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EE360: SIGNALS AND SYSTEMS I
CH2: LINEAR TIME-INVARIANT SYSTEMS
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INTRODUCTION
CHAPTER 2.0 
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 Important class of systems because many real 
physical processes have these properties

LTI systems have properties that have been studied 
extensively leading to powerful and effective theory 
for analyzing their behavior

LTI SYSTEMS
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DISCRETE-TIME LTI SYSTEMS: THE 
CONVOLUTION SUM
CHAPTER 2.1
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 A signal can be composed of 
scaled and shifted impulses

 Remember sifting and 
representation properties

REMINDER: REPRESENTATION

𝑥 𝑛 =෍
𝑘=−∞

∞

𝑥 𝑘 𝛿[𝑛 − 𝑘]

Scale factor Shifted impulse
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Response of LTI system to delta input

 ℎ[𝑛] – (unit) impulse response

Time invariance of S
 If 𝛿 𝑛 → ℎ[𝑛], then 𝛿 𝑛 − 𝑘 → ℎ[𝑛 − 𝑘] ∀𝑘 ∈ ℤ

Linearity of S
 If 𝛿 𝑛 → ℎ[𝑛], then σ𝑘 𝑎𝑘𝛿 𝑛 − 𝑘 → σ𝑘 𝑎𝑘ℎ[𝑛 − 𝑘]
 𝑎𝑘 ∈ ℂ, ∀𝑘 ∈ 𝐾 ⊆ ℤ

IMPULSE RESPONSE ℎ[𝑛]

S𝑥 𝑛 = 𝛿[𝑛] 𝑦 𝑛 = ℎ[𝑛]
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𝑥 𝑛 ⟶ 𝑦 𝑛
𝛿[𝑛] ⟶ ℎ[𝑛]



 Using representation property

 𝑥 𝑛 = σ𝑘=−∞
∞ 𝑥 𝑘 𝛿[𝑛 − 𝑘]

 𝑥 𝑛 = σ𝑘=−∞
∞ 𝑎𝑘𝛿[𝑛 − 𝑘]

 𝑎𝑘 = 𝑥[𝑘]

 By LTI properties 

 Convolution operation 
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CONVOLUTION



Convolution formula allows the computation of 
system output for any input 

 If the impulse response ℎ[𝑛] is known, the LTI 
system is completely specified  know everything 
about the system
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LTI SYSTEM REPRESENTATION

ℎ[𝑛]𝑥 𝑛 𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ[𝑛]



Commutative property

 𝑥 𝑛 ∗ ℎ 𝑛 = ℎ 𝑛 ∗ 𝑥 𝑛

Distributive property

 𝑥 𝑛 ∗ ℎ1 𝑛 + ℎ2 𝑛 = 𝑥 𝑛 ∗ ℎ1 𝑛 + (𝑥 𝑛 ∗ ℎ2 𝑛 )

Associative property

 𝑥 𝑛 ∗ ℎ1 𝑛 ∗ ℎ2 𝑛 = 𝑥 𝑛 ∗ ℎ1 𝑛 ∗ ℎ2 𝑛
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SOME QUICK PROPERTIES



 Order of convolution does not 
matter

 Diagram simplification
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CONSEQUENCES 

𝑣[𝑛]

Differing intermediate signals



𝑦 𝑛 = σ𝑘=−∞
∞ 𝑥 𝑘 ℎ 𝑛 − 𝑘 =σ𝑘=−∞

∞ ℎ 𝑘 𝑥 𝑛 − 𝑘

 Fix the value of 𝑘

Define 𝑤𝑘 𝑛 = 𝑥 𝑘 ℎ[𝑛 − 𝑘]

 Function of time variable 𝑛

 Scaled and shifted impulse response

Output signal 𝑦 𝑛 = σ𝑘𝑤𝑘[𝑛]

 Sum over all signals 𝑤𝑘[𝑛]
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INTERPRETATIONS OF CONVOLUTION I



