EE360: SIGNALS AND SYSTEMS

CH3: FOURIER SERIES

FOURIER SERIES OVERVIEW, MOTIVATION, AND HIGHLIGHTS

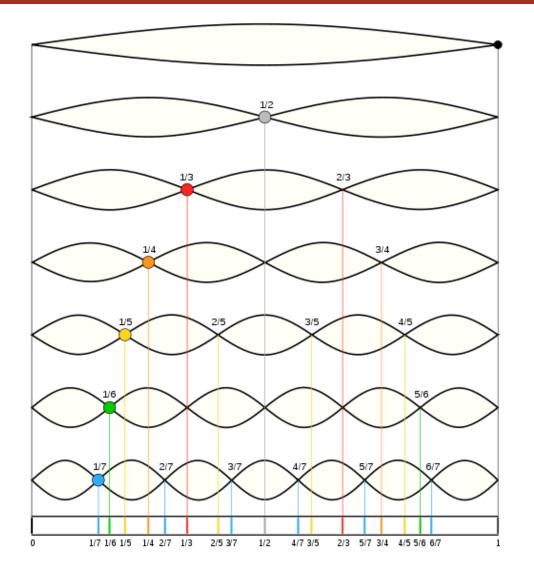
CHAPTER 3.1-3.2

BIG IDEA: TRANSFORM ANALYSIS

- Make use of properties of LTI systems to simplify analysis
- Represent signals as a linear combination of basic signals with two properties
 - Simple response: easy to characterize LTI system response to basic signal
 - Representation power: the set of basic signals can be use to construct a broad/useful class of signals

NORMAL MODES OF VIBRATING STRING

- When plucking a string, length is divided into integer divisions or harmonics
 - Frequency of each harmonic is an integer multiple of a "fundamental frequency"
 - Also known as the normal modes
- Any string deflection could be built out of a linear combination of "modes"



NORMAL MODES OF VIBRATING STRING

- When plucking a string, length is divided into integer divisions or harmonics
 - Frequency of each harmonic is an integer multiple of a "fundamental frequency"
 - Also known as the normal modes
- Any string deflection could be built out of a linear combination of "modes"

Normal Modes of a Standing Wave

Caution: turn your sound down

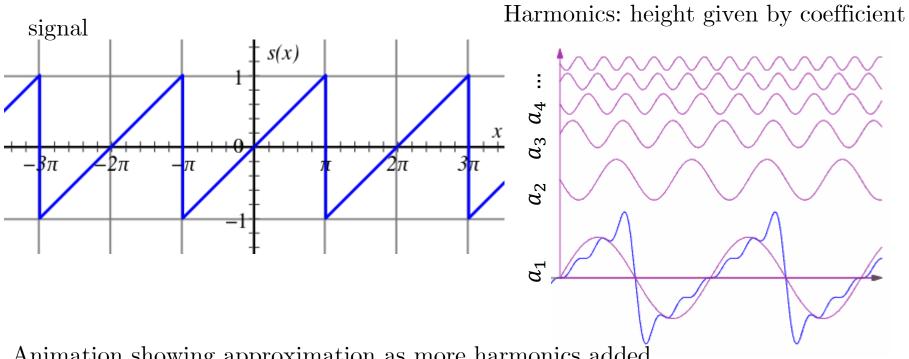
https://youtu.be/BSIw5SgUirg

FOURIER SERIES 1 SLIDE OVERVIEW

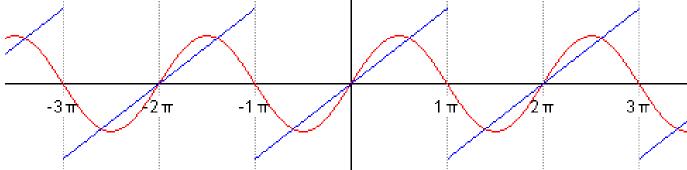
- Fourier argued that periodic signals (like the single period from a plucked string) were actually useful
 - Represent complex periodic signals
- Examples of basic periodic signals
 - Sinusoid: $x(t) = cos\omega_0 t$
 - Complex exponential: $x(t) = e^{j\omega_0 t}$
 - Fundamental frequency: ω_0
 - Fundamental period: $T = \frac{2\pi}{\omega_0}$

- Harmonically related period signals form family
 - Integer multiple of fundamental frequency
 - $\phi_k(t) = e^{jk\omega_0 t}$ for $k = 0, \pm 1, \pm 2, ...$
- Fourier Series is a way to represent a periodic signal as a linear combination of harmonics
 - $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$
 - a_k coefficient gives the contribution of a harmonic (periodic signal of k times frequency)

