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CH3: FOURIER SERIES
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FOURIER SERIES OVERVIEW, MOTIVATION,
AND HIGHLIGHTS

CHAPTER 3.1-3.2




BIG IDEA: TRANSFORM ANALYSIS

= Make use of properties of LTI system to simplify
analysis

® Represent signals as a linear combination of basic
signals with two properties

= Simple response: easy to characterize LTI system
response to basic signal

® Representation power: the set of basic signals can be
use to construct a broad/useful class of signals



NORMAL MODES OF VIBRATING STRING

= When plucking a string, length —_ ——

is divided into integer divisions e
or harmonics
= Frequency of each harmonic is an ©©<>
integer multiple of a 3
“fundamental frequency” <><><><>
= Also known as the normal modes <><><><><>
®* Any string deflection could be TS
built out of a linear

combination of “modes”




NORMAL MODES OF VIBRATING STRING

®* When plucking a string, length
is divided into integer divisions
or harmonics

* Frequency of each harmonic is an Saint Mary's University
integer multiple of a

“fundamental frequency”
= Also known as the normal modes

®* Any string deflection could be Phvsics Demos

built out of a linear Caution: turn your sound down
combination of “modes” https://youtu.be/BSIw5SgUirg



https://youtu.be/BSIw5SgUirg

FOURIER SERIES 1 SLIDE OVERVIEW

= Fourier argued that periodic = Harmonically related period
signals (like the single period signals form family
from a plucked Stl”ing) were = Integer multiple of fundamental
frequency

actually useful |
. = () = e/F®t for k =0,+1, %2, ...
= Represent complex periodic signals

= Examples of basic periodic signals = Fourier Series is a way to
= Sinusoid: x(t) = coswot represent a perlpdlc signal as a
linear combination of harmonics

u X(t) — Zlo(oz—oo akejka)ot

= q; coefficient gives the contribution

= Fundamental period: T = 2m of a harmonic (periodic signal of k

Wo times frequency

= Complex exponential: x(t) = e/®ot

= Fundamental frequency: wg
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SAWTOOTH EXAMPLE

Harmonics: height given by coefficient

signal

/ 1 gv”\/\/\/\/\/\/\/\/
/\/\/\\/\/\/\/
—p 2 = [
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77

Animation showing approximation as more harmonics added
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SQUARE WAVE EXAMPLE

= Better approximation of square = Aligned approximations
wave with more coefficients i

i N
Y
oy Ny ] e
s T e
52 | ; ® Animation of FS
S L9 Il\ | \
# &
8 PN L)
Y3 |
4 lf". .i'\n.u.l'-'ll il"w.u..-\.. ."‘:ll
POUN N PN Note: S(f) ~ ay



http://upload.wikimedia.org/wikipedia/commons/2/2b/Fourier_series_and_transform.gif

ARBITRARY EXAMPLES

= Interactive examples |flash (dated)|[html]
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https://1ucasvb.com/stuff/FourierToy.swf
http://beneskildsen.github.io/fourier/fourier.html

RESPONGSE OF LTI SYSTEMS TO COMPLEX
EXPONENTTALS

CHAPTER 3.2
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TRANSFORM ANALYSIS OBJECTIVE

= Need family of signals {x;(t)} that have 1) simple response
and 2) represent a broad (useful) class of signals

1.  Family of signals Simple response — every signal in family pass
through LTT system with scale change

X (L) — Apxy (t)

2. “Any” signal can be represented as a linear combination of
signals in the family s

X = ) (o)
k=—o0
= Results in an output generated by input x(t)

() = D aeken(®)
k=—c0



IMPULSE AS BASIC SIGNAL

= Previously (Ch2), we used shifted and scaled deltas
s (5(t—ty)} = x(t) = [ x(©)6(t — t)dt — y(t) = [ x()h(t — 17)dT

" Thanks to Jean Baptiste Joseph Fourier in the early
1800s we got Fourier analysis

» Consider signal family of complex exponentials

mx(t) =eStor x[n] =2z", s5,z€ C



COMPLEX EXPONENTIAL AS EIGENSIGNAL

® Using the convolution

" et — H(s)e™ y(t) = a(t) = h(t)
" 2" > H(@)zZ" = [ a@me-ndr= [ bat—nyar

. . — /OO h(T)GS(t_T)d’T

= Notice the eigenvalue H(s) oo
depends on the value of h(t) _ st / - h(r)e *Tdr
and s — .
. H(s)
= Transfer function of LTI system — H(s) st
- 2 N

= Laplace transform of impulse
response

eigenvalue eigenfunction



TRANSFORM OBJECTIVE

= Simple response
= x(t) = e’ — y(t) = H(s)x(t)
» Useful representation?

