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CONTINUOUS-TIME AND
DISCRETE-TIME SIGNALS

CHAPTER 1.0-1.1
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INTRODUCTION

® Signals are quantitative descriptions of physical
phenomena

» Represent a pattern of variation



EXAMPLE SIGNALS 1

= Circuit

R

= p. - voltage signal

MWW
" p. - voltage signal ﬁ l+
Vg C

= | — current signal T—

= Th : . Figure 1.1 A simple RC circuit with source
ese are continuous-time voltage vs and capacitor voltage v,.

signals
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EXAMPLE SIGNALS II

= Stock market price

S M systm Inc [SUHW] Mat. Mkt. t kChrt m
pm Open 45.1 th qua Lstqa 1u|'lm Chg

TH-SLII'I Mi ssssssssssss 69 (Draily]

“D - CIOSIHg price Slgnal EnghanwaInse Bars

3 é%&f&&ﬁ&%gé

= Discrete time signal

2]
=)
®
@
4
&




EXAMPLE SIGNALS II

.
= Stock market price TSLA Teslaine. Nasdaq o3 @ StockCartscom
p 14-dan-2021 Open 543.39 High 863.00 Low 832.75 Close 54500 YWolume 31.30 Chg -9.41 (-1.10%)

T TELA (Daily) 245,00 T + .
_I_ T-{845.00]
T

00
+4 750

T'|'+T 700

o gt
= p — closing price signal T
T

ti
.|.T 450
.|.'r.l.1_+ 400

a 16 23 Dec T 14 21 28 201 11

+'I'-|-
**lTT+1+++T4T+l
19 26 Hov

= Discrete time signal

TSLA Teslanc. Hasdaq G35 @ StockChartscam
14-Jan-2021 Open 543.38 High 563.00 Low 535.75 Close £45.00 Volume 31.3M Chg -9.41 (-1.10%) +
— TSLA (Daily) £45.00

= Tesla stock for fun
= Last 3 months

= Last 5 years

Apr Jul Oet AT Apr Jul Oet 18 Apr Jul Oet 18 Apr Jul Oct 20 Apr  Jul oct M
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EXAMPLE SIGNALS III

= Audio signal

= Continuous signal in “raw”
form
= Discrete signal when store on a .. LTl Wﬂnﬂ.m Mﬂ/‘ i,
A ki
CD/computer




MATHEMATICAL FORMULATION

" In these examples, the signal is a function of one
variable, time

= f(t) « focus of the book

= More generally, a signal can be a tfunction of
multiple variables and not just time

= E.g. an image I(x,y)
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SIGNAL TYPES

® This course deals with two types of signals

= Continuous-time (CT) signals

= x(t) with t € R a real-values variable, denoting continuous
time

= Notice the parenthesis is used to denote a CT signal
= Discrete-time (DT) signals

® x[n] with n € Z an integer-valued variable, denoting discrete
time
= Notice the square brackets to denote a DT signal
= x[1] is defined but x[1.5] is not defined
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GRAPHICALLY

X[n]

\_/ /\ $ (0]

x[-1]

x[1]

[f
1

x[2]

l[

_o_8—7 I_§-4-3—2 ! ] ]
| A

tr [, 0
4 5 7 9

0

(b)

= Note: x(t) could signify the full signal or a value of the
signal at a specific time t

= May see x(ty) for a specific value of signal x(t) when t = ¢,
for clarity
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COMPLEX NUMBER REVIEW

® This course will often work with complex signals as
they are mathematically convenient

mx(t) eC, x|n]eC

I(C={z‘z=x+jy, x,yE[R,j=\/jl}

= Note the use of j for the imaginary number in
electrical engineering rather than i
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COMPLEX NUMBER REPRESENTATION

= Rectangular/Cartesian form
= z=x+4]y
" Re{z} =x real-part
= /m{z} =y imaginary-part
= Polar form
Bz = T€j9

s 12 =x2 42

" @ = arctan (X)

X

= x =71rcosf

" y=rsinf



EULER’S FORMULA

= ¢/ = cosO +jsinb = Know trig functions for
common angles

= Note:

. = jm)2 1= gin = For inverse trig function you must

account for the quadrant
- _j — ej37r/2 1 = ejan

e’ =cosg+ising

sin ¢
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EXAMPLES: COMPLEX NUMBERS

» Express in polar form » Express in polar form

1 —j = (1-j)°




TRANSFORMATIONS OF THE INDEPENDENT
VARIABLE

CHAPTER 1.2

15
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TIME SHIFT

mx(t) - x(t —ty) x[n] = x[n — ng]

"ty > 0= delay to < 0 = advance

Chea u«?kt

| ¥ () V(&= 1) l\l X (6 +1)
ol — =il
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TIME REVERSAL

mx(t) » x(—t) x[n] - x[-n]

= Flip signal across y-axis (t = 0 axis)

ex_aw{“'\(.

