helpful to visualize filters

65



SUMMARY
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 Continuous Case

 𝑥 𝑡 = σ𝑘 𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡

 𝑎𝑘 =
1

𝑇
∫𝑇 𝑥 𝑡 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡

 Fundamental frequency 𝜔0

 Fundamental period 𝑇 =
2𝜋

𝜔0

 Discrete Case

 𝑥[𝑛] = σ𝑘=<𝑁>𝑎𝑘𝑒
𝑗𝑘𝜔0𝑛

 𝑎𝑘 =
1

𝑁
σ𝑛=<𝑁> 𝑥 𝑛 𝑒−𝑗𝑘𝜔0𝑛

 Fundamental frequency 𝜔0

 Fundamental period 𝑁 =
2𝜋

𝜔0
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