𝑦 𝑛 = σ𝑘=−∞
∞ 𝑥 𝑘 ℎ 𝑛 − 𝑘 =σ𝑘=−∞

∞ ℎ 𝑘 𝑥 𝑛 − 𝑘

 Fix a value of 𝑛

Define 𝑣𝑛 𝑘 = 𝑥 𝑘 ℎ 𝑛 − 𝑘

 Function (signal) of time variable 𝑘

Output signal 𝑦 𝑛 = σ𝑘 𝑣𝑛[𝑘]

 Sum over single signal 𝑣𝑛 𝑘

 Output is built from a single value at a time
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INTERPRETATIONS OF CONVOLUTION II
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 CONVOLUTION – SCALED/SHIFTED ℎ[𝑛]



 ℎ 𝑛 = −𝛿 𝑛 + 1 + 𝛿 𝑛 + 2𝛿 𝑛 − 1

 𝑥 𝑛 = 𝛿 𝑛 + 1 + 2𝛿 𝑛 + 𝛿[𝑛 − 1]

 Find output 𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ[𝑛]
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EXAMPLE:  CONVOLUTION 



 Flip and shift ℎ  ℎ[𝑛 − 𝑘]

 Only consider overlap

 𝑦 𝑛 = 0 𝑛 < 0

 𝑦 0 = σ𝑘=−∞
∞ 𝑥 𝑘 ℎ 0 − 𝑘 = 0.5

 𝑦 1 = σ𝑘=−∞
∞ 𝑥 𝑘 ℎ 1 − 𝑘 = 0.5 + 2.0 = 2.5

 𝑦 2 = σ𝑘=−∞
∞ 𝑥 𝑘 ℎ 2 − 𝑘 = 0.5 + 2.0 = 2.5

 𝑦 3 = σ𝑘=−∞
∞ 𝑥 𝑘 ℎ 3 − 𝑘 = 2.0 = 2.0
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 CONVOLUTION – FLIP AND DRAG



 ℎ 𝑛 = −𝛿 𝑛 + 1 + 𝛿 𝑛 + 2𝛿 𝑛 − 1

 𝑥 𝑛 = 𝛿 𝑛 + 1 + 2𝛿 𝑛 + 𝛿[𝑛 − 1]

 Find output 𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ[𝑛]
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EXAMPLE:  CONVOLUTION 

 To completely define the signal 
𝑦[𝑛] signal, must give value 
𝑦[𝑛0] for all times 𝑛0

 Steps:

1. Choose 𝑛 value

2. Compute 𝑣𝑛 𝑘 = 𝑥 𝑘 ℎ 𝑛 − 𝑘

3. Sum over 𝑘 over 𝑥 𝑘 ℎ 𝑛 − 𝑘
signal

4. Slide to new time 𝑛 and repeat 
2-3 until all 𝑛 visited



 𝑠 𝑛 = σ𝑘=−∞
∞ 𝑢 𝑘 ℎ[𝑛 − 𝑘]

 𝑠 𝑛 = σ𝑘=−∞
∞ ℎ 𝑘 𝑢[𝑛 − 𝑘]

 = σ𝑘=−∞
𝑛 ℎ[𝑘]

 Since 

 𝛿 𝑛 = 𝑢 𝑛 − 𝑢 𝑛 − 1

 ℎ 𝑛 = 𝑠 𝑛 − 𝑠 𝑛 − 1

 The step response (in addition to impulse response) completely 
determines an LTI system
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STEP RESPONSE 𝑠[𝑛]

ℎ[𝑛]𝑥 𝑛 = 𝑢[𝑛] 𝑠 𝑛 = 𝑢 𝑛 ∗ ℎ[𝑛]
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USEFUL SUMMATION FORMULAS



 𝑥 𝑛 = 𝛼𝑛𝑢 𝑛

 Find 𝑦 𝑛 = 𝑥 𝑛 ∗ 𝑦[𝑛]

 ℎ 𝑛 = 𝑢 𝑛 − 𝑢[𝑛 − 6]
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EXAMPLE: DT CONVOLUTION



