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INTRODUCTION

CHAPTER 2.0




LTI SYSTEMS

" Important class of systems because many real
physical processes have these properties

= LTI systems have properties that have been studied
extensively leading to powerful and effective theory
for analyzing their behavior



DISCRETE-TIME LTI SYSTEMS: THE
CONVOLUTION SUM

CHAPTER 2.1
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REMINDER: REPRESENTATION

= A signal can be composed of 1l
scaled and shifted impulses T

= Remember sifting and
representation properties

x[n] = 2 x[k]8[n — k] S
k=—o0 ©

Scale factor Shifted impulse [ 01 80}
) 4-3-2-1 012 3 4 = n
idi
n
f 2 X[ ] x[1] 8[n—1)
= ( |
+ ! jl . ? [‘ [" —4-3-2-1 (2]1 23 4 n
- ) *x[2] §[n-2
“ - 2 -
,C [Y R E;l ot " Figure 2.1  Decomposition of a
n 0 disc :ﬁm dsnfna nwla weighted



IMPULSE RESPONSE h[n]
" Response of LTI system to delta input

x[n] =8[n]— S —yln]=h[n] x[n] — y[n]
— h

N o[n] [n]
= h[n] — (unit) impulse response

®* Time invariance of S
» If §|n] = h[n], then §|n — k] - hin— k]| Vk EZ
® Linearity of S
= If §[n] = h[n], then ), a;é[n — k] = X arh[n — k]
mq,e€CVkeKCZ



CONVOLUTION

= Using representation property = Convolution operation
« x[n] = $P- o, x[k]6[n — k]
* x[n] = T2 o ax8[n — k]

yln] = z[n] * hin]

= a = x|k] with * the convolution operator
= By LTI properties — f: z[k|h[n — k]
x[n] = Zx[k]é[n — k] — y[n] = Z z|k|h|n — k| k:o;OO
L k=—o00
) COHV;)\lrutiOH ’ - Z h[k]x[n - k]
k=—00

= h[n] x z|n]



LTI SYSTEM REPRESENTATION

= Convolution formula allows the computation of
system output for any input

= [f the impulse response h|n]| is known, the LTI
system is completely specified = know everything
about the system

x[n] = h[n] |—yln] = x[n] * h[n]
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SOME QUICK PROPERTIES

= Commutative property
= x|n] * h|n] = h|n] * x|[n]

= Distributive property
= x[n] * (hy[n] + hz[n]) = (x[n] * hy[n]) + (x[n] * hy[n])

® Associative property
= x[n] * (hy[n] * hy[n]) = (x[n] * hy[n]) = hy[n]



CONSEQUENCES

® Order of convolution does not = Diagram simplification
matter
s e l] ] - > () |
@ (1) j@—»ym
N — RS R S > e mt
(b) (@)

X[n]=———">1 hin] = hy[n] «hy [n] = yIn]

X(t) == (1) + hy(t) = y(1)

(c)
(b)

v[n]

X[N] s | 1y,,[1] »1 h,[n] > y[n]

(@

Differing intermediate signals



INTERPRETATIONS OF CONVOLUTION 1
my[n] =) _oxlklh|n — k] =) p-_o hlk]x|n — k]

= ® Fix the value of k
= Define wy [n] = x|k|h[n — k]
* F'unction of time variable n
® Scaled and shifted impulse response

= Qutput signal y|n| = )., wi[n]

= Sum over all signals wy[n]




INTERPRETATIONS OF CONVOLUTION II
my[n] =) _oxlklh|n — k] =) p-_o hlk]x|n — k]

®» @ Fix a value of n
= Define v, |k| = x|k]h|n — k]

= Function (signal) of time variable k
= Qutput signal y|n| = )., v, [K]

= Sum over single signal v, [k]

® Qutput is built from a single value at a time



@ CONVOLUTION —~ SCALED/SHIFTED h[n]

x[n]

h_y ] b [n] hy [n]

Figure 2.2  Graphical interpretation of the response of a discrete-time linear
system as expressed in eq. (2.3).

x[-1]8[n +1]

x[0] &[n]

x[1] 8[n—1]

=5

n

()

X[~ 11h_4[n]
‘ ‘ n
[ ]
x[0] holn]
[ ]
I 0 n
x[1] hy[n]

yin)




