EE361: SIGNALS AND SYSTEMS II

CH1: PROBABILITY

http://www.ee.unlv.edu/~b1morris/ee361

SAMPLE SPACE AND EVENTS

CHAPTER 1.1-1.2

INTRODUCTION

- Very important mathematical framework that is used in every ECE discipline (and science and engineering in general)
- The world is not perfect and some variability occurs in everything we do professionally
 - The recorded sound of a voice saying a number multiple times
 - The pixel values of successive images

(RANDOM) EXPERIMENT

- Process of observation
 - (Random if outcome cannot be determined with certainty)
- Outcome the result of an observation of an experiment
 - Will use ξ (xi) for an outcome
- Think of Schrödinger's cat paradox from quantum mechanics → an experiment has many possible outcomes but only after observation can it be known

EXAMPLE RANDOM EXPERIMENTS

- Roll of a dice
- Toss of a coin
- Drawing of a card from a deck

SAMPLE SPACE

- The universal set of sample space S the set of all possible outcomes of a random experiment
- Sample point an element in set S (a possible outcome)
- Cardinality the number of elements in a set

EXAMPLES

- Single coin toss
 - $S = \{H, T\} = \{\text{Heads, Tails}\}$
 - |S| = 2 for two possible outcomes

- Two coin tosses
 - $\blacksquare S = \{HH, HT, TH, TT\}$
 - |S| = 4

SAMPLE SPACE

- Discrete S finite number of sample points (outcomes) or countably infinite
 - Countable set elements can be placed in one-to-one correspondence with positive integers
- \blacksquare Continuous S sample points constitute a continuum
 - Example: transistor lifetime in hours
 - \blacksquare Transistor can live until it dies at time τ
 - $\bullet S = \{\tau: 0 \le \tau < \infty\}$

EVENTS

- Set notations
- $\xi \in X \xi$ is an element of (belongs to) set S
- $\xi \not\in S$ ξ is not an element of S
- $A \subset B A$ contained in B
 - A is a subset of B if every element of A is contained in B

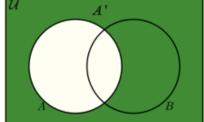
- Event subset of sample space S
 - Even roll of die $A=\{2,4,6\}$
 - Sum of rolls greater than 6
- Elementary event sample
 point of S (single outcome of S)
- Certain event $S \subset S$

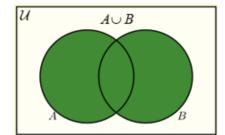
ALGEBRA OF SETS

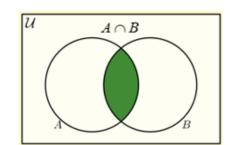
CHAPTER 1.3

SET ALGEBRA I

- 1 Equality -A = B if $A \subset B$ and $B \subset A$
- 2 Complement suppose $A \subset S$,
 - $\overline{A} = \{\xi \colon \xi \in S \text{ and } \xi \notin A\}$
 - All elements in S but not in A
 - \overline{A} is event A did not occur
- 3 Union set containing all elements in either A or B or both
 - $A \cup B = \{\xi \colon \xi \in A \text{ or } \xi \in B\}$
 - Event either A of B occurred
- 4 Intersection set containing all elements in both A and B
 - $A \cap B = \{\xi \colon \xi \in A \text{ and } \xi \in B\}$
 - Both event A and B occurred







A union B

A complement

Elements that don't

belong to A.

11

Elements that belong to either A or B or both.

A intersect B

Elements that belong to both A and B.

