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INTRODUCTION

CHAPTER 10.0
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INTRODUCTION

" Previously we saw the Laplace Transform
= Extension of F'S -2 FT - LT

= Allowed us to study a wide class of signals/systems
(unstable systems with ROC)

® The Z-Transform is the discrete version

» While very similar, must recognize the specific
differences
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EIGENSIGNAL BACKGROUND

® Remember

zn)=2z" — |LTI|— yn|= H(z) 2"

eigenvalue

H(z) = Z hlnlz~"

n=——oo



THE Z-TRANSFORM

CHAPTER 10.1




Z-TRANSFORM DEFINITION

" The eigensignal result leads to the definition of the
Z-Transtorm



FOURIER TRANSFORM CONNECTION

" Previously with Laplace, we saw the L'T reduced to
the FT along the jw-axis (stability constraint)

® For the Z-Transform, it reduces to the F'T along the
e/® = 1 unit circle

" When z = e/%

" X(2)| o pio = X(e/”) = 3{x[n]}

= 3{.} is the Fourier Transform
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EXAMPLE 10.1

n

* Find the Z-transform of input x[n] = a™u[n]



EXAMPLE 10.1

= Find the Z-transform of input x[n] = a

o0

X(z) = Z x[nlz™"
= i a"ulnlz™" = i a"z""
n=——oo n=0 e
= Z (az_l)n — Zo{”
n=0 n=0
1 z

— — Note: for sum convergence
l—az7t! 2z-a

~1
= Note: with z71 we get a pole ol <1=jaz7| <1
and a zero ROC: [z] > |
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EXAMPLE 10.2

* Find the Z-transform of input x|n] = —a™u[—n — 1]
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EXAMPLE 10.3

n n
= Find the Z-transform of input x[n] =7 (—) uln] — 6 (—) un]
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EXAMPLE 10.4

n
* Find the Z-transform of input x[n] = (%) sin (% n) uln]
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RATIONAL X(z)

= When X(2) is a ratio of polynomials (from
difference equation) there is:

" Pole @ oo when the degree of the numerator exceeds the
denominator

" Zero @ oo when the numerator is of smaller degree than
the denominator

= Must have balance (equal number of poles and
Zeros)



THE REGION OF CONVERGENCE FOR THE Z-
TRANSFORM

CHAPTER 10.2
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9 ROC PROPERTIES I

1. The ROC consists of rings in the z-plane centered
about the origin

2. The ROC does not contain any poles

3. When x|n] is finite duration, the ROC is the entire
z-plane

= Except possibly z = 0 and/or z = o (poles @ zero
and /or o)
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9 ROC PROPERTIES II

4. When x|n] is a right-sided sequence, if the circle
|z| = 1y 1s in the ROC, then all finite values of z
for which |z| > ry will also be in the ROC

5. When x|n] is a left-sided sequence, if the circle
|z| = 1y is in the ROC, then 0 < |z| < 1y will also
be in the ROC

6. When x|n] is a two-sided sequence, if the circle
|z| = 1y is in the ROC, then the ROC will be a ring
in the z-plane that includes |z| = ry
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9 ROC PROPERTIES III

7. If X(z) is rational, then the ROC is bounded by poles or
extends to infinity

8. If X(z) is rational and right-sided, then the ROC is
outside the outermost pole

= [f x[n] is also causal, the ROC also includes z = o

9. If X(z) is rational and left-sided, then the ROC is inside
the innermost pole (not including poles @ z=0)

= If x[n] is also anticausal (x|[n] = 0 ¥vn > 0), the ROC also
includes z = 0
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EXAMPLE 10.8

= List all possible ROC for

1= (1 _ %Z‘l) (1—22z-1)



INVERSE Z-TRANSFORM

CHAPTER 10.3
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INVERSE Z-TRANSFORM

= Definition

= x[n] = %jin(z)zn_ldz

» This is a contour integral within the ROC

" Like with LT, will avoid solving this directly and instead
use

= Inspection method (PFE + known pairs [Table 10.2 pg 776])