EXAMPLE: ® CONVOLUTION

= h|n] = =6[n + 1] + §[n] + 26[n — 1]
= x|n] =6[n+ 1]+ 26[n] + 6[n—1]
= Find output y|n] = x|n] * h[n]
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@ CONVOLUTION - FLIP AND DRAG

: K = Flip and shift h 2 h[n — k]

0s = Only consider overlap
(a)
I T T1 h[n-k], n<0 u y[n] =0 n<o
SN N S AP = y[0] = 5o x[kIR[0 — k] = 0.5
S B B U = y[1] = 3% _ x[k]A[1 — k] = 0.5 + 2.0 = 2.5
I I I _
L : = y[2] = 5o x[kIR[2 — k] = 05+ 2.0 = 2.5
T e
R R k = yI3] = ¥ x[KIA[3 — k] = 2.0 = 2.0
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EXAMPLE: @ CONVOLUTION

= h[n] = —6[n+ 1]+ 6[n] +28[n—1] = To completely define the signal
" x[n] =6[n+ 1] +28[n] + 6[n —1] y[n] signal, must give value
* Find output y[n] = x[n] * h[n] y|ngy] for all times n
" Steps:
W) g v () . 1. Choose n value
r ; B (’ 2. Compute v,|k] = x|k]h|n — k]
— — N " 3. Sum over k over x|k]h|n — k]
l o R signal
-1

4. Slide to new time n and repeat
2-3 until all n visited



STEP RESPONSE s|n]

o 5[71] = u[n] — u[n — ]_] M2 ne M
" h|n] = s[n] — s|n — 1]

= The step response (in addition to impulse response) completely
determines an LTI system
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USEFUL SUMMATION FORMULAS

N—1 (1N o0 1
n: 11— Od#l ?’L: <1

Zoz <N a=1 Zoz l — o of

n=0 \ n=0

N—-1 ok oV k

k o0
n - a7 1 n_
E o) :<N1—k E_ka =T ol <1
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EXAMPLE: DT CONVOLUTION

= x[n] = a™uln] * h|n] = u[n] — u[n — 6]

* Find y[n] = x[n] = y[n]



CONTINUOUS-TIME LTI SYSTEMS: THE
CONVOLUTION INTEGRAL

CHAPTER 2.2

20



CONTINUOUS TIME LTI SYSTEM

() — h(t) | —-yt) = x(t) s he) Y() = (t) * h(1)

= x(t) — y(t) = / r(7)h(t — 7)dT
= §5(t) — h(t) -

See Riemann sum approximation for derivation in book



PROPERTIES OF LTI SYSTEMS

CHAPTER 2.3

22
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QUICK PROPERTIES

= Commutative property
= x(t) * h(t) = h(t) = x(t)

= Flip signal that is most convenient

= Distributive property
= x(t) * (hy(t) + b (£)) = (x(8) * Ay () + (x(t) * hp (1))

= Associative property

= x(t) * (hy () * hy(£)) = (x(t) * hy(t)) * hy(t)
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MEMORY LESS

" A system is memoryless if the output at any time
depends only on input at the same time

" An LTT system is memoryless iff
" h(t) =ad(t) h|n] = ad[n]

= Half proof:
= [f h(t) = ad(t)
" Then

sy(t) = [ x(®)ad(t —)dr=a [ _x(x)8(t — T)dr = ax(t)
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INVERTIBILITY

" The inverse of an LTI system must also be LTI

" An LTI system is invertible iff
= There exists g(t) such that h(t) * g(t) = §(¢t)

t
v 1o P 250 Fwo =20

\ )

x(t) 1 0(t) - x(t)
() = (1) (8 } "

w(t) = y(t)
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CAUSALITY

= A LTI system is causal iff
"h(t) =0 t<0 hln]=0 n<oO

= Half prootf:
= Assume hlk] =0 for k <0
= y[n] = Yo xlk]h[n — k]
" Then
« y[n] = X _oo x[k]h[n — k]



STABILITY

» An LTI system is stable iff = Half proof:
= ) _olhlk]] < o = Given |x(t)| < B Vt
= Absolutely summable y(B)] = | / o(t — 7)dr]

triangle inequality

< /_00 \h(T)x(t — 7)|dT
< [ et —n)ar

v

<B

<5 [ |r)lir

A 7
~"

<oo




28

STEP RESPONSE s(t)

= Discrete Time ® Continuous Time
= s[n] = Xk——o h[K] = s(t) = [*_h(r)dr
= §[n] = u|n] —uln — 1] = h(t) = ds(t)

dt
= Derivative

= hn] = s|[n] — s[n — 1]

