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Introduction to State Space

• So far, we have studied LTI systems based on 
input-output relationships
▫ Known as external description of a system

• Now will examine state space representation of 
systems
▫ Known as internal description of systems

• Consists of two parts
▫ State equations – set of equations relating state 

variables to inputs
▫ Output equations – set of equations relating 

outputs to state variables and inputs
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Advantages of State Space

• Provides new insight into system behavior

▫ Use of matrix linear algebra

• Can handle multiple-input multiple-output 
(MIMO) systems

▫ Generalize from single-input single-output

• Can be extended to non-linear and time-varying 
systems

▫ General mathematical model

• State equations can be implemented efficiently 
on computers

▫ Enables solving/simulation of complex systems
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Definition of State

• State – state of a system @ time 𝑡0 is defined as 
the minimal information that is sufficient to 
determine the state and output of a system for 
all times 𝑡 > 𝑡0 when the input is also known for 
𝑡 > 𝑡0

• State variables 𝑞𝑖 - variables that contain all 
state information (memory)

• Note: definition only applies to causal systems
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Motivation Example

• Input: 𝑣(𝑡)

• Output: 𝑖 𝑡

• State:

▫ 𝑣𝐿 𝑡 = 𝐿
𝑑𝑖

𝑑𝑡

▫ 𝑖𝑐 𝑡 = 𝐶
𝑑𝑣𝑐

𝑑𝑡

• Knowing 𝑥(𝑡) = 𝑣(𝑡) over 
[−∞, 𝑡] is sufficient to 
determine 𝑦 𝑡 = 𝑖 𝑡 over the 
same interval

• If 𝑥(𝑡) is only known between 
𝑡0, 𝑡 then the output cannot 

be determined without 
knowledge of 

▫ Current through inductor

▫ Voltage across capacitor

• Imagine being handed a circuit 
(system) that was in operation 
at time 𝑡0
▫ Initial condition problem
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Selection of State Variables

• Need to determine “memory elements” of a 
system

• DT: Select outputs of delay elements

• CT: Select outputs of integrators or energy-
storing elements (capacitors, inductors)

• However, state-variable choice is not unique

▫ Transformations of variables will result in same 
state space analysis
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DT State Space Representation I
• Consider a single-input single-output 

(SISO) DT LTI system
▫ 𝑦 𝑛 + 𝑎1𝑦 𝑛 − 1 +⋯+ 𝑎𝑁𝑦 𝑛 − 𝑁 = 𝑥[𝑛]

• To uniquely determine a complete 
solution (output), requires 𝑁 initial 
conditions

▫ 𝑦 −1 , 𝑦 −2 ,… , 𝑦[−𝑁]

• Define state variables (outputs of delay 
elements)

▫ 𝑞1 𝑛 = 𝑦 𝑛 − 𝑁

▫ 𝑞2 𝑛 = 𝑦 𝑛 − (𝑁 − 1) = 𝑦[𝑛 − 𝑁 + 1]

▫ …

▫ 𝑞𝑁 𝑛 = 𝑦[𝑛 − 1]
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DT State Space Representation II
• Find next (step-ahead) state

▫ By definition of delay or using signal 
flow graph

• 𝑞1 𝑛 + 1 = 𝑦 𝑛 + 1 − 𝑁 = 𝑞2[𝑁]

• 𝑞2 𝑛 + 1 = 𝑦 𝑛 + 1 − 𝑁 + 1 =
𝑦 𝑛 − 𝑁 + 2 = 𝑞3[𝑛]

• …

• 𝑞𝑁 𝑛 + 1 = 𝑦 𝑛 + 1 − 1 = 𝑦 𝑛 =
− 𝑎1𝑦 𝑛 − 1 +⋯+−𝑎𝑁𝑦[𝑛 − 𝑁]
(recursive form)

• 𝑞𝑁 𝑛 + 1 = −𝑎1𝑞𝑁 𝑛 − 𝑎2𝑞𝑁−1 𝑛 +
⋯+−𝑎𝑁𝑞1[𝑛]
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DT State Space Representation III
• These relationships can be compactly expressed in matrix form

• State equation – next state from past state and input

• Output equation – output based on state and input

• Note: generalized form for MIMO systems with vector 𝑥 𝑛 , 𝑦[𝑛]
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DT State Space Representation IV

• Previous example:

▫ Defined state variables as outputs of delay elements

▫ Rewrote state relationships using a vectorized form of 
state 𝑞[𝑛]

• Goal: build state-equations given either a difference 
equation or block-diagram

• Note: previous example had no delayed input 𝑥 𝑛 . 
How would delayed inputs change state space 
representation? 