CONTINUOUS-TIME LTI SYSTEMS: THE 
CONVOLUTION INTEGRAL
CHAPTER 2.2
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 𝑥(𝑡) ⟶ 𝑦(𝑡)

 𝛿(𝑡) ⟶ ℎ(𝑡)
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CONTINUOUS TIME LTI SYSTEM

ℎ(𝑡)𝑥(𝑡) 𝑦(𝑡) = 𝑥(𝑡) ∗ ℎ(𝑡)

See Riemann sum approximation for derivation in book



PROPERTIES OF LTI SYSTEMS
CHAPTER 2.3
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 Commutative property

 𝑥 𝑡 ∗ ℎ 𝑡 = ℎ 𝑡 ∗ 𝑥(𝑡)

 Flip signal that is most convenient 

 Distributive property

 𝑥(𝑡) ∗ ℎ1 𝑡 + ℎ2 𝑡 = 𝑥 𝑡 ∗ ℎ1 𝑡 + (𝑥(𝑡) ∗ ℎ2(𝑡))

 Associative property

 𝑥(𝑡) ∗ ℎ1 𝑡 ∗ ℎ2 𝑡 = 𝑥 𝑡 ∗ ℎ1 𝑡 ∗ ℎ2(𝑡)
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QUICK PROPERTIES



 A system is memoryless if the output at any time 
depends only on input at the same time

 An LTI system is memoryless iff
 ℎ 𝑡 = 𝑎𝛿(𝑡) ℎ 𝑛 = 𝑎𝛿[𝑛]

 Half proof:

 If ℎ 𝑡 = 𝑎𝛿 𝑡
 Then 

 𝑦 𝑡 = ∞−׬
∞
𝑥 𝜏 𝑎𝛿 𝑡 − 𝜏 𝑑𝜏 = 𝑎 ∞−׬

∞
𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏 = 𝑎𝑥(𝑡)
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MEMORYLESS



The inverse of an LTI system must also be LTI

An LTI system is invertible iff

 There exists 𝑔 𝑡 such that ℎ 𝑡 ∗ 𝑔 𝑡 = 𝛿(𝑡)
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INVERTIBILITY

ℎ(𝑡)𝑥(𝑡) 𝑤(𝑡) = 𝑥(𝑡)𝑔(𝑡)
𝑦(𝑡)

𝛿(𝑡)𝑥(𝑡) 𝑥(𝑡)



A LTI system is causal iff

 ℎ 𝑡 = 0 𝑡 < 0 ℎ 𝑛 = 0 𝑛 < 0

Half proof:

Assume ℎ 𝑘 = 0 for 𝑘 < 0

 𝑦 𝑛 = σ𝑘=−∞
∞ 𝑥 𝑘 ℎ[𝑛 − 𝑘]

Then

 𝑦 𝑛 = σ𝑘=−∞
𝑛 𝑥 𝑘 ℎ[𝑛 − 𝑘]
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CAUSALITY 



 An LTI system is stable iff

 σ𝑘=−∞
∞ ℎ 𝑘 < ∞

 Absolutely summable

 Half proof: 

 Given 𝑥 𝑡 < 𝐵 ∀𝑡
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STABILITY



 Discrete Time 

 𝑠 𝑛 = σ𝑘=−∞
𝑛 ℎ[𝑘]

 𝛿 𝑛 = 𝑢 𝑛 − 𝑢 𝑛 − 1

 ℎ 𝑛 = 𝑠 𝑛 − 𝑠 𝑛 − 1

 First difference 

 Continuous Time

 𝑠 𝑡 = ∞−׬
𝑡
ℎ 𝜏 𝑑𝜏

 ℎ 𝑡 =
𝑑𝑠 𝑡

𝑑𝑡

 Derivative 

 CT derivative property

 Given 𝑥 𝑡 → 𝑦 𝑡


𝑑𝑥 𝑡

𝑑𝑡
→

𝑑𝑦 𝑡

𝑑𝑡
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STEP RESPONSE 𝑠(𝑡)