" Power series expansion
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EXAMPLE 10.10

= F'ind the inverse of

S -1
3—8Z

X(z)=(1_1 _1)(1_%2_1) ROC:%< || <§



EXAMPLE 10.10

= F'ind the inverse of

3_22_1 1 1
X(Z)z(l—%z—l)(l—%z—l) ROC:Z<|Z|<§

" Do PFE and associate ROCs

X(2)=———+—7 < > x[n]=(=) uln]-2(=) u[-n-1]
1—5z71 1—-3z71 4 3
4 3
1 2| 1
|Z|>4 Z <3

right-sided left-sided



POWER SERIES EXPANSION

® For finite sequences, can read of x|n]| directly by
the z-power (useful for non-rational z-transform)

X(z) = Z r[n]z™™ = ... +x[-1]z' + 0] + 2[1]z7 + ...
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EXAMPLE 10.12

®* Find inverse of
X(z) =42 +2+327"1 0 < |z| < oo
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EXAMPLE 10.12

®* Find inverse of
X(z) =42 +2+327"1 0 < |z| < oo

= z[—2]2% + 2[0]2° + z[1]z 71

4 n=-2
rn]=4¢2 n=0 = 49n + 2] + 26|n] + 36|n — 1]
3 n=1



GEOMETRIC EVALUATION OF THE FT

CHAPTER 10.4
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Z-TRANSFORM PROPERTIES AND PAIRS

CHAPTER 10.5-10.6
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PROPERTIES OF Z-TRANSFORM

= Same idea as for L'T = Differentiation in z-Domain

dX(z)
dz

= nx[n] & —z
" Time Shlftlng = ROC =R
" x[n—ny| = z7"X(2)

= ROC = R (with potential addition
or deletion of origin or infinity)

® Will rely heavily on time-shift
(diff-eq) and convolution

m See Table 10.1 for more
properties

= Convolution
" x1[n] * x3[n] & X;1(2)X,(2)
u ROC D) Rl N Rz



COMMON Z-TRANSFORM PAIRS

- Wi]_l Very I‘arely Compute 7- TABLE 10.2 SOME COMMON z-TRANSFORM PAIRS

Signal Transform ROC
transform directly from e | Al
|
. o o, o 2. u[n] | |zl > 1
summation definition RE z
3. —ul—n—1] = laf <1
4. 8[n — m] z" All z, except
0fm=0)or
= (if m < Q)
®» Bookmark: ot et S
6. —a"u[-n—1] 1_;0!2' Izl < ||
= Table 10.1 Properties of Z- —— et ol
—az 142
Transform [pg 775| R - o<
. 1 — [coswy]z™
= Table 10.2 Transform Pairs |pg o leosouhl) oz
776] 10. [sinwonuln] — [2[;23:};: s 2 > 1
I [r" coswonjuln] 1 - [12:-_(:([:.;2::?]?”'11 Jr:’z s =
12. [ sinwon)uln] [rsinwglz 2 > r

1 = [2rcoswylz ™! + rz2




ANALYSIS AND CHARACTERIZATION OF LTI
SYSTEMS USING Z-TRANSFORMS

CHAPTER 10.7
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LTI SYSTEMS AND Z-TRANSFORMS

= By convolution property

x[n] 1 H(z) [— ylnl = x[n]* h[n]

X(2) Y(z) =H(z)X(2)

= System / Transfer function

Y(2)

" H(z) = X
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CAUSALITY

= A causal system has hin] =0 forn <0
= Right-sided

s ROC is exterior of circle and includes oo

= For rational H(z) |diff-eq systems]
= ROC is outside outermost pole

® The order of the numerator cannot be greater than the
denominator
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STABILITY