= First difference

= CT derivative property
= Given x(t) = y(t)

, ax(@) N dy(t)
dt dt
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EXAMPLE: CT DERIVATIVE PROPERTY

= 'T] system output = 5(t) = dx(t) + 5x(t)
= y(¢t) = sin(wot)
= Input

= Back to LTI system
= §(t) - h(t)

dx“) + 5x(t) = h(t)

= x(t) = e tu(t)
* Find impulse response

= Note s dx(t) +5x(t) - yit) +5y(1)
o BB _ 4 o-sty(t) product rule dy(t)
d;l(tt) dt_st e [ h(t) = at + 5}’(t)
= == + (=5eu() h(t) = wy cos(wyt) + 5 sin(wgt)

. dx(t)
dt

= 6(t) — 5x(t)



EXAMPLE: CT CONVOLUTION

(1 —2<t<2
" x(t) = h(t) = {O else

* Find output y(t) = x(t) * h(t)
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CAUSAL LTI SYSTEMS DESCRIBED BY
DIFFERENTIAL AND DIFFERENCE EQUATIONS

CHAPTER 2.4




EIGENFUNCTIONS OF LTI SYSTEMS

® FEigenfunction — a signal for which the LTI output is
a constant times the input

x5 (t) h(t) ~y(t) = Axy(t)

= A is the eigenvalue (complex scalar)
= Turns out: (more in Chapter 3)

= CT: et — H(s)eSt

= DT: z™ — H(z)z"




CAUSAL LTI DIFF EQ SYSTEMS

= [t turns out that differential /difference equation
relationships often occur in natural systems

" Need mathematical tools to study these systems
effectively
® This section will cover the typical approach from your
previous math courses

= Homogeneous + particular solutions

* We will learn more etfective Signals and Systems
approach in the coming chapters



DIFFERENTIAL EQUATION LTI SYSTEMS

= Homogeneous solution yy, (t)

ak ak
= Yr—o0dk L O Y k=0 b 20

Tk Tk satisties
= N — highest derivative of y(t) = YN ak% =0
= M — highest derivative of x(t) = Unique solution only when
= a,, b, - constant coefficients finding both y,(t) and yy(t)

when using a set of auxiliary

= Solution of the form: conditions (initial conditions)

" y() = yp(8) + ya(®) o dl;igct(’) values for k =0,...,N — 1
= Particular solution y,(t) = Use exponentials to solve
satisfies diff equation above " x(®) =e” - y() = H(s)e™ = Ax(1)

d
o ae“ = seSt = et = Ax(t)



EXAMPLE: LTI DIFFERENTIAL SYSTEM

®* Find solution to differential = Particular solution
equation = Forced response — output is of the
dy(t) same form as input

+ 2y(t) = x(t)

- yp(t) = Ax(t)
= x(t) = Ke3tu(t)

®* Homogeneous solution
= Solution of the form
yr(t) = BeStu(t)
® 5 is an arbitrary unknown value
that must be found
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DEGENERATE DIFFERENTIAL EQ CASE

"= For N=0

dkx(t) dkx(t)

= aoy(t) = D=0 by = y(t) = Zk 0 b

= y(t) is an explicit function of mput x(t)
= Given x(t), can immediately get y(t) by differentiation of x(t)

® Reminder for N > 0
= Solve for y(t) = y,(t) + yu(t)

N-1
= Given initial (rest) conditions: y(ty) = tte) _ . =22 _

dat  dtN-1




DIFFERENCE EQUATION LTI SYSTEM

= Yr—oary[n —k] = Xy brx[n — k]
= Same idea as CT case:

= Find y[n] = yp[n] + yn[n]
= Choose form y,[n] = z"
= Eigensignal for DT system

= Recursive difference eq form
= y[n] = aio (XHoo brex[n — k] — XR=1 ary[n — k])

= Qutput at a time n can be computed
from the current+past inputs and past
output values

= Need auxiliary egs. To give past output
initial conditions

= E.g. values of y[—1],y[-2], ..., y[—N]

= Degenerate N = 0 case:

= yln] = Zilo 2t xn — k]
= Non-recursive equation (no past
output)
= Only requires input signal
» This form matches convolutional
form

= y[n] = ¥-_o hlk]x[n — k]

e S

= Known as a finite impulse
response (FIR) system

= Non-zero over a finite time interval
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EXAMPLE: DT DIFF EQ SYSTEM