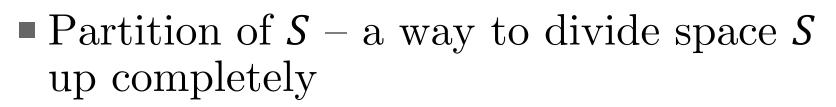
SET ALGEBRA II

Null set – set containing no elements

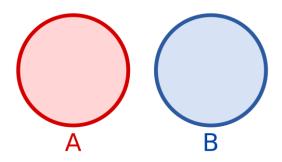
$$\blacksquare S = \phi \text{ or } S = \{\phi\}$$

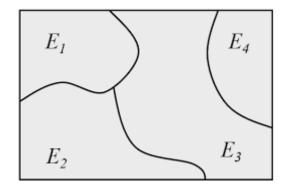
Disjoint sets (mutually exclusive)

• Sets A and B have no common elements $\rightarrow A \cap B = \phi$



- If $A_i \cap A_j = \phi$ $(i \neq j)$ and $\bigcup_{i=1}^k A_i = S$
- \blacksquare Then $\{A_i\colon 1\leq i\leq k\}$ is a partition





SET ALGEBRA III

- Size (cardinality) of set
 - |A| number of elements in A (when countable)
- Properties
 - If $A \cap B = \phi$, then $|A \cup B| = |A| + |B|$
 - $\bullet |\phi| = 0$
 - If $A \subset B$, then $|A| \leq |B|$
 - $|A \cup B| + |A \cap B| = |A| + |B|$

- (Cartesian) product of sets
 - $C = A \times B = \{(a, b) : a \in A, b \in B\}$
 - Set of ordered pairs of elements
- Example

•
$$A = \{a_1, a_2, a_3\}, B = \{b_1, b_2\}$$

•
$$C = A \times B =$$

{ $(a_1, b_1), (a_1, b_2), (a_2, b_1),$
 $(a_2, b_2), (a_3, b_1), (a_3, b_2)$ }

• $D = B \times A =$ { $(b_1, a_1), (b_1, a_2), (b_1, a_3),$ $(b_2, a_1), (b_2, a_2), (b_2, a_3)$ }

LAWS OF SETS

- Commutative
 - $\blacksquare A \cup B = B \cup A \qquad A \cap B = B \cap A$
- Associativity
 - $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$

Distributivity

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

De Morgan's

$$\bullet \ \overline{A \cup B} = \overline{A} \cap \overline{B} \qquad \overline{A \cap B} = \overline{A} \cup \overline{B}$$

EVENT SPACE

- \blacksquare Collection F of subsets of sample space S
 - Also known as a sigma field
- \blacksquare A set of subsets A such that
 - $\blacksquare S \in F$
 - $\blacksquare \text{ If } A \in F, \text{ then } \bar{A} \in F$
 - If $A_i \in F$ for $i \ge 1$, then $\bigcup_{i=1}^{\infty} A_i \in F$
- Example coin toss $-S = \{H, T\}$
 - $F_1 = \{S, \phi\}, \quad F_2 = \{S, \phi, H, T\}$
 - $\blacksquare F_3 = \{S, \phi, H\}$ not event space since $\overline{H} = T$ not included

PROBABILITY SPACE/EQUALLY LIKELY EVENTS

CHAPTER 1.4-1.5

PROBABILITY SPACE

- \blacksquare Assigns a real number to events in event space F
 - Known as probability measure
- \blacksquare Given a random experiment with sample space S
 - $\blacksquare A$ is an event defined in F
 - Probability of event $A \rightarrow P(A)$
- Probability space is defined over an event space
 - Triple: (S, F, P) = (sample space, event space, probability measure)

PROBABILITY MEASURE

- Two methods to define
 - Classical definition
 - Relative frequency definition

CLASSICAL (FINITE OUTCOMES) DEFINITION

- Defined a priori, without need for experimentation
 - Only possible to use for simple problems with finite and equally likely outcomes

•
$$P(A) = \frac{|A|}{|S|}$$
 - probability of event A
• $P(\overline{A}) = \frac{|\overline{A}|}{|S|} = \frac{|S| - |A|}{|S|} = 1 - \frac{|A|}{|S|} = 1 - P(A)$
• Civen disjoint sets $A \cap B = \Phi$

• Given disjoint sets $A \cap B = \phi$

 $\bullet P(A \cup B) = P(A) + P(B)$

EXAMPLE: DICE ROLL

- $\bullet S = \{1, 2, 3, 4, 5, 6\}$
- Define events
 - A: Roll (outcome) is even