I s

[
-1 & ‘ 2-
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TIME SCALING

mx(t) » x(at) a>0

= g > 1 = shrink time scale (“speed-up” or compress)

" (0 <a<1= expand time scale (“slow-down” or stretch)

mx[n] - x[an] a €Z"

emﬁ((_ X &) V) (1_{_)



GENERAL TRANSFORMATION

" x(t) » x(at — ) a <0 for time reversal

» GGeneral methodology — shift, then scale
1. Shift: define v(t) = x(t — )
2. Scale: define y(t) = v(at) = x(at — B)

= Notice: scaling is only applied to time variable t

eramp X&)
“‘\ki\[ sketel, % (1-¢) N2 y(%)'-‘“(.‘ty ))
(. = % (-
I we) = x(e ~C1) l_,_! | ' ’“"L‘
~t o (. bbb luwt T3 “': c; : — 7(((*'{3> \ — .
{:((# 4CFOSS — & | 2

4=



PERIODIC SIGNALS

= A signal is periodic if a shift of the signals leaves it
unchanged

® Periodicity constraint

m CT: there exists a T > 0 s.t. /\ /\ /’“\ /\ /‘\

mx(t)=x(t+T) VteR

®[n}

m DT there exists a N > 0 s.t. SRRl h 117
" x[n]=x[n+ N] VN €Z [T 11 ”
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FUNDAMENTAL PERIOD/FREQUENCY

" Note: x(t) =x(t+T) =x(t+2T) =x(t+3T) = -
® Periodic with period T or kT
®* Fundamental period

= T, is the fundamental period of x(t) if it is the smallest value of
T > 0 to satisfy the periodicity constraint (N, for DT)

* Fundamental frequency — inverse relationship to time

2T . 2T
" wy =— occasionally, )y = —
To Ny

® Aperiodic signal — signal with no T, N satistying periodicity
constraint
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EXAMPLES: FIND PERIOD

n x(t) = el7/5 » x[n] = e/™/>




EVEN/ODD SIGNALS

» Even signal — same flipped across y- ® Decomposition theorem — any signal
axis can be broken into sum of even and
odd signals

= x[—n] = x[n]

= Odd signal — upside-down when = x(t) =y(t) +2z(), y(t)even, z(t) odd

flipped = y(t) = Ev{x(t)} = %[x(t) + x(—0)]

= x[—-n] = —x|n]
w z(t) = 0dd{x(t)} = = [x(t) — x(—1)]

N =

= Note: must have x[n]=0atn=20
ﬁ%ﬁw?kc_)‘

T

X (k)= & vy =t AT
LY \l) 2 L / veitlon J/




EXPONENTIAL AND SINUSOIDAL SIGNALS

CHAPTER 1.3

24



IMPORTANT CLASSES OF SIGNALS

1. Complex exponential - Ce%,Ce?™ (C,a € C
2. Impulse function - §(t), 8[n]

= Will want to represent general signals as linear
combination of these special signals

" The essence of linear system analysis
= T'ypically,
® Impulse functions — time-domain analysis

= Complex exponentials — frequency /transform domain
analysis



REAL EXPONENTIAL SIGNALS

sx(t)=Ce* C,a€eR

x(t) X {.t)

C
____—/.— '9-.--____

t t
a > 0 exponential growth a < 0 exponential decay

maqa =0, x(t) = C : constant function
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PERIODIC COMPLEX EXPONENTITAL

= x(t) = Ce® = Re{x(t)} = Acos(wyt + 60)

" q=jw,C = Ael? x{t) = A cos (wgt + d)

" g is purely complex

Tﬂ.—E"'
x(t) — Aejgeijt — Aej(wgt—l—Q) /\ Acnsd}f ; ; \

= Acos (wot + 0) +j Asin (wot + 6)

>y

real imaginary

= x(t) is a pair of sinusoidal
signals with the same = Proof =(t)=a(t+T)
amplitude A, frequency wy, = Ce/w(tH2m/o)
and phase shift 6 = Clelent 727 = Cel*0t = a(t)

=1



GENERAL COMPLEX EXPONENTIAL

= x(t) = Ce™ =r >0

"a=1r+jw C=Ael®

x(t)

Ll?‘(t) _ Ceat _ Aejé?e('r—l—ng)t _ Aertej(wot—l—B)

= Ae"" cos (wot + 0) +j Ae"" sin (wot + 0)

" "
real imaginary

= Amplitude controlled sinusoid  w y < (

w(t)

= Ae™ defines envelope

(b}



DT COMPLEX EXPONENTTAL - REAL

= x[n] = CeP™ or x[n] = Ca™ = Real exponential
la:eB’C”BE(C " C,a€eR
"a>1 ' -l <a<0
EPPPPPRTTY. mmmm”“lll : lj]j}[[l]-'ﬁjﬁlr'r%v%*ﬁ
"< -—1