* Find output » Use recursive difference
equation form to solve

= y[n] =3 y[n— 1] = x[n] )
= Input impulse x|n| = ké[n] " yln] = 5y [n — 1] + x[n]
= Condition of initial rest

= Qutput does not change value = Requires y[n — 1] to compute
until input changes recursively
= y[n]=0forn<0



BLOCK DIAGRAMS FOR SYSTEMS

= Addition = Delay

% {v] ’%‘ > % [V)+ %] x () ——sg——) JCERN

%, 0] = Differentiator

= Scaling d )

%[ __;‘>p—b ax)
c“v) ), —-> a 'Xt"_)

= Integrator

() ____.3[T——} S_w % (TT

—
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EXAMPLES: SIMPLE BLOCK DIAGRAMS

= y[n] = —ay|n — 1] + bx[n] dy(t) + ay(t) = bx(t)
4 _ : y(t) = 2820 4 2 x(t)
— >4l @ dt
x(n] 1% & [ 3P = Preferred with mtegral

dy(t)
dt

t dy(t
= y(t) = [ 2L dt

o = f_too[bx(t) — ay(t)]dt
b+

x(¢) ” ——J S‘ - yK)
i a s

= —ay(t) + bx(t)




EXAMPLE: ANOTHER DT DIAGRAM

= y[n] —ayy[n — 1] —ayy[n — 2] = box[n]

= Rearrange 2y —F

= yInl = ayy[n — 1] + azy[n — 2] + box|n]

= Requires: L

= 3 multiplications |

i Ty e
= 2 additions

= 2 delays (memory storage)
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GENERAL DIFFERENCE EQUATION

N M
Z aryln — k| = Z brx|n — k General diff eq.
k=0 k=0

N M
apy|n] + Z aryln — k| = Z brx|n — k]
k=1 k=0
= For simplicity, assume normalized coetficients ayg = —1
N M
yln] = > aryln — k| =) baln — k]
k=1 k=0
N M
yln] = awyln — k] + Y bran — K] Recursive diff eq.
k=1 k=0

Note: a; coefficients have opposite sign between recursive and general diff forms



DIRECT FORM I (DFI)

M N
Define v[n| = Z brx|n — k yln] = Z ary|n — k] + v|n|
| b, k=0 k=1
?[ﬂ _——___'L__—-—?h SV (a’) 8 > YGA)
o] D
7((}\-1] iy ‘ 4;
— \% - e
’Dé D
x(av l/ ?
} /\ [\_ 27’ l \[(v\' 'IJ
e} —— . e,
ﬁ)j /) 1}'"""‘\6-1“\_? \[Y)"'NH’)
baa
76«*"4) L VAR g E .
|z ‘J y ]

Stack of M delays on input Stack of N delays on output
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DF SUBSYSTEM CASCADE

" Notice DFI has two subsystems

x[n]—{hy[n] —vn] v[n]— hy[n] — y|n]

= Therefore

x[n]— hy[n] 1hz[n] —yn]

" Due to LTI system properties, can switch
subsystems

xfn]—{ ko) P ] | yind




DIRECT FORM - SWAP STACKS

Stack of N delays on input Stack of M delays on output



DIRECT FORM 1I (DFII) - DELAY SQUEEZE

= Notice: the delayed signal w[n] *( X

| - AN L | C")
is stored twice | é ,?
» The diagram can be simplified S l ey
= Assume N > M i D i
. > 7N
QA ;: bis '
q;——ﬁ\___’x\
= Canonical form e 0]
= Minimize number of delays to : J
max(N,M R
= Min # multi - M+N-+1 [ @
= Min # adds (2 input) - M+ N __L_]
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EXAMPLE: DFI, DFII

= Find DFI/DFII of following
= y[n] — 1.5y[n — 1] + 0.9y[n — 2] = x[n] + 2x[n — 1]

y[n] = znl+ 2 zn-—1+ 1.5 yn—1-09y[n — 2|
b() bl al a-
o= DFI DFII
'XG") 4——_-___ — 5 ® > YG:) %CQ ] “,E > ‘[E“‘j
- ) T\S i
L | ‘rgw |y Sy ] 'f @ ;‘“ ]
Af""rb [ -0.9 j\\)j
— \tCV\—?—] Wi J

Notice the feedback branches have opposite sign than in the general diff eq



