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CONTINUOUS-TIME AND 
DISCRETE-TIME SIGNALS
CHAPTER 1.0-1.1
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Signals are quantitative descriptions of physical 
phenomena

 Represent a pattern of variation

INTRODUCTION
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 Circuit

 𝑣𝑠 - voltage signal

 𝑣𝑐 - voltage signal

 𝑖 – current signal

 These are continuous-time 
signals

EXAMPLE SIGNALS I
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 Stock market price

 𝑝 – closing price signal

 Discrete time signal

EXAMPLE SIGNALS II
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 Stock market price

 𝑝 – closing price signal

 Discrete time signal

 Tesla stock for fun

 Last 3 months

 Last 5 years

EXAMPLE SIGNALS II
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 Audio signal

 Continuous signal in “raw” 
form

 Discrete signal when store on a 
CD/computer

EXAMPLE SIGNALS III

7



 In these examples, the signal is a function of one 
variable, time

 𝑓(𝑡) ⟵ focus of the book

More generally, a signal can be a function of 
multiple variables and not just time

 E.g. an image 𝐼(𝑥, 𝑦)

MATHEMATICAL FORMULATION
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 This course deals with two types of signals

 Continuous-time (CT) signals 

 𝑥(𝑡) with 𝑡 ∈ ℝ a real-values variable, denoting continuous 
time

 Notice the parenthesis is used to denote a CT signal

 Discrete-time (DT) signals

 𝑥[𝑛] with 𝑛 ∈ ℤ an integer-valued variable, denoting discrete 
time

 Notice the square brackets to denote a DT signal

 𝑥[1] is defined but 𝑥[1.5] is not defined

SIGNAL TYPES 
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 Note: 𝑥(𝑡) could signify the full signal or a value of the 
signal at a specific time 𝑡

 May see 𝑥(𝑡0) for a specific value of signal 𝑥(𝑡) when 𝑡 = 𝑡0
for clarity

GRAPHICALLY
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This course will often work with complex signals as 
they are mathematically convenient

 𝑥 𝑡 ∈ ℂ, 𝑥 𝑛 ∈ ℂ

 ℂ = 𝑧 𝑧 = 𝑥 + 𝑗𝑦, 𝑥, 𝑦 ∈ ℝ, 𝑗 = −1

Note the use of 𝑗 for the imaginary number in 
electrical engineering rather than 𝑖

COMPLEX NUMBER REVIEW
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 Rectangular/Cartesian form

 𝑧 = 𝑥 + 𝑗𝑦

 𝑅𝑒 𝑧 = 𝑥 real-part

 𝐼𝑚 𝑧 = 𝑦 imaginary-part

 Polar form

 𝑧 = 𝑟𝑒𝑗𝜃

 𝑟2 = 𝑥2 + 𝑦2

 𝜃 = arctan
𝑦

𝑥

 𝑥 = 𝑟 cos 𝜃

 𝑦 = 𝑟 sin 𝜃

COMPLEX NUMBER REPRESENTATION
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 𝑒𝑗𝜃 = cos 𝜃 + 𝑗 sin 𝜃

 Note:

 𝑗 = 𝑒𝑗𝜋/2 −1 = 𝑒𝑗𝜋

 −𝑗 = 𝑒𝑗3𝜋/2 1 = 𝑒𝑗2𝜋𝑘

 Know trig functions for 
common angles

 For inverse trig function you must 
account for the quadrant

EULER’S FORMULA
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 Express in polar form

 1 − 𝑗

 Express in polar form

 1 − 𝑗 2

EXAMPLES: COMPLEX NUMBERS
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TRANSFORMATIONS OF THE INDEPENDENT 
VARIABLE
CHAPTER 1.2
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 𝑥 𝑡 → 𝑥 𝑡 − 𝑡0 𝑥 𝑛 → 𝑥[𝑛 − 𝑛0]

 𝑡0 > 0 ⇒ delay 𝑡0 < 0 ⇒ advance

TIME SHIFT
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 𝑥 𝑡 → 𝑥(−𝑡) 𝑥 𝑛 → 𝑥[−𝑛]