= x(t) = Yage’ " — y(t) = YaH(sy)e

» Input linear combination of complex exponentials leads to output linear
combination of complex exponentials

= Fourier suggested limiting to subclass of period complex exponentials
ek@ot €7, w, € R

= x(t) = Yage/" — y(t) = YagH(jkwy)e s
® Periodic input leads to periodic output.

" H(jw) = H(s)|s=je is the frequency response of the system



CONTINUOUS TIME FOURIER SERIES

CHAPTER 3.3-3.8
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CTFEFS TRANSFORM PAIR

= Suppose x(t) can be expressed as a linear combination of
harmonic complex exponentials

mx(t) = X0 _ o agelfwot synthesis equation

® Then the FS coefficients {a;} can be found as

" q, = %fT x(t) e~ Tk@ot ¢ analysis equation
" w, - fundamental frequency
" T =2m/wy - fundamental period

" q;,, known as F'S coetficients or spectral coefficients
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CTEFS PROOF

" While we can prove this, it is not well suited for
slides.

m See additional handout for details

® Key observation from proof: Complex exponentials
are orthogonal



VECTOR SPACE OF PERIODIC SIGNALS

18



VECTOR SPACE OF PERIODIC SIGNALS

Periodic signals, w,

» Fach of the harmonic
exponentials are orthogonal to
each other and span the space
of periodic signals

= The projection of x(t) onto a
particular harmonic (ay) gives
the contribution of that
complex exponential to

building x(t)

® q, is how much of each harmonic
is required to construct the
periodic signal x(t)



HARMONICS

= k = +1 = fundamental component (first harmonic)
= Frequency wg, period T = 2w/ w,

" k = +2 = second harmonic

= Frequency w, = 2wy, period T, = T /2 (half period)

" k = +N = Nth harmonic
= Frequency wy = Nwg, period Ty = T/N (1/N period)

sk=0=>ay== f x(t)dt, DC, constant component, average
over a single perlod



HOW TO FIND FS REPRESENTATION

" Will use important examples to demonstrate
common techniques

» Sinusoidal signals — Euler’s relationship
® Direct F'S integral evaluation

= F'S properties table and transform pairs

21



SINUSOIDAL SIGNAL

1 . . y L y
= x(t) =1+ 5 €Os 2mt + sin 3t = x(t) =1+ [e/2w0t 4 g=/2wot] 4 - 3wt — gi3wot]

. . ) =  Read off coeff. directly
= First find the period

u a0=1

= Constant 1 has arbitrary period « @ =a,=0

® cos2mt has period Ty = 1 = aq,=a_,=1/4
= sin3mnt has period T, = 2/3 " az=1/2j,a3=-1/2j
» T=2,wy=2n/T =m " G =0 el
= Rewrite x(t) using Euler’s and read off a, , : y
coefficients by inspection /Tq' T {H a
s T T S .
v



PERIODIC RECTANGLE WAVE

(¥
1 It] < T;
= x(t) = T
©=10 I <ltl<3 | ) S i | BN . [
_5 1 E
SRS / ot k=0 1/ (t)dt 1/T1 dt = 211
k = — = a’O = — T = — = —
T T T T T —Ty T
1 . T 1 . .
— —jkwot] 1 _ jkwoTlr _ _—jgkwoTh
JkwoT ¢ I, jkwoT e ¢ |
2 etk —emdkeon ] 2gin (kwoTh)
 kwoT 2j - kweT
sin (kwoT)
B . km