 LTI system output 

 𝑦 𝑡 = sin(𝜔0𝑡)

 Input 

 𝑥 𝑡 = 𝑒−5𝑡𝑢(𝑡)

 Find impulse response

 Note


𝑑𝑥 𝑡

𝑑𝑡
=

𝑑

𝑑𝑡
𝑒−5𝑡𝑢(𝑡) product rule


𝑑𝑥 𝑡

𝑑𝑡
= 𝑒−5𝑡𝛿 𝑡 + −5 𝑒−5𝑡𝑢 𝑡


𝑑𝑥 𝑡

𝑑𝑡
= 𝛿 𝑡 − 5𝑥(𝑡)

 ⇒ 𝛿 𝑡 =
𝑑𝑥 𝑡

𝑑𝑡
+ 5𝑥(𝑡)

 Back to LTI system

 𝛿 𝑡 → ℎ 𝑡


𝑑𝑥 𝑡

𝑑𝑡
+ 5𝑥 𝑡 → ℎ 𝑡


𝑑𝑥 𝑡

𝑑𝑡
+ 5𝑥 𝑡 →

𝑑𝑦 𝑡

𝑑𝑡
+ 5𝑦(𝑡)

 ℎ 𝑡 =
𝑑𝑦 𝑡

𝑑𝑡
+ 5𝑦 𝑡

 ℎ 𝑡 = 𝜔0 cos 𝜔0𝑡 + 5 sin(𝜔0𝑡)
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EXAMPLE: CT DERIVATIVE PROPERTY



 𝑥 𝑡 = ℎ 𝑡 = ቊ
1 −2 ≤ 𝑡 ≤ 2
0 𝑒𝑙𝑠𝑒

 Find output 𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ(𝑡)
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EXAMPLE: CT CONVOLUTION



CAUSAL LTI SYSTEMS DESCRIBED BY 
DIFFERENTIAL AND DIFFERENCE EQUATIONS
CHAPTER 2.4
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Eigenfunction – a signal for which the LTI output is 
a constant times the input

 𝜆 is the eigenvalue (complex scalar)

Turns out: (more in Chapter 3)

 CT: 𝑒𝑠𝑡 ⟶𝐻 𝑠 𝑒𝑠𝑡

 DT: 𝑧𝑛 ⟶𝐻 𝑧 𝑧𝑛
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EIGENFUNCTIONS OF LTI SYSTEMS

ℎ(𝑡)𝑥𝜆(𝑡) 𝑦(𝑡) = 𝜆𝑥𝜆(𝑡)



 It turns out that differential/difference equation 
relationships often occur in natural systems

Need mathematical tools to study these systems 
effectively

 This section will cover the typical approach from your 
previous math courses

 Homogeneous + particular solutions

 We will learn more effective Signals and Systems 
approach in the coming chapters

33

CAUSAL LTI DIFF EQ SYSTEMS



 σ𝑘=0
𝑁 𝑎𝑘

𝑑𝑘𝑦(𝑡)

𝑑𝑡𝑘
= σ𝑘=0

𝑀 𝑏𝑘
𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘

 𝑁 – highest derivative of 𝑦(𝑡)

 𝑀 – highest derivative of 𝑥(𝑡)

 𝑎𝑘 , 𝑏𝑘 - constant coefficients

 Solution of the form:

 𝑦 𝑡 = 𝑦𝑝 𝑡 + 𝑦ℎ(𝑡)

 Particular solution 𝑦𝑝 𝑡
satisfies diff equation above

 Homogeneous solution 𝑦ℎ(𝑡)
satisfies 

 σ𝑘=0
𝑁 𝑎𝑘

𝑑𝑘𝑦(𝑡)

𝑑𝑡𝑘
= 0

 Unique solution only when 
finding both 𝑦𝑝(𝑡) and 𝑦ℎ(𝑡)
when using a set of auxiliary 
conditions (initial conditions)


𝑑𝑘𝑦(𝑡0)