 Flip signal across y-axis (𝑡 = 0 axis)

TIME REVERSAL
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 𝑥 𝑡 → 𝑥(𝑎𝑡) 𝑎 > 0

 𝑎 > 1 ⇒ shrink time scale (“speed-up” or compress)

 0 < 𝑎 < 1 ⇒ expand time scale (“slow-down” or stretch)

 𝑥 𝑛 → 𝑥[𝑎𝑛] 𝑎 ∈ ℤ+

TIME SCALING
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 𝑥 𝑡 → 𝑥(𝛼𝑡 − 𝛽) 𝛼 < 0 for time reversal

 General methodology – shift, then scale 

1. Shift: define 𝑣 𝑡 = 𝑥(𝑡 − 𝛽)

2. Scale: define 𝑦 𝑡 = 𝑣 𝛼𝑡 = 𝑥 𝛼𝑡 − 𝛽

 Notice: scaling is only applied to time variable 𝑡

GENERAL TRANSFORMATION
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A signal is periodic if a shift of the signals leaves it 
unchanged

Periodicity constraint

 CT: there exists a 𝑇 > 0 s.t.

 𝑥 𝑡 = 𝑥(𝑡 + 𝑇) ∀𝑡 ∈ ℝ

 DT: there exists a 𝑁 > 0 s.t.

 𝑥 𝑛 = 𝑥[𝑛 + 𝑁] ∀𝑁 ∈ ℤ

PERIODIC SIGNALS
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 Note: 𝑥 𝑡 = 𝑥 𝑡 + 𝑇 = 𝑥 𝑡 + 2𝑇 = 𝑥 𝑡 + 3𝑇 = ⋯

 Periodic with period 𝑇 or 𝑘𝑇

 Fundamental period 

 𝑇0 is the fundamental period of 𝑥(𝑡) if it is the smallest value of 
𝑇 > 0 to satisfy the periodicity constraint (𝑁0 for DT)

 Fundamental frequency – inverse relationship to time

 𝜔0 =
2𝜋

𝑇0
occasionally, Ω0 =

2𝜋

𝑁0

 Aperiodic signal – signal with no 𝑇,𝑁 satisfying periodicity 
constraint

FUNDAMENTAL PERIOD/FREQUENCY
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 𝑥 𝑡 = 𝑒𝑗𝜋𝑡/5  𝑥[𝑛] = 𝑒𝑗𝜋𝑛/5

EXAMPLES: FIND PERIOD 
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 Even signal – same flipped across y-
axis

 𝑥 −𝑛 = 𝑥 𝑛

 Odd signal – upside-down when 
flipped

 𝑥 −𝑛 = −𝑥 𝑛

 Note: must have 𝑥 𝑛 = 0 at 𝑛 = 0

 Decomposition theorem – any signal 
can be broken into sum of even and 
odd signals

 𝑥 𝑡 = 𝑦 𝑡 + 𝑧 𝑡 ,    𝑦 𝑡 even, 𝑧(𝑡) odd

 𝑦 𝑡 = 𝐸𝑣 𝑥 𝑡 =
1

2
𝑥 𝑡 + 𝑥 −𝑡

 𝑧 𝑡 = 𝑂𝑑𝑑 𝑥 𝑡 =
1

2
𝑥 𝑡 − 𝑥 −𝑡

EVEN/ODD SIGNALS
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EXPONENTIAL AND SINUSOIDAL SIGNALS
CHAPTER 1.3
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1. Complex exponential - 𝐶𝑒𝑎𝑡, 𝐶𝑒𝑎𝑛 𝐶, 𝑎 ∈ ℂ

2. Impulse function - 𝛿 𝑡 , 𝛿[𝑛]

 Will want to represent general signals as linear 
combination of these special signals

 The essence of linear system analysis

 Typically, 

 Impulse functions ⟶ time-domain analysis

 Complex exponentials ⟶ frequency/transform domain 
analysis 

IMPORTANT CLASSES OF SIGNALS
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 𝑥 𝑡 = 𝐶𝑒𝑎𝑡 𝐶, 𝑎 ∈ ℝ