sin (’Z:_OTI) ]{7 ?é O

modulated sin function 1 t < T 277/T k‘ = O
t t :c(t)—{ < <—>ak—{ Y



SINC FUNCTION

= [mportant signal /function in

DSP and communication

= sinc(x) =

= sinc(x) =

sin wx

X

sin x

normalized

unnormalized

= Modulated sine function

= Amplitude follows 1/x

= Must use L’Hopital’s rule to get

x=0 time

0.8r

0.6

041

0.2

0.2

0.4




RECTANGLE WAVE COEFFICIENTS

= Consider different “duty cycle” for
the rectangle wave

= T =4T; 50% (square wave)
m T = 8T1 25%
= T =16T, 12.5%

= Note all plots are still a sinc
shape

= Difference is how the sync is sampled

= Longer in time (larger T) smaller
spacing in frequency =2 more samples
between zero crossings

]|

I I l rk - EI'I l_l I -
(a)

\ll .
4

il |||
-4
(

0
b)

.|l||||“||ll|. .
ITf g 0 gryrrrTT

()

Figure 3.7 Plots of the scaled Fourier series coefficients 7a for the pe-
riodic square wave with Ty fixed and for'several values of T: (a) T = 4T;;
() T = 8Ty; (¢) T = 16T. The coefficients are regularly spaced samples of
the envelope (2sin wT;)/w, where the spacing between samples, 27/T, de-
creases as T increases.



SQUARE WAVE

= Special case of rectangle wave (1 /2 k=0
with 1= 4T, " =q{sinGer/2)
= One sample between zero-crossing . km

—e 0 2 k
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PERIODIC IMPULSE TRAIN

« xX(£) = X9, 8t — kT)

= Using F'S integral P/J\ u T
—1-[—_ \.T' ') _r__" 1_7_
ap = l/ jkw tdt ol
T/2 rt
= /T/zzé(t kT)e kot dt

= Notice only one impulse in the interval

T/2 1 T

= —/ §(t)e=Tkwot gy T AU
T/2 T “ /T 1
T/2 . r
= — (t)e 7Pl gt = : ———
/T/2 -2 — o 1 2 F\
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PROPERTIES OF CTFS

® Since these are very similar between CT and DT,
will save until atter DT

= Note: As for LT and 7Z Transform, properties are
used to avoid direct evaluation of FS integral

" Be sure to bookmark properties in Table 3.1 on page 206



DISCRETE TIME FOURIER SERIES

CHAPTER 3.6

29
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DTES VS CTFEFS DIFFERENCES

®» While quite similar to the CT case,
= DTFES is a finite series, {ax}, |k| < K

® Does not have convergence issues

® Good News: motivation and intuition from CT
applies for DT case



DTFS TRANSFORM PAIR

= Consider the discrete time periodic signal x[n|] = x|[n + N]

" x[n] = Yooy agelfeon synthesis equation

1 i . .
=g = N2n=<N>x[n]e Jkwon  analysis equation

= N — fundamental period (smallest value such that periodicity
constraint holds)

" w, = 2n/N — fundamental frequency

=) —<ny> Iindicates summation over a period (N samples)
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DTFS REMARKS

" DTFE'S representation is a finite sum, so there is
always pointwise convergence

® F'S coefficients are periodic with period N
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DTES PROOF

" Proof for the DTFES pair is similar to the CT case

= Relies on orthogonality of harmonically related DT
period complex exponentials

= Will not show in class



HOW TO FIND DTFS REPRESENTATION

= Like CTFES, will use important examples to
demonstrate common techniques

» Sinusoidal signals — Euler’s relationship

= Direct F'S summation evaluation — periodic
rectangular wave and impulse train

= F'S properties table and transform pairs

34
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SINUSOIDAL SIGNAL

1 21 . [ 4r
g x[n]=1+%cos(%ﬂ)n+sin(%)n x[n]:1+5608(ﬁ>n+sm W)n

=1+ L (63%” +e 321\7;”) + S (ej%” — e_j%r”)
4 2j
» First find the period 1 i (ea‘%n n e—j%n) L (612%% _ 6—j2%"n)
29
= Rewrite x[n] using Euler’s and
read off a; coetficients by . 1 e
, , "ay=1la4,=-,a, =a_, =—
1nspection 4 2]

] ] - I/"i fy §
= Shortcut here — f r ) \I__I__i
-1 - R ( 2- -_*"‘—-—-—-——-._
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SINUSOIDAL COMPARISON