▫ Consider DFII structure and develop state equations
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Similarity Transformation

• Choice of state-variable is not unique

• Can have another choice of state variables as a 
transformation

• If 𝑣 𝑛 = 𝑇𝑞[𝑛]

▫ 𝑇 is 𝑁 × 𝑁 non-singular transformation matrix

• Then, 𝑞[𝑛] = 𝑇−1𝑣[𝑛]

• You and your friend could have different (valid) 
state variable choices for same state space 
representation
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Solution to DT State Equations

• Two approaches 

▫ Time-domain solution

▫ Z-transform solution
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DT: Time-Domain Solution
• Solve for state iteratively given an initial state 𝑞[0]

• Use this to solve for the output
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DT Z-Transform Solution
• Must use unilateral z-transform due to initial conditions

• Rearranging state equation

• Plug in for output 𝑦[𝑛]
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System Function with State Equations

• 𝐻(𝑧) is defined for zero initial conditions (initial 
rest or bilateral Z-transform formulation)

▫ E.g. 𝑞 0 = 0

• Solve for output
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Stability (BIBO)

• Given 𝜆_𝑘 eigenvalues of system matrix 𝐴
▫ |𝜆𝑘| < 1 ∀𝑘

▫ 𝜆𝑘 must be distinct

• Note: when Schaum’s asks about stability they 
are usually talking about asymptotically stable 
(|𝜆𝑘| < 1)
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DT Example Problems
• Problem 7.23 • Problem 7.8
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CT State Space Representation I
• Consider a single-input single-output (SISO) CT LTI 

system

▫
𝑑𝑁𝑦 𝑡

𝑑𝑡𝑁
+ 𝑎1

𝑑𝑁−1𝑦(𝑡)

𝑑𝑡𝑁−1
+⋯+ 𝑎𝑁𝑦 𝑡 = 𝑥(𝑡)

• To uniquely determine a complete solution (output), 
requires 𝑁 initial conditions – one set:

▫ 𝑦 0 , 𝑦 1 0 ,… , 𝑦 𝑁−1 0 ; where 𝑦 𝑘 𝑡 =
𝑑𝑘𝑦(𝑡)

𝑑𝑡

• Define state variables (less obvious for CT)
 Generally, output of integral block, 
 Here shortcut to 𝑦(𝑡) derivatives because no 𝑥 𝑡 derivatives

▫ 𝑞1 𝑡 = 𝑦(𝑡)

▫ 𝑞2 𝑡 = 𝑦 1 𝑡
▫ …

▫ 𝑞𝑁(𝑡) = 𝑦 𝑁−1 (𝑡)
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CT State Space Representation II

• Find state dot derivative (derivative “feeds” an 
integral block)

▫  𝑞𝑘 𝑡 =
𝑑

𝑑𝑡
𝑞𝑘 𝑡

▫ Note: 
𝑑𝑁𝑦 𝑡

𝑑𝑡𝑁
= −𝑎1

𝑑𝑁−1𝑦 𝑡

𝑑𝑡𝑁−1
−⋯− 𝑎𝑁𝑦 𝑡 + 𝑥(𝑡)
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CT State Space Representation III
• These relationships can be compactly expressed in matrix form
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CT State Space Representation IV

• Generalizes for MIMO systems as
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CT Laplace Transform Solution
• Must use unilateral LT due to initial conditions

• Rearranging state equation

• Plug in for output

23



Determining System Function

• From previous example 

▫ 𝐻 𝑠 =
𝑌(𝑠)

𝑋(𝑠)
= 𝑐 𝑠𝐼 − 𝐴 −1𝑏 + 𝑑

• When MIMO

▫ 𝐻 𝑠
𝑝×𝑚

= 𝐶
𝑝×𝑁

𝑠𝐼 − 𝐴
𝑁×𝑁

−1 𝐵
𝑁×𝑚

+ 𝐷
𝑝×𝑚

▫ Each element 𝐻𝑖𝑗 𝑠 of 𝐻(𝑠) matrix is the transfer 

function relating output 𝑦𝑖 𝑡 to input 𝑥𝑗(𝑡)

24



Stability (BIBO)

• Given 𝜆𝑘 eigenvalues of system matrix 𝐴
1. 𝑅𝑒 𝜆𝑘 < 0 ∀𝑘

2. 𝜆𝑘 must be distinct

• Note: when Schaum’s asks about stability they 
are usually talking about asymptotically stable 
(𝑅𝑒 𝜆𝑘 < 0)
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CT Example Problems
• Problem 7.48
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