𝑎 = 0, 𝑥 𝑡 = 𝐶 : constant function

REAL EXPONENTIAL SIGNALS

𝑎 > 0 exponential growth 𝑎 < 0 exponential decay
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 𝑥 𝑡 = 𝐶𝑒𝑎𝑡

 𝑎 = 𝑗𝜔0, 𝐶 = 𝐴𝑒𝑗𝜃

 𝑎 is purely complex

 𝑥 𝑡 is a pair of sinusoidal 
signals with the same 
amplitude 𝐴, frequency 𝜔0, 
and phase shift 𝜃

 𝑅𝑒 𝑥 𝑡 = 𝐴 cos 𝜔0𝑡 + 𝜃

 Proof
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PERIODIC COMPLEX EXPONENTIAL



 𝑥 𝑡 = 𝐶𝑒𝑎𝑡

 𝑎 = 𝑟 + 𝑗𝜔, 𝐶 = 𝐴𝑒𝑗𝜃

 Amplitude controlled sinusoid

 𝐴𝑒𝑟𝑡 defines envelope

 𝑟 > 0

 𝑟 < 0
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GENERAL COMPLEX EXPONENTIAL



 𝑥 𝑛 = 𝐶𝑒𝛽𝑛 or 𝑥 𝑛 = 𝐶𝛼𝑛

 𝛼 = 𝑒𝛽, 𝐶, 𝛽 ∈ ℂ

 𝛼 > 1

 𝛼 < −1

 Real exponential 

 𝐶, 𝛼 ∈ ℝ

 −1 < 𝛼 < 0

 0 < 𝛼 < 1
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DT COMPLEX EXPONENTIAL - REAL



 𝑥 𝑛 = 𝐶𝛼𝑛, 𝐶, 𝛼 ∈ ℂ

 𝐶 = 𝐶 𝑒𝑗𝜃, 𝛼 = 𝛼 𝑒𝑗𝜔0

 Three cases for |𝛼|

 𝑎 = 1

 Not necessarily periodic

 𝛼 < 1 - decaying exponential 
envelope

 𝛼 > 1 - Growing exponential 
envelope
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GENERAL DT COMPLEX EXPONENTIAL



Unlike CT, there are conditions for periodicity

Consider frequency 𝜔0 + 2𝜋

 𝑒𝑗 𝜔0+2𝜋 𝑛 = 𝑒𝑗𝜔0𝑛𝑒𝑗2𝜋𝑛 = 𝑒𝑗𝜔0𝑛

 Exponential with freq 𝜔0 + 2𝜋 is the same as exp. with 
freq 𝜔0

 Only need to consider a 2𝜋 interval for 𝜔0

 0 ≤ 𝜔0 ≤ 2𝜋 or −𝜋 ≤ 𝜔0 ≤ 𝜋

 See Fig. 1.27 of book 
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PERIODICITY OF DT COMPLEX EXPONENTIALS
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DT FREQUENCY RANGE



 𝑒𝑗Ω0𝑛 is periodic iff Ω0 is a 
rational multiple of 2𝜋

 Fundamental period: 𝑁 =
2𝜋𝑚

Ω0


𝑚

𝑁
is in reduced form

 gcd(𝑚,𝑁) = 1  greatest common 
denominator

 Table 1.1 is good for 
highlighting the differences 
between DT and CT
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DT PERIODICITY CONSTRAINT



THE UNIT IMPULSE AND 
UNIT STEP FUNCTIONS
CHAPTER 1.4
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 Unit impulse (Kronecker delta)

 𝛿 𝑛 = ቊ
1 𝑛 = 0
0 𝑛 ≠ 0

 𝛿 𝑛 = 𝑢 𝑛 − 𝑢[𝑛 − 1]

 Unit step 

 𝑢 𝑛 = ቊ
1 𝑛 ≥ 0
0 𝑛 < 0

 𝑢 𝑛 = σ𝑚=−∞
𝑛 𝛿[𝑚]