= x(t) = coswyt = x[n] = coswyn
s {172 k=11 s {172 k=11
f 0 else . 0 else

= Over a single period = must
specify period with period N

. J o :
~\ (:: ] [ t T | L: r ( rgn——j
8 = Ny " 4 1 gy R




PERIODIC RECTANGLE WAVE

L

~N1 0 Ny N n=<N>
N/2-1 1 y ! g
) . e . 1 —jkwon _ * —jkwon _
Figure 3.16 Discrete-time periodic square wave. =~ _ZN/QQ;[n]e jkwon _ ~ Z e dkwon _ ~ Z o™
0 .
+ N 1 Ny INy + 1 Remember the truncated geometric series Zg:_ol a = 1:’;
]{ — an == — ]_ — 1
+2N 0= N ZN N ;| 2N
. n=— 1 . m—N1
ap = N WLZ_:OQ{
1 —m% (1—a2N1+1)
_— — a —_—
[ ] 1 |n| < N N l-a
rn| =
0 Nl < |n| < N/2 1 o—ikwo N1 1 — eikwo(2N141)
N 1 — e—Jdkwo

0 =...
B _ sin27k (Ny + 5) /N sin27k(Ny + 1/2)/N
ay = {(2N1 + 1)/N k=0,£N,£2N,. .. B sin kwo /2 B sin km/N

in2rk(N1+1/2)/N
: S for /N N | 2£0,4N,42N, ...




RECTANGLE WAVE COEFFICIENTS

= Consider different “duty cycle” for
the rectangle wave " ll’ Lrlh m m l" I" ," ," m m
= 50% (square wave) il I o FLI ‘

= 25%

= 12.5% ||||| ”H' ||“| ”“l ”“I

= Note all plots are still a sinc
shaped, but periodic

()

= Difference is how the sync is sampled

"8 -4 0 4 8

= Longer in time (larger N) smaller

Spa(ﬂng 111 frequency 9 more samples Figure 3.17 Fourier series coefficients for the periodic square wave of Ex-

between 7ero CI’OSSngS z(in;p/:le 3.12; plots of Nay for 2N, +1 = 5 and (a) N = 10; (b) N = 20; and
c) N = 40.

(©
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PERIODIC IMPULSE TRAIN

* x[n] = T 8l — kN] |
= Using F'S integral . T A
- C
ap = %n:;\bx[n]e_jkwondt

| Nl
=¥ Z Zd[n — kN]e Ikwonqy
n=0

= Notice only one impulse in the interval

2

§[n]e Fwomqt

1 v 1
—jkwp0 _ _
d[nle™ dt—NZ(S[n]—N

n=0

ap =

3
Il
S

2= ==
Z 3
Il
(&5
R
"
——
\
Z_ _.Lr—'ﬂ



PROPERTIES OF FOURIER SERIES

CHAPTER 3.5, 3.7

40
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PROPERTIES OF FOURIER SERIES

= See Table 3.1 pg. 206 (CT) and Table 3.2 pg. 221 (DT)

® In the following slides, suppose:

E'S -1 FS
x(t) <— ay xn| < ag
y(t) & by yln] <= by

® Most times, will only show proot for one of CT or DT
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LINEARITY

= (T s DT
= Ax(t) + By(t) < Aay; + Bby = Ax|n] + By|n]| < Aa,;, + Bby




TIME-SHIFT

s CT s DT
= x(t — ty) < axekoto « x[n —no] & aze Jkwone
= Proof

= Let y(t) = x(t — tg)
1 - 1 .
— —Jkwot — _ —jkwot
bi T/Ty(t)e dt T/Tx(t to)e dt
Let 7 =1t — to
= l/ x(7)e"Ihwolr+to) g
1" Jr
1

— e—jkwoto = JJ(T)e_jkaTdT — e_kaothk
T Jr

o

~
ag
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FREQUENCY SHIFT

= (T s DT

n /Moty (t)  ap_y n /Moy [n] — ap_y

Note: Similar relationship with Time Shift (dualilty). Multiplication
by exponential in time is a shift in frequency. Shift in time is a
multiplication by exponential in frequency.
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TIME REVERSAL