0<a<1
..-..ﬁ,‘,ﬁJTrr\TLrLrLﬁ_LH_,_I_F‘ '|
(@ “JJJ““].“”HUtuuuu--r:
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GENERAL DT COMPLEX EXPONENTIAL

= x|n] =Ca™, C,a€C " |a| < 1 - decaying exponential
s C=|Clel?, a = |a|ei®o envelope
z[n] = |C|e’? (|a|ejw0)n “
] 1]”]T IR 1 & £ RIT

— | |a|nej(w0n—|—9)

lH 11‘ St

= |C||a|" cos (won + 0) + j|C|||™ sin (won + 0)
= Three cases for |a]
u |a| — 1
z[n] = |C| cos (wgn + 0) + j|C|sin (won + 6)

" |a| > 1 - Growing exponential
envelope

= Not necessarily periodic




PERIODICITY OF DT COMPLEX EXPONENTIALS

® Unlike CT, there are conditions for periodicity
» Consider frequency wqg + 21

- ej(a)0+2n)n — ejwonejZnn — eja)on

* Exponential with freq wg + 27 is the same as exp. with
freq wgq

= = Only need to consider a 2m interval for w,
.OSCUOSZTCOI'—HSCUOST[
= See Fig. 1.27 of book



DT FREQUENCY RANGE

x[n] = cos {0n) = 1 x[n] = cos (mn/8) x[n] = cos (mn/4)

(a)

(b) (c)

x[n] = cos (wn/2) x[n] = cos mn x[n] = cos (31n/2)

(d) (e)

x[n] = cos (7wn/4) x[n] = cos (151n/8} x[n] = cos 2wn

(@ (h)

Figure 1.27 Discrete-time sinusoidal sequences for several different frequencies.



DT PERIODICITY CONSTRAINT

zln]=zn+N] VneZ = Table 1.1 is good for
eISton — IUNEN) — i0m oi SN highlighting the ditferences
= /N =1=¢2" meZ between DT and CT
= QN = 2m™m
= QO — 27T_m TABLE 1.1 Comparison of the signals e and e/«0”,
N ot .
B e]-QOn iS periOdiC iff QO iS a Distinct signals for distinct values of @y Identical signals for values of w
. . separated by multiples of 27
ra’tlona’l mUIt]‘ple Of ZT[ Periodic for any choice of wy Periodic only if wq = 27m/N for some integers N > ( and m.
. 2 undamental frequency undamental frequency” wo/m
= Fundamental period: N = = et ey e Teueney o0
‘Q'O Fundamental period Fundamental period”
wy = 0: undefined wy = 0: undefined
m wq # 0 i—: wy # (}:m(i—:)

o - i1s in reduced form

* Assumes that m and N do not have any factors in common.

= gcd(m,N) =1 € greatest common
denominator



THE UNIT IMPULSE AND
UNIT STEP FUNCTIONS

CHAPTER 1.4

34



DT IMPULSE AND UNIT STEP FUNCTIONS

= Unit impulse (Kronecker delta) = Unit step

1 n=0 lu[n]:{l nz0
0 n+0 0 n<0

. 6[n]={

[n]

1 e
: = uln] = X0 o, 8[m)

= Running (cumulative) sum

= §|n] = u[n] —u[n — 1] = u[n] = 3, 8[n — k]

R = =3 oulkls[n - k)

o (2 3 ; = Sum of delayed impulses
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SAMPLING /SIFTING PROPERTIES

» Sampling Property = Sifting Property
= x|[n]é[n] = x[0]6[n] = Y o Xx[m]é[m] = x[0]
u x[n]8[n —ne] = x[neld[n —ng] " Ym=—oo X[m]&[m —np] = x[no]
oo, = Notice above is summation of
{ - [ ”ﬁ, s values in the sampled signal
I dJ o .
ae T = More generally, this
= Product of signals is a signal summation holds for any limits

= Multiply values at corresponding that contain the impulse

time
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REPRESENTATION PROPERTY

= Every DT signal can be represented as a linear
combination of shifted impulses

= x[n] = T3, x[k]8[n — k]
= x|k| — value of signal at time k

= A bit complicated but useful for study of L'TT systems (Ch2)

ST . |
v O i I ; X[F15Cari} wle] 4 () XCY 50
S R | T

{ o
(




CT IMPULSE AND UNIT STEP FUNCTIONS

= Unit impulse (dirac delta) = Unit step
1 t20
=1 t=0 '”(t)z{o t<0
" 0(0) = {0 £+ 0
u(t)
= With [~ _8(t)dt =1
500 k3(Y |
1 I :
= Relationship
0 t 0 t
() = u(t) = f_too 5(t)dr

dt

%h ki_r)r(l) m 5(t) — du(t)
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PROPERTIES