= The ROC must include the unit circle |z| = 1

" For a causal LTI system with rational system

function, all poles of H(z) must be inside the unit
circle



LTI SYSTEMS FROM DIFFERENCE EQUATIONS

= General difference equation definition

N
Z arpyln — Z brx|n —
k=0
m T'ake the Z-Transform of both sides
N Y(Z) Z]w_ bkz_k
—k b ok H(s) — _ 2.k=0
;)Clkz Y Z k< X = (Z) X(Z) Zé\/’zo akz_k

» Always rational

= Need additional constraints (stable, causal) to determine

ROC
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EXAMPLE 10.25

= Find the impulse response (assume stable system)

1 1
y[n] —53’[” — 1] = x|n] +§x[n — 1]



SYSTEM FUNCTION ALGEBRA AND BLOCK
DIAGRAM REPRESENTATION

CHAPTER 10.8
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INTERCONNECTIONS & BLOCK DIAGRAMS

= System functions for el
] n ':11[(;]) > yln]

interconnections -
= Handled the same as for LT

Ho(2) |
ha[n]

® Block diagrams
= Covered in Ch2 notes slide 39
= Direct Forms: DFI, DFII

Y(z) H,(z)
X(z)  1+H1(2)Hz(2)

= (Cascade Form (factored)

= Parallel Form (PFE)


http://www.ee.unlv.edu/~b1morris/ee360/slides/2_slides_lti_v2.pdf
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EXAMPLE 10.30

= GGive forms of

1

1 1
1+—z"1-—=z72
4 8

= H(z) =

= (a) Direct form

= (b) Cascade (factored) form

" Hz) = (1+%1z‘1) (1+£z‘1)
= (c) Parallel form (PFE)

2/3 1/3
- H(Z) = T 1__ T__
1+EZ 1+ZZ



EXAMPLE 10.30

= GGive forms of

o| H(z) = ——

T__; 1__
145z 1—2z7?

8

(a) Direct form

= (b) Factored form

-H(z)=( -

1 _
1 +EZ

)

1 )
1,4
1+4z

= (c) Parallel form (PFE)

. H(z) = 2/3

1/3

1
2,1
1+Zz

_|_

1
e |
1+4z

xn] (+) > yIn]

7

e[n]
(@)
> (+ y[n]
!I'«—[j
\0)

X[n] = +
!
AN
A
X[n] =] L j (D—>ymi

L 5 + —

2|

-
=

1
3

Figure 10.20 Block-diagram representations for the system in Exam-
ple 10.30: (a) direct form; (b) cascade form; (c) parallel form.



UNILATERAL Z-TRANSFORM

CHAPTER 10.9
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UNILATERAL Z-TRANSFORM

® Usetul for causal LTI systems with non-zero initial
conditions

= System not initially at rest = system has state/memory

" Xu(2) = Lo x[n]z™"

= Summation only from [0, co] while bilateral [—oo, oo

= Results in right-sided sequences (in Z-Transform table)



PROPERTIES OF UNILATERAL (TABLE 10.3)

= Convolution

" xpn] xx;[n] e Xy (2)Xy2(2)

= x;[n]=xn]=0vn<0

= Shifting
= yln]=x[n—1] & Y, (2) = x[-1] + 271X, (2)
= Need to generalize for

= x[n—ny] &7

Example
y[n] + 3y[n —1] = x[n]

1
H(Z) - 1+3z~1

Now consider input

(from bilateral)

B (1+21’>z—1) (1—az—1)

34 N 1/4c
143271 1 — 1

Using unilateral (right-sided) inverse

= ylnl ==a(-3)"u[n] + - au[n]



SOLVING DIFF EQS USING UNILATERAL

" y[n] +3y[n — 1] = x|n], x[n]| = au[n], y[-1] =B
" Y, (2) +3{y[-1] + Z_lyu(z)} = Xy (2)

—11 _ a
V(M1 -3z =~ - 3
a 306
mY (z) = —
u(2) (1-z=1(1-3z"1) 1+3z°1
\ ] | )
|
Bilateral solution Response to initial conditions
Zero initial condition response Zero-input response
= Can solve each part separately with Z-Transform techniques to
find

» y[n] = yzicrln] + yzir[n]