= CT = DT

mx(—t) e a_y " x[—n| e a_y

Proof, let y(t) = z(—t)

y(t) = Y bl ™t = z(—t)

k=—o0
o0

xr(—t) = Z e’ ot
k=—o0

Let m = —k

o0
— E: a_kejkwot

k=—o0

= b, = a_y
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PERIODIC CONVOLUTION

s CT = DT
= [ x(D)y(t — 1)dr & Tayby " Yr=<ns>X|r]y[n — 7] > Nayby
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MULTIPLICATION

= (T s DT

= x(t)y(t) <& Xi2_0o Oibx—; = ay * by » x[n]y[n] e Xj—cn> aibg—; = ay * by

= Convolution over a single period
(DT FS is periodic)

Note: Similar relationship with Convolution (dualilty). Convolution
in time results in multiplication in frequency domain. Multiplication
in time results in convolution in frequency domain.



PARSEVAL’S RELATION

= (T s DT

1 1
- FfT|X(t)|2dt = Yre—olarl? - Nzn:<1v>|x[n]|2 = Yk=en>lakl?

Note: Total average power in a periodic signal equals the sum of the
average power in all its harmonic components

1 . 2 1
— ]kat dt — —f zdt = 2
TL‘ake ‘ = Tlakl la; |

Average power in the kth harmonic
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TIME SCALING

s CT = DT

= x(at) < ag . x ] = x[n/m] n multiple of m
= q>0 (m) 0 else
= Periodic with period T/« = Periodic with period mN

1
= x(m) [Tl] — Eak

» Periodic with period mN

Note: Not all properties are exactly the same. Must be careful due to
constraints on periodicity for DT signal.



FOURIER SERIES AND LTT SYSTEMS

CHAPTER 3.8

o0
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EIGENSIGNAL REMINDER

= x(t) =eSt > y(t) = H(s)e"t x[n] = z" < y[n] = H(z)z"
= H(s) = [ h(D)e~tdt H(z) = Y5 hln]z ™
= H(s),H(z) known as system function (s,z € C)

= For Fourier Analysis (e.g. FS)
" Let s = jw and z = /%

= Frequency response (system response to particular input frequency)
" H(jw) = H(S)ls=jo = [ h(H)e /@t de
= H(e/?) = H(2)|,_pj0 = Xn=—w h[n]e 7™



FOURIER SERIES AND LTI SYSTEMS I

= Comnsider now a F'S representation of a periodic signals

= x(t) = 3, ape’

- - y(t) = Xy axH(kwgy)e kot
= Due to superposition (LTI system)

= Fach harmonic in results in harmonic out with eigenvalue

= y(t) periodic with same fundamental frequency as x(t) = w,

2T

T = —- fundamental period
0

= F'S coefficients for y(t)
" by = aiH(kwo)

= b, is the FS coefficient a; multiplied /affected by frequency response at kw



FOURIER SERIES AND LTI SYSTEMS III

= System block diagram

x(t) =

a_ke—jk(l)ot N

H(jw)

a_iH(—jkawy)e ™/ wot

aoej(o)wot _ >

H(jw)

apgH(—j0)

H(jw)

ran
N,

arH(jkwy)e Tk@ot

> y(1)
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DTFES AND LTI SYSTEMS

= x[n] = Xp—cn> are/ N -

2TT
ylnl= ) aH(e N ek
k=<N>
® Same idea as in the continuous case

» Fach harmonic is modified by the Frequency Response
at the harmonic frequency



EXAMPLE 1

= LTI system with = Find frequency response

m h[n] = anu[n],—l <a<l1 . H(e]w) — Znh[n]e_jwn

= Find FS of y|[n] given input

= H(e/®) = X, a™uln]e= on
= x[n] = cos—
N
H(]'a)) — 2 qte—Jjon
= Find F'S representation of x|n] n=0
" wg = 27T/N H(]'a)) — Z(ae_jw)n
n=0
1 1
= x[n] = EeJZn/Nn t+ce j2m/Nn Let § = qe—io 1
Hjw) =——
o k=4, e0N 1), =
A =2 | 1
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EXAMPLE 1 II

m Use FS LTI relationship to find output

" y[n] = Yp—<n> akH(ejkwo) gllwon

., 2TT . 2TT . 2TC . 2TC
= y[n] = %H eI INT) J1RT +%H(e_]17")e_]1ﬁn

. 1 1 j%”n 1 1 _j%”n
y[n] _E 1—qe—Jk2m/N € +E 1—qelk2m/N €

= Qutput FS coefficients

N——w) k=+1

. bk — {2 \1—ge—Jjk2n/N
0 else

Periodic with period N
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EXAMPLE PROBLEM 3.7