SAWTOOTH EXAMPLE

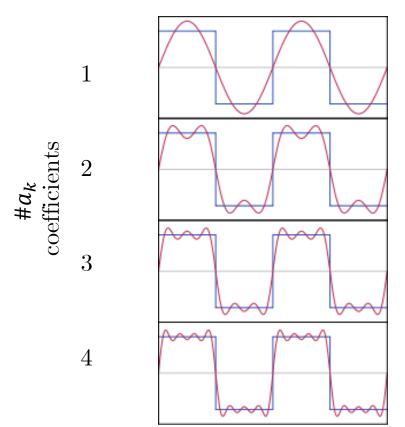


Animation showing approximation as more harmonics added

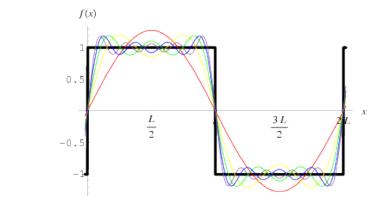


SQUARE WAVE EXAMPLE

 Better approximation of square wave with more coefficients



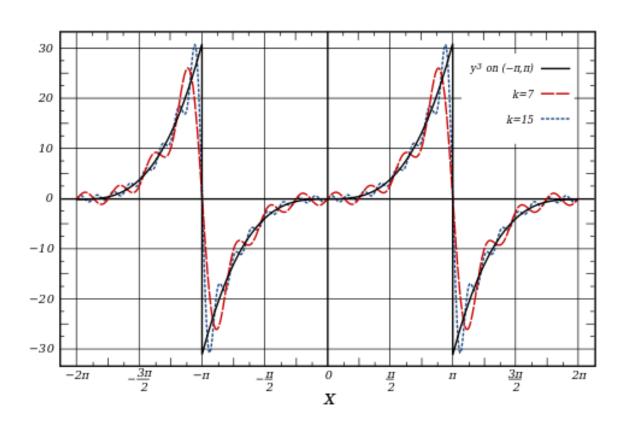
Aligned approximations



Animation of FS

Note: $S(f) \sim a_k$

ARBITRARY EXAMPLES



■ Interactive examples [flash (dated)][html]

RESPONSE OF LTI SYSTEMS TO COMPLEX EXPONENTIALS

CHAPTER 3.2

TRANSFORM ANALYSIS OBJECTIVE

- Need family of signals $\{x_k(t)\}$ that have 1) simple response and 2) represent a broad (useful) class of signals
- 1. Family of signals Simple response every signal in family pass through LTI system with scale change

$$x_k(t) \rightarrow \lambda_k x_k(t)$$

2. "Any" signal can be represented as a linear combination of signals in the family _____

$$x(t) = \sum_{k=-\infty}^{\infty} a_k x_k(t)$$

■ Results in an output generated by input x(t)

$$x(t) \to \sum_{k=-\infty}^{\infty} a_k \lambda_k x_k(t)$$

IMPULSE AS BASIC SIGNAL

- Previously (Ch2), we used shifted and scaled deltas
 - $\{\delta(t-t_0)\} \Longrightarrow x(t) = \int x(\tau)\delta(t-\tau)d\tau \longrightarrow y(t) = \int x(\tau)h(t-\tau)d\tau$

- Thanks to Jean Baptiste Joseph Fourier in the early 1800s we got Fourier analysis
 - Consider signal family of complex exponentials
 - $x(t) = e^{st} \text{ or } x[n] = z^n, s, z \in \mathbb{C}$

COMPLEX EXPONENTIAL AS EIGENSIGNAL

- Using the convolution
 - $e^{st} \rightarrow H(s)e^{st}$
 - $z^n \longrightarrow H(z)z^n$

- Notice the eigenvalue H(s) depends on the value of h(t) and s
 - Transfer function of LTI system
 - Laplace transform of impulse response

$$y(t) = x(t) * h(t)$$

$$= \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

$$= \int_{-\infty}^{\infty} h(\tau)e^{s(t-\tau)}d\tau$$

$$= e^{st} \underbrace{\int_{-\infty}^{\infty} h(\tau)e^{-s\tau}d\tau}_{H(s)}$$

$$= \underbrace{H(s)}_{\text{eigenvalue}} \cdot \underbrace{e^{st}}_{\text{eigenfunction}}$$