𝑑𝑡𝑘
values for 𝑘 = 0,… ,𝑁 − 1

 Use exponentials to solve

 𝑥 𝑡 = 𝑒𝑠𝑡 → 𝑦 𝑡 = 𝐻 𝑠 𝑒𝑠𝑡 = 𝜆𝑥 𝑡


𝑑

𝑑𝑡
𝑒𝑠𝑡 = 𝑠𝑒𝑠𝑡 = 𝜆𝑒𝑠𝑡 = 𝜆𝑥(𝑡)
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DIFFERENTIAL EQUATION LTI SYSTEMS



 Find solution to differential 
equation


𝑑𝑦 𝑡

𝑑𝑡
+ 2𝑦 𝑡 = 𝑥(𝑡)

 𝑥 𝑡 = 𝐾𝑒3𝑡𝑢(𝑡)

 Particular solution

 Forced response – output is of the 
same form as input

 𝑦𝑝 𝑡 = 𝐴𝑥(𝑡)

 Homogeneous solution

 Solution of the form 
𝑦ℎ 𝑡 = 𝐵𝑒𝑠𝑡𝑢(𝑡)

 𝑠 is an arbitrary unknown value 
that must be found
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EXAMPLE: LTI DIFFERENTIAL SYSTEM



 For 𝑁 = 0

 𝑎0𝑦 𝑡 = σ𝑘=0
𝑀 𝑏𝑘

𝑑𝑘𝑥 𝑡

𝑑𝑡
⇒ 𝑦 𝑡 =

1

𝑎0
σ𝑘=0
𝑀 𝑏𝑘

𝑑𝑘𝑥 𝑡

𝑑𝑡

 𝑦 𝑡 is an explicit function of input 𝑥(𝑡)
 Given 𝑥 𝑡 , can immediately get 𝑦(𝑡) by differentiation of 𝑥(𝑡)

 Reminder for 𝑁 > 0
 Solve for 𝑦 𝑡 = 𝑦𝑝 𝑡 + 𝑦ℎ(𝑡)

 Given initial (rest) conditions: 𝑦 𝑡0 =
𝑑𝑦 𝑡0

𝑑𝑡
= ⋯ =

𝑑𝑁−1𝑦 𝑡

𝑑𝑡𝑁−1
= 0
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DEGENERATE DIFFERENTIAL EQ CASE



 σ𝑘=0
𝑁 𝑎𝑘𝑦 𝑛 − 𝑘 = σ𝑘=0

𝑀 𝑏𝑘𝑥[𝑛 − 𝑘]
 Same idea as CT case:

 Find 𝑦 𝑛 = 𝑦𝑝 𝑛 + 𝑦ℎ[𝑛]
 Choose form 𝑦ℎ 𝑛 = 𝑧𝑛

 Eigensignal for DT system

 Recursive difference eq form 

 𝑦 𝑛 =
1

𝑎0
σ𝑘=0
𝑀 𝑏𝑘𝑥 𝑛 − 𝑘 − σ𝑘=1

𝑁 𝑎𝑘𝑦 𝑛 − 𝑘

 Output at a time 𝑛 can be computed 
from the current+past inputs and past 
output values 

 Need auxiliary eqs. To give past output 
initial conditions
 E.g. values of 𝑦 −1 , 𝑦 −2 ,… , 𝑦[−𝑁]

 Degenerate 𝑁 = 0 case:

 𝑦 𝑛 = σ𝑘=0
𝑀 𝑏𝑘

𝑎0
𝑥[𝑛 − 𝑘]

 Non-recursive equation (no past 
output)

 Only requires input signal

 This form matches convolutional 
form 

 𝑦 𝑛 = σ𝑘=−∞
∞ ℎ 𝑘 𝑥[𝑛 − 𝑘]

 ℎ 𝑛 = ቊ
𝑏𝑛/𝑎0 0 ≤ 𝑛 ≤ 𝑀
0 𝑒𝑙𝑠𝑒

 Known as a finite impulse 
response (FIR) system
 Non-zero over a finite time interval
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DIFFERENCE EQUATION LTI SYSTEM