 - C: Roll prime
- Probability of events

•
$$P(A) = \frac{3}{6} = \frac{1}{2}$$
 $P(B) = \frac{1}{2}$ $P(C) = \frac{4}{6} = \frac{2}{3}$

$$A = \{2,4,6\}$$
$$B = \{1,3,5\}$$
$$C = \{1,2,3,5\}$$

RELATIVE FREQUENCY DEFINITION

- Repeated experiment definition
- \blacksquare Random experiment repeated n times
 - $P(A) = \lim_{n \to \infty} \frac{n(A)}{n}$ relative frequency of event A ■ n(A) – number of times event A occurs

$$\bullet \ 0 \le \frac{n(A)}{n} \le 1$$

 \bullet 0 – never occurs 1 – occurs every time

• Like classical, $A \cap B = \phi \Rightarrow P(A \cup B) = P(A) + P(B)$

AXIOMATIC DEFINITION

- \blacksquare Given probability space (S,F,P) and event $A \in F$
- Axiom 1: $P(A) \ge 0$
- Axiom 2: P(S) = 1
 - One outcome certainly happens
- Axiom 3: $P(A \cup B) = P(A) + P(B)$, if $A \cap B = \phi$

ELEMENTARY PROPERTIES OF PROB.

- $\bullet 1 P(\overline{A}) = 1 P(A)$
- $\bullet 2 P(\phi) = 0$
- 3 $P(A) \leq P(B)$ if $A \subset B$
- 4 $P(A) \leq 1 \Rightarrow 0 \leq P(A) \leq 1$
- 5 $P(A \cup B) = P(A) + P(B) P(A \cap B)$

 $\leq P(A) + P(B)$

■ 8 Given $A_1, A_2, ..., A_n$ finite sequence of mutually exclusive events $(A_i \cap A_j = \phi, i \neq j)$, $P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i)$

EQUALLY LIKELY EVENTS

CHAPTER 1.5

EQUALLY LIKELY EVENTS

Finite sample space (n-finite)

•
$$S = \{\xi_1, \xi_2, ..., \xi_n\}$$
 and $P(\xi_i) = p_i$
• $0 \le p_i \le 1$ $\sum_{i=1}^n p_i = 1$
• $A = \bigcup_{i \in I} \xi_i \implies \sum_{\xi_i \in A} p(\xi_i) = \sum_{i \in I} p_i$

Equally likely events

$$\bullet p_1 = p_2 = \dots = p_n$$

•
$$p_i = \frac{1}{n}, i = 1, 2, ..., n$$
 and $P(A) = n(A)/n$

CONDITIONAL PROBABILITY

CHAPTER 1.6

CONDITIONAL PROBABILITY

Probability of an event A given event B has occurred

BAYES RULE

Incredibly important relationship from joint probability
 $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

- $\blacksquare P(A|B)$ posterior (what we want to estimate)
- $\blacksquare P(B|A) \text{likelihood} \text{ (probability of observing B given A)}$
- $\blacksquare P(A) \text{prior}$ (probability of A with no extra information)
- P(B) marginal likelihood (total probability)
- Tells how to update our believes based on the arrival of new, relevant pieces of evidence

TOTAL PROBABILITY/INDEPENDENT EVENTS

CHAPTER 1.7-1.8

TOTAL PROBABILITY

- Let B be an event in S
 - $P(B) = \sum_{i=1}^{n} P(B \cap A_i) = \sum_{i=1}^{n} P(B|A_i) P(A_i)$

- Exhaustive
 - $\bullet \bigcup_{i=1}^n A_i = S$
- Mutually exclusive
 - $\blacksquare A_i \cap A_j = \phi$
- From Bayes

•
$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{i=1}^n P(B|A_i)P(A_i)}$$

INDEPENDENT EVENTS

- Two events are statistically independent iff
- $\bullet P(A \cap B) = P(A)P(B)$
- $\blacksquare \Rightarrow P(A|B) = P(A) \text{ and } P(B|A) = P(B)$
- If independent, probability of event A is not changed by knowledge of event B

31

- Note:
 - Mutually exclusive
 - Independent

 $P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$ $P(\bigcap_{i=1}^{n} A_i) = \prod_{i=1}^{n} P(A_i)$