 Running (cumulative) sum

 𝑢 𝑛 = σ𝑘=0
∞ 𝛿 𝑛 − 𝑘

 = σ𝑘=−∞
∞ 𝑢 𝑘 𝛿[𝑛 − 𝑘]

 Sum of delayed impulses 
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DT IMPULSE AND UNIT STEP FUNCTIONS



 Sampling Property

 𝑥 𝑛 𝛿 𝑛 = 𝑥 0 𝛿[𝑛]

 𝑥 𝑛 𝛿 𝑛 − 𝑛0 = 𝑥 𝑛0 𝛿[𝑛 − 𝑛0]

 Product of signals is a signal

 Multiply values at corresponding 
time

 Sifting Property

 σ𝑚=−∞
∞ 𝑥 𝑚 𝛿 𝑚 = 𝑥[0]

 σ𝑚=−∞
∞ 𝑥 𝑚 𝛿 𝑚 − 𝑛0 = 𝑥[𝑛0]

 Notice above is summation of 
values in the sampled signal 

 More generally, this 
summation holds for any limits 
that contain the impulse
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SAMPLING/SIFTING PROPERTIES



 Every DT signal can be represented as a linear 
combination of shifted impulses

 𝑥 𝑛 = σ𝑘=−∞
∞ 𝑥 𝑘 𝛿[𝑛 − 𝑘]

 𝑥[𝑘] – value of signal at time 𝑘

 A bit complicated but useful for study of LTI systems (Ch2)
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REPRESENTATION PROPERTY



 Unit impulse (dirac delta)

 𝛿 𝑡 = ቊ
∞ 𝑡 = 0
0 𝑡 ≠ 0

 With ׬−∞
∞
𝛿 𝑡 𝑑𝑡 = 1

 Unit step 

 𝑢(𝑡) = ቊ
1 𝑡 ≥ 0
0 𝑡 < 0

 Relationship

 𝑢 𝑡 = ∞−׬
𝑡
𝛿 𝜏 𝑑𝜏

 𝛿 𝑡 =
𝑑𝑢 𝑡

𝑑𝑡
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CT IMPULSE AND UNIT STEP FUNCTIONS

lim
Δ→0



 Sampling

 𝑥 𝑡 𝛿 𝑡 = 𝑥 0 𝛿 𝑡

 𝑥 𝑡 𝛿 𝑡 − 𝑡0 = 𝑥 𝑡0 𝛿(𝑡 − 𝑡0)

 Product of two signals is a signal

 Representation property

 𝑥 𝑡 = ∞−׬
∞
𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏

 Example 

 𝑢 𝑡 = ∞−׬
∞
𝑢 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏

 Sifting
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PROPERTIES



CONTINUOUS-TIME AND 
DISCRETE-TIME SYSTEMS
CHAPTER 1.5
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 A system is a quantitative 
description of a physical 
process to transform an input 
signal into an output signal

 Systems are a black box – a 
mathematical abstraction

 Shorthand notation

 𝑥 𝑡 ⟶ 𝑦(𝑡)

 More complex systems

 Sampling

 MIMO (multi input/multi output
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SYSTEMS



 Series/cascade connection

 Parallel interconnection

 Feedback connection

 Very important in controls

 More complex systems can be 
composed by various 
series/parallel interconnections
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SYSTEM INTERCONNECTIONS



BASIC SYSTEM PROPERTIES
CHAPTER 1.6
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Memoryless

 Invertibility

Causality 

Stability 

Linearity 

Time-invariance
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BASIC SYSTEM PROPERTIES

Define an important class of 
systems called LTI



A system is memoryless if the output at a time 𝑡
depends only on input at the same time 𝑡

Examples

 𝑦 𝑡 = 2𝑥 𝑡 − 𝑥2 𝑡
2

 𝑦 𝑛 = 𝑥 𝑛

 𝑦 𝑛 = 𝑥 𝑛 − 1

 𝑦 𝑛 = 𝑥 𝑛 + 𝑦[𝑛 − 1]
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MEMORYLESS SYSTEMS



A system is invertible if distinct inputs lead to 
distinct outputs

Rules for proving invertible systems

 Show invertible by given the inverse system 
expression/formula

 Show non-invertible by any counter example
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INVERTIBILITY 



 𝑦 𝑡 = (cos 𝑡 + 2)𝑥(𝑡)

 𝑥 𝑡 =
𝑦 𝑡

cos 𝑡+2

 Invertible (no divide by zero!)