TRANSFORM OBJECTIVE

- Simple response
 - $x(t) = e^{st} \longrightarrow y(t) = H(s)x(t)$
- Useful representation?
 - $x(t) = \sum a_k e^{s_k t} \longrightarrow y(t) = \sum a_k H(s_k) e^{s_k t}$
 - Input linear combination of complex exponentials leads to output linear combination of complex exponentials
 - Fourier suggested limiting to subclass of period complex exponentials $e^{jk\omega_0t}$, $k\in\mathbb{Z}$, $\omega_0\in\mathbb{R}$
 - $x(t) = \sum a_k e^{jk\omega_0 t} \longrightarrow y(t) = \sum a_k H(jk\omega_0) e^{s_k t}$
 - Periodic input leads to periodic output.
 - $H(j\omega) = H(s)|_{s=j\omega}$ is the frequency response of the system

CONTINUOUS TIME FOURIER SERIES

CHAPTER 3.3-3.8

CTFS TRANSFORM PAIR

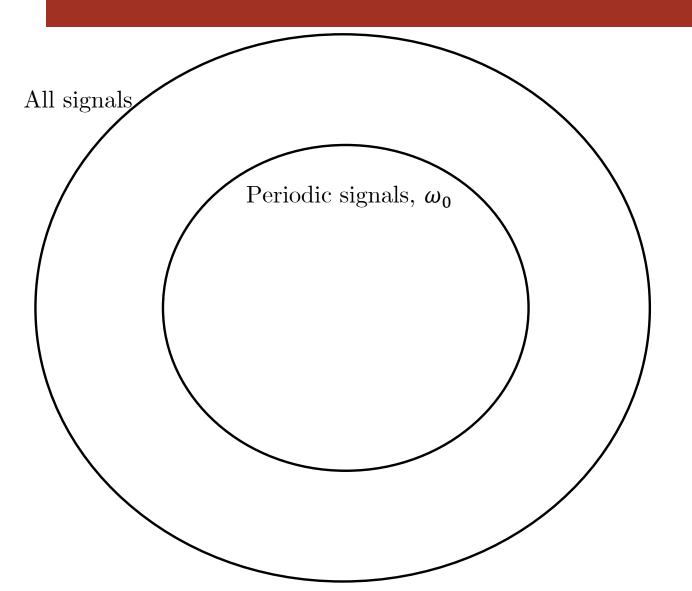
- Suppose x(t) can be expressed as a linear combination of harmonic complex exponentials
- Then the FS coefficients $\{a_k\}$ can be found as
- lacksquare ω_0 fundamental frequency
- $T = 2\pi/\omega_0$ fundamental period
- $\blacksquare a_k$ known as FS coefficients or spectral coefficients

CTFS PROOF

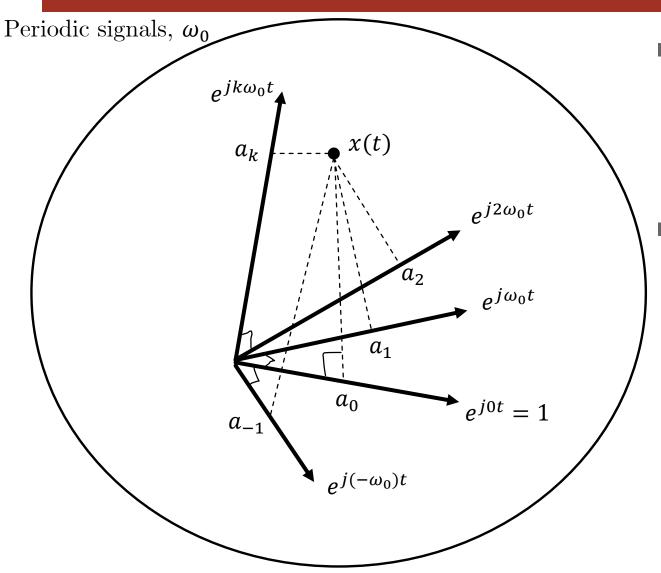
While we can prove this, it is not well suited for slides.