 Find output

 𝑦 𝑛 −
1

2
𝑦 𝑛 − 1 = 𝑥[𝑛]

 Input impulse 𝑥 𝑛 = 𝑘𝛿[𝑛]

 Condition of initial rest

 Output does not change value 
until input changes

 𝑦 𝑛 = 0 for 𝑛 < 0

 Use recursive difference 
equation form to solve

 𝑦 𝑛 =
1

2
𝑦 𝑛 − 1 + 𝑥[𝑛]

 Requires 𝑦[𝑛 − 1] to compute 
recursively
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EXAMPLE: DT DIFF EQ SYSTEM



 Addition

 Scaling

 Delay

 Differentiator

 Integrator
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BLOCK DIAGRAMS FOR SYSTEMS



 𝑦 𝑛 = −𝑎𝑦 𝑛 − 1 + 𝑏𝑥[𝑛]

𝑑𝑦 𝑡

𝑑𝑡
+ 𝑎𝑦 𝑡 = 𝑏𝑥 𝑡

 𝑦 𝑡 = −
1

𝑎

𝑑𝑦 𝑡

𝑑𝑡
+

𝑏

𝑎
𝑥(𝑡)

 Preferred with integral


𝑑𝑦 𝑡

𝑑𝑡
= −𝑎𝑦 𝑡 + 𝑏𝑥 𝑡

 𝑦 𝑡 = ∞−׬
𝑡 𝑑𝑦 𝑡

𝑑𝑡
𝑑𝑡

 = ∞−׬
𝑡

𝑏𝑥 𝑡 − 𝑎𝑦 𝑡 𝑑𝑡
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EXAMPLES: SIMPLE BLOCK DIAGRAMS



 𝑦 𝑛 − 𝑎1𝑦 𝑛 − 1 − 𝑎2𝑦 𝑛 − 2 = 𝑏0𝑥 𝑛

 Rearrange 

 𝑦 𝑛 = 𝑎1𝑦 𝑛 − 1 + 𝑎2𝑦 𝑛 − 2 + 𝑏0𝑥 𝑛

 Requires:

 3 multiplications

 2 additions

 2 delays (memory storage)
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EXAMPLE: ANOTHER DT DIAGRAM



 For simplicity, assume normalized coefficients 𝑎0 = −1
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GENERAL DIFFERENCE EQUATION

Recursive diff eq.

General diff eq.

Note: 𝑎𝑘 coefficients have opposite sign between recursive and general diff forms
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DIRECT FORM I (DFI)

Stack of M delays on input Stack of N delays on output 



Notice DFI has two subsystems

Therefore 

Due to LTI system properties, can switch 
subsystems
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DF SUBSYSTEM CASCADE

ℎ1[𝑛]𝑥 𝑛 𝑣 𝑛 ℎ2[𝑛]𝑣 𝑛 𝑦 𝑛

ℎ1[𝑛]𝑥 𝑛
𝑣 𝑛

ℎ2[𝑛] 𝑦 𝑛

ℎ2[𝑛]𝑥 𝑛
𝑤 𝑛

ℎ1[𝑛] 𝑦 𝑛
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DIRECT FORM – SWAP STACKS

Stack of N delays on input Stack of M delays on output 



 Notice: the delayed signal 𝑤 𝑛
is stored twice 

 The diagram can be simplified

 Assume 𝑁 > 𝑀

 Canonical form

 Minimize number of delays to 
max(N,M)

 Min # multi – M+N+1

 Min # adds (2 input) – M+ N
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DIRECT FORM II (DFII) – DELAY SQUEEZE



 Find DFI/DFII of following

 𝑦 𝑛 − 1.5𝑦 𝑛 − 1 + 0.9𝑦 𝑛 − 2 = 𝑥 𝑛 + 2𝑥 𝑛 − 1
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EXAMPLE: DFI, DFII

DFI DFII

Notice the feedback branches have opposite sign than in the general diff eq