 𝑦 𝑛 = σ𝑘=−∞
𝑛 𝑥[𝑘]

 ⇒ 𝑦 𝑛 = 𝑥 𝑛 + 𝑦[𝑛 − 1]

 ⇒ 𝑥 𝑛 = 𝑦 𝑛 − 𝑦 𝑛 − 1

 Invertible

 𝑦 𝑡 = 𝑥2(𝑡)

 𝑥1 𝑡 = 1 ⇒ 𝑦1 𝑡 = 1

 𝑥2 𝑡 = −1 ⇒ 𝑦2 𝑡 = 1

 Need unique input  distinct 
output

 Not invertible 
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EXAMPLES: INVERSE SYSTEMS



 A system is causal if the 
output at any time 𝑡 depends 
only on the input at same time 
𝑡 or past times 𝜏 < 𝑡

 Real systems must be causal 
because we cannot know future 
values

 Buffering gives the appearance of 
non-causality 

 Examples

 𝑦 𝑛 = 𝑥 𝑛

 𝑦 𝑛 = 𝑥 𝑛 + 𝑥 𝑛 + 1

 𝑦 𝑡 = ∞−׬
𝑡
𝑥 𝜏 𝑑𝜏

 𝑦 𝑛 = 𝑥 −𝑛

 𝑦 𝑡 = 𝑥(𝑡)(cos(𝑡 + 2))
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CAUSALITY 



A system is stable if a bounded input results in a 
bounded output signal  BIBO stable

A signal is bounded if there exists a constant 𝐵 such 
that

 𝑥 𝑡 ≤ 𝐵 ∀𝑡 and 𝐵 < ∞

BIBO condition

 𝑥 𝑡 ≤ 𝐵 ⟶ 𝑦 𝑡 < ∞
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STABILITY 



 𝑦 𝑡 = 2𝑥2 𝑡 − 1 + 𝑥(3𝑡)
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EXAMPLES: BIBO STABILITY 



 A system is time-invariant if a time shift in input signal 
results in an identical time shift in the output signal

 Steps to check for TI

 Assume 𝑥(𝑡) ⟶ 𝑦(𝑡)

1. Check 𝑦1 𝑡 = 𝑦(𝑡 − 𝑡0) time shift on output

2. Check 𝑦2 𝑡 = 𝑓(𝑥 𝑡 − 𝑡0 ) operate on time shifted input

3. Verify 𝑦1 𝑡 = 𝑦2(𝑡) for TI
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TIME INVARIANCE



 𝑦 𝑡 = sin 𝑥 𝑡  𝑦 𝑛 = 𝑛𝑥[𝑛]
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EXAMPLES: TIME INVARIANT SYSTEMS



A system is linear if it is additive and scalable

 If 𝑥1(𝑡) ⟶ 𝑦1(𝑡) and 𝑥2(𝑡) ⟶ 𝑦2(𝑡)

 Additive 

 𝑥1 𝑡 + 𝑥2 𝑡 ⟶ 𝑦1 𝑡 + 𝑦2(𝑡)

 Scalable

 𝑎𝑥1(𝑡) ⟶ 𝑎𝑦1(𝑡) 𝑎 ∈ ℂ

Then, 𝑎𝑥1 𝑡 + 𝑏𝑥2 𝑡 ⟶ 𝑎𝑦1 𝑡 + 𝑏𝑦2(𝑡)
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LINEARITY



 𝑦 𝑡 = 𝑡𝑥(𝑡)  𝑦 𝑛 = 2𝑥2[𝑛]
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EXAMPLES: LINEAR SYSTEMS