 Key observation from proof: Complex exponentials are orthogonal

VECTOR SPACE OF PERIODIC SIGNALS



VECTOR SPACE OF PERIODIC SIGNALS



- Each of the harmonic exponentials are orthogonal to each other and span the space of periodic signals
- The projection of x(t) onto a particular harmonic (a_k) gives the contribution of that complex exponential to building x(t)
 - a_k is how much of each harmonic is required to construct the periodic signal x(t)

HARMONICS

- $k = \pm 1 \Rightarrow$ fundamental component (first harmonic)
 - Frequency ω_0 , period $T = 2\pi/\omega_0$
- $k = \pm 2 \Rightarrow$ second harmonic
 - Frequency $\omega_2 = 2\omega_0$, period $T_2 = T/2$ (half period)
- **-** ...
- $k = \pm N \Rightarrow$ Nth harmonic
 - Frequency $\omega_N = N\omega_0$, period $T_N = T/N$ (1/N period)
- $k = 0 \Rightarrow a_0 = \frac{1}{T} \int_T x(t) dt$, DC, constant component, average over a single period

HOW TO FIND FS REPRESENTATION

Will use important examples to demonstrate common techniques

- Sinusoidal signals Euler's relationship
- Direct FS integral evaluation
- ■FS properties table and transform pairs

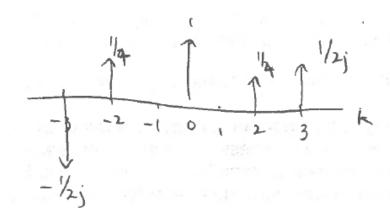
SINUSOIDAL SIGNAL

•
$$x(t) = 1 + \frac{1}{2}\cos 2\pi t + \sin 3\pi t$$

- First find the period
 - Constant 1 has arbitrary period
 - $\cos 2\pi t$ has period $T_1 = 1$
 - $\sin 3\pi t$ has period $T_2 = 2/3$
 - T = 2, $\omega_0 = 2\pi/T = \pi$
- Rewrite x(t) using Euler's and read off a_k coefficients by inspection

$$x(t) = 1 + \frac{1}{4} \left[e^{j2\omega_0 t} + e^{-j2\omega_0 t} \right] + \frac{1}{2j} \left[e^{j3\omega_0 t} - e^{-j3\omega_0 t} \right]$$

- Read off coeff. directly
 - $a_0 = 1$
 - $a_1 = a_{-1} = 0$
 - $a_2 = a_{-2} = 1/4$
 - $a_3 = 1/2j, a_{-3} = -1/2j$
 - $a_k = 0$, else



PERIODIC RECTANGLE WAVE

$$x(t) = \begin{cases} 1 & |t| < T_1 \\ 0 & T_1 < |t| < \frac{T}{2} \end{cases}$$

$$k \neq 0 a_k = \frac{1}{T} \int_T e^{-jk\omega_0 t} dt k = 0 a_0 = \frac{1}{T} \int_T x(t) dt = \frac{1}{T} \int_{-T_1}^{T_1} dt = \frac{2T_1}{T}$$

$$= -\frac{1}{jk\omega_0 T} \left[e^{-jk\omega_0 t} \right]_{-T_1}^{T_1} = \frac{1}{jk\omega_0 T} \left[e^{jk\omega_0 T_1} - e^{-jk\omega_0 T_1} \right]$$

$$= \frac{2}{k\omega_0 T} \left[\frac{e^{jk\omega_0 T_1} - e^{-jk\omega_0 T_1}}{2j} \right] = \frac{2\sin(k\omega_0 T_1)}{k\omega_0 T}$$

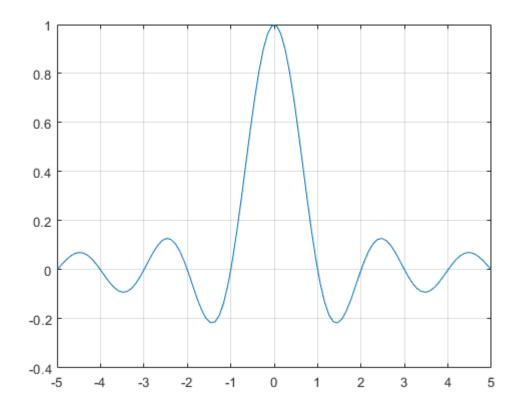
$$= \frac{\sin(k\omega_0 T)}{k\pi} . (4)$$

modulated sin function

$$x(t) = \begin{cases} 1 & |t| < T_1 \\ 0 & T_1 < |t| < T/2 \end{cases} \longleftrightarrow a_k = \begin{cases} 2T_1/T & k = 0 \\ \frac{\sin(k\omega_0 T_1)}{k\pi} & k \neq 0 \end{cases}$$