= Sampling = Sifting

= x(t)5(t) = x(0)6(¢t)

" x(t)6(t —ty) = x(tn)6(t — tp)
= Product of two signals is a signal = 2(0) f N o(t)dt

/ T ()8 dt = / T (0)8(8)dt

= Representation property
= x(t) = [__ x(x)8(t — 1)dr

= Example /OO z(t)o(t —to)dt = z(to)
= u(t) = [ u(@®)s(t —1)dr o



CONTINUOUS-TIME AND
DISCRETE-TIME SYSTEMS

CHAPTER 1.5

40



SYSTEMS

= A system is a quantitative ® Shorthand notation
description of a physical = x(t) — y(t)
process to transform an input

signal into an output signal " More complex systems

= Systems are a black box — a " Sampling

mathematical abstraction % () ‘"'--—-72 r—-—-—-— YC“\l

Continuous-time
system

(a) = MIMO (multi input/multi output
X ()

— — Y]
Discrete-time 2 {6) >
Kl ] DSCIME Ly — W (n]

X(t) = — ¥(1)




SYSTEM INTERCONNECTIONS

= Series/cascade connection

INput ==—1 System 1

= Parallel interconnection

= Feedback connection

System 2

" Very important in controls
- QUtput

System 1

INput me—

System 2

Input ——b—t System 1 —p —3 Output
System 2 jt———I
= More complex systems can be

composed by various
series/parallel interconnections

QOutput



BASIC SYSTEM PROPERTIES

CHAPTER 1.6

43
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BASIC SYSTEM PROPERTIES

= Memoryless

" Invertibility
= Causality
= Stability

® Linearity

Define an important class of

. . . tems called LTI
® Time-invariance Sy SEEEE
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MEMORYLESS SYSTEMS

" A system is memoryless if the output at a time t
depends only on input at the same time t

= Fxamples

= y(t) = (2x(t) — x2(0))"
= y[n] = x[n]

= y[n] = x[n — 1]

=yln] = x[n] + y[n - 1]
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INVERTIBILITY

® A system is invertible if distinct inputs lead to

distinct outputs

y[n] Inverse
x[n]é[ System  [r—— system —3- W[N] = X[N]

® Rules for proving invertible systems

® Show invertible by given the inverse system
expression /formula,

®* Show non-invertible by any counter example



EXAMPLES: INVERSE SYSTEMS

" y(t) = (cost + 2)x(t) = y(t) = x*(t)
y(6) s () =1=>y,(t) =1
oSt s () = 12 y,(6) = 1

= x(t) =

= Invertible (no divide by zero!)
» Need unique input =2 distinct

output
" y[n] = Z:—oo x| k] = Not invertible
= = y[n] =x[n] +y[n-1]
= = x[n] =y[n] —y[n -1]

= Invertible
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CAUSALITY

® A system is causal if the = Examples
output at any time t depends
only on the input at same time

t or past times 7 < t

" y[n| = x[n]
= y[n] =x[n] +x|n + 1]

t
= Real systems must be causal " y(@) = |, x(D)de
because we cannot know future = y[n] = x[-n]

values = y(t) = x(t)(cos(t + 2))

= Buffering gives the appearance of
non-causality
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STABILITY

= A system is stable if a bounded input results in a
bounded output signal = BIBO stable

= A signal is bounded if there exists a constant B such
that

= |x(t)]<B Vtand B <
= BIBO condition
" |x(t)| < B — |y(t)| <o
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EXAMPLES: BIBO STABILITY

= y(t) = 2x2(t — 1) + x(3t) {o n <0

yln} = 1.0lyn — 1]+ xn] n>0
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TIME INVARIANCE

® A system is time-invariant if a time shift in input signal
results in an identical time shift in the output signal

(£ -t oL ()
;{Cm —ﬂ.; - P ) 977;ZE-~ Z ; [v-ne )
= Steps to check for T1
= Assume x(t) — y(t)
1. Check y,(t) =y(t —ty)  time shift on output
2. Check y,(t) = f(x(t — ty)) operate on time shifted input
3. Verify y,(t) = y,(t) for TI



EXAMPLES: TIME INVARIANT SYSTEMS

= y(t) = sin(x(t)) " y|n] = nx[n]
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LINEARITY

= A system is linear if it is additive and scalable
=If x1(t) — y1(¢t) and x;(t) — y2(t)
= Additive

mx1(t) + x,(t) — y1(t) +y2(8)
= Scalable

"axi(t) = ay(t) a€C
H Then, axq (t) + sz (t) — AYq (t) + byz (t)



EXAMPLES: LINEAR SYSTEMS

= y(t) = tx(t)




