DISCRETE TIME FOURIER SERIES

CHAPTER 3.6
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DTES VS CTFEFS DIFFERENCES

®» While quite similar to the CT case,
= DTFS is a finite series, {ax}, |k| < K

" Does not have convergence issues

® Good News: motivation and intuition from CT
applies for DT case



DTFS TRANSFORM PAIR

= Consider the discrete time periodic signal x[n| = x|[n + N]

" x[n] = Yooy agelfeon synthesis equation

1 i . .
=g = N2n=<N>x[n]e Jkwom  analysis equation

= N — fundamental period (smallest value such that periodicity
constraint holds)

" w, = 2n/N — fundamental frequency

=) .—«n> Iindicates summation over a period (N samples)
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DTFS REMARKS

" DTFE'S representation is a finite sum, so there is
always pointwise convergence

® F'S coefficients are periodic with period N
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DTES PROOF

= Proof for the DTFS pair is similar to the CT case

= Relies on orthogonality of harmonically related DT
period complex exponentials

= Will not show in class



HOW TO FIND DTFS REPRESENTATION

m Like CTFS, will use important examples to
demonstrate common techniques

» Sinusoidal signals — Euler’s relationship

= Direct F'S summation evaluation — periodic
rectangular wave and impulse train

= I'S properties table and transform pairs
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SINUSOIDAL SIGNAL

1 21 . [ 4r
. x[n]=1+%cos(%n)n+sin(%n)n x[n]:1+5608(ﬁ>n+sm W)n

=1+ L (63%” +e 321\7;”) + S (ej%” — e_j%r”)
4 2j
» First find the period 14 i (ea‘%n n e—j%n) L (612%% _ 6—j2%"n)
29
= Rewrite x[n] using Euler’s and
read off a; coefficients by - 1 e
, , "ay=1la4,==-,a, =a_, =—
1nspection 4 2]

] ] - I/"i fy §
= Shortcut here — f r ) \I__I__i
-1 - R ( 2- -_*"‘—-—-—-——-._
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SINUSOIDAL COMPARISON

= x(t) = coswyt = x[n] = coswyn
s {172 k=11 e 172 k=11
. 0 else . 0 else

= Over a single period = must
specify period with period N

. J o :
~\ (:: ] [ t T | L: r ( rgn——j
8 = Ny " 4 1 gy R




PERIODIC RECTANGLE WAVE

L

~N1 0 Ny N n=<N>
N/2-1 1 y ! g
) . e . 1 —jkwon _ * —jkwon _
Figure 3.16 Discrete-time periodic square wave. =~ _ZN/QQ;[n]e jkwon _ ~ Z e dkwon _ ~ Z o™
0 .
+ N 1 Ny INy + 1 Remember the truncated geometric series Zg:_ol a = 1:’;
]{ — an == — ]_ — 1
+2N 0= N ZN N ;| 2N
. n=— 1 . m—N1
ap = N WLZ_:OQ{
1 —m% (1—a2N1+1)
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[ ] 1 |n| < N N l-a
rn| =
0 Nl < |n| < N/2 1 o—ikwo N1 1 — eikwo(2N141)
N 1 — e—Jdkwo

0 =...
B _ sin27k (Ny + 5) /N sin27k(Ny + 1/2)/N
ay = {(2N1 + 1)/N k=0,£N,£2N,. .. B sin kwo /2 B sin km/N

in2rk(N1+1/2)/N
: S for /N N | 2£0,4N,42N, ...




RECTANGLE WAVE COEFFICIENTS

= Consider different “duty cycle” for
the rectangle wave " ll’ Lrlh m m l" Ih ," ," m m
= 50% (square wave) il I o FLI ‘

= 25%

= 12.5% ||||| ”H' ||“| ”“l ”“I

= Note all plots are still a sinc
shaped, but periodic

()

= Difference is how the sync is sampled

"8 -4 0 4 8

= Longer in time (larger N) smaller

SpaCIHg 111 frequency 9 more samples Figure 3.17 Fourier series coefficients for the periodic square wave of Ex-

between 7ero CI'OSSiIlgS z(in;p/:le 3.12; plots of Nay for 2N, +1 = 5 and (a) N = 10; (b) N = 20; and
c) N = 40.

(©



39

PERIODIC IMPULSE TRAIN

* x[n] = T O[n — kN |
= Using F'S integral . T A
- C
ap = %n:;\bx[n]e_jkwondt

| Nl
=¥ Z Zd[n — kN]e Ikwonqy
n=0

= Notice only one impulse in the interval
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