= x(t) has fundamental period T & 4. = lf x(t)e—FOwot g¢ —
and F'S Ay,

= Sometimes direct calculation of
a; is ditficult, at times easier = From Table 3.1 pg 206
to calculate transtformation

1 2

. 2T by
" b, o jk—a, = a;, =
kR Ak K™ jk2m/T

(2/T k=0

i Sl PR S )
\jk2n/T

®" Find a; in terms of b, and T,
given

s [ x(t)dt =2
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EXAMPLE PROBLEM 3.7 11

» Find F'S of periodic sawtooth wave

'?f{";'-ll =|_?: I-'ill

| 5= =7 — —
/ﬂ‘—jll—\ ZAN . J%‘T‘

=T =T = T #1
-Ty

s@= - 71 .. ] . e e
o T 1 [J T

= Take derivative ohf_serxw.tooth

= Results in sum of rectangular waves
= |'S coetficients of rectangular waves from Table 3.2 to get b, < g(t)
= Then use previous result to find a; < x(t)

" See examples 3.6, 3.7 for similar treatment



CHAPTER 3.9

FILTERING
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FILTERING

" Important process in many applications

= The goal is to change the relative amplitudes of
frequency components in a signal

— -

* In EE480: DSP you can learn how to design a filter with
desired properties/specifications
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LTI FILTERS

" Frequency-shaping filters — general LTI systems

® Frequency-selective filters — pass some frequencies and
eliminate others

= Common examples include low-pass (LP), high-pass (HP),
bandpass (BP), and bandstop (BS) [notch|

— —_— e —




MOTIVATION: AUDIO EQUALIZER

» Basic equalizer gives user ability to adjust sound from to
match taste — e.g. bass (low freq) and treble (high freq)

» Log-log plot to show larger
range of frequencies and
response

—

S
]

(o]

dB = 201log,o|H(jw)]

€5 pout §¢ [eLB]

= Magnitude response matches are ) ot
intuition
» Boost low and high frequencies —1 —t { f f }
but attenuate mid frequencies lo 26 W Lo .
(00 Ik pe 2k [Ha]
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EXAMPLE: DERIVATIVE FILTER

d . .
=y(t) =—x(t) < H(w)=jw
» High-pass filter used for “edge” detection

w2t

4 T T T T T
3 — -
2r J ok
1 L -
-mf2
[} 1 1 1 1
-

0 w -T 0

(a) |H(jw)| = |w| (b) ZH(jw) = tan™" (42)
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EXAMPLE: AVERAGE FILTER

= yln] =~ (x[n] + x[n — 1])

M = 2@ +0l—1) > HE) = [1+e]
COS (g) e TIw/2
"/ H(eiv)
» Low-pass filter used for smoothing [H (e7%)
1
08t mer
06 r
04r d
02r i
0 * : : - :

(a) |H(e?¥)| = cos(w/2) (b) LH (%) = —w/2
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MATLAB FOR FILTERS

" Very helpful to visualize filters

w = -pi:0.01:pi; hdefine freq range
H = cos(w/2) .x exp(-j*x(w/2));

figure, plot(w, abs(H))

figure, plot(w, phase(H)) hor use angle (H)




SUMMARY

66



FOURIER SERIES SUMMARY

= Continuous Case

" x(t) = ), ape/k@ot
" q, = %fo(t)e‘jk“’Otdt

* Fundamental frequency w,

®* Fundamental period T = i—n
0

® Discrete Case
— kwaon
= x[n] = Lg=<n>axe’ 0

_ 1 —Jjkwgn
" ap = NZn=<N>x[n]e JH®o
* Fundamental frequency w,

2T

" Fundamental period N = —
0
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