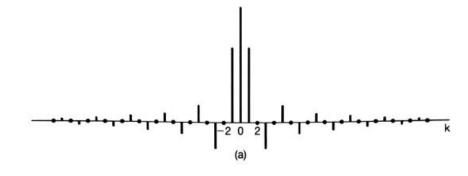
SINC FUNCTION

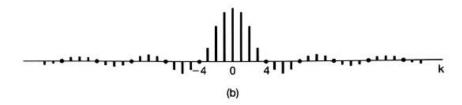
- Important signal/function in DSP and communication
 - $\operatorname{sinc}(x) = \frac{\sin \pi x}{\pi x}$ normalized
 - $\operatorname{sinc}(x) = \frac{\sin x}{x}$ unnormalized
- Modulated sine function
 - Amplitude follows 1/x
 - Must use L'Hopital's rule to get x = 0 time



RECTANGLE WAVE COEFFICIENTS

- Consider different "duty cycle" for the rectangle wave
 - $T = 4T_1 50\%$ (square wave)
 - $T = 8T_1 25\%$
 - $T = 16T_1 \ 12.5\%$
- Note all plots are still a sinc shape
 - Difference is how the sync is sampled
 - Longer in time (larger T) smaller spacing in frequency → more samples between zero crossings





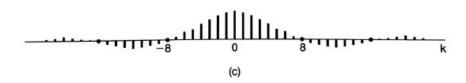
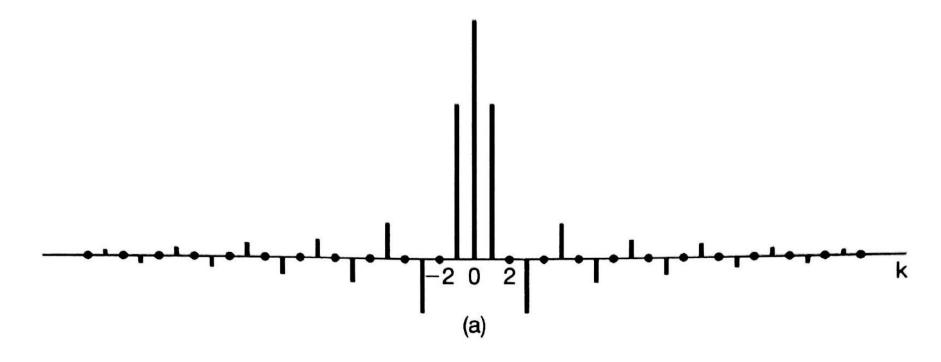


Figure 3.7 Plots of the scaled Fourier series coefficients Ta_k for the periodic square wave with T_1 fixed and for several values of T: (a) $T=4T_1$; (b) $T=8T_1$; (c) $T=16T_1$. The coefficients are regularly spaced samples of the envelope $(2\sin\omega T_1)/\omega$, where the spacing between samples, $2\pi/T$, decreases as T increases.

SQUARE WAVE

- Special case of rectangle wave with $T = 4T_1$
 - One sample between zero-crossing

$$a_k = \begin{cases} 1/2 & k = 0\\ \frac{\sin(k\pi/2)}{k\pi} & else \end{cases}$$



PERIODIC IMPULSE TRAIN

$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

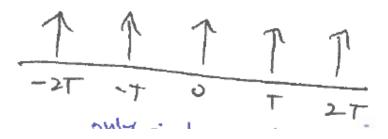
Using FS integral

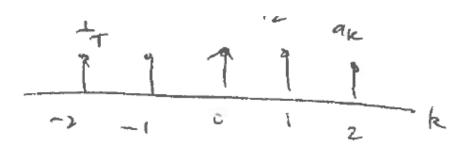
$$a_k = \frac{1}{T} \int_T x(t)e^{-jk\omega_0 t} dt$$
$$= \frac{1}{T} \int_{-T/2}^{T/2} \sum \delta(t - kT)e^{-jk\omega_0 t} dt$$

Notice only one impulse in the interval

$$= \frac{1}{T} \int_{-T/2}^{T/2} \delta(t) e^{-jk\omega_0 t} dt$$

$$a_k = \frac{1}{T} \underbrace{\int_{-T/2}^{T/2} \delta(t) e^{-jk\omega_0 0}}_{=1} dt = \frac{1}{T}$$





PROPERTIES OF CTFS

Since these are very similar between CT and DT, will save until after DT

- Properties are used to avoid direct evaluation of FS integral
- Be sure to bookmark properties in Table 3.1 on page 206

DISCRETE TIME FOURIER SERIES

CHAPTER 3.6

DTFS VS CTFS DIFFERENCES

- While quite similar to the CT case,
 - DTFS is a finite series, $\{a_k\}$, $|\mathbf{k}| < K$
 - Does not have convergence issues

■ Good News: motivation and intuition from CT applies for DT case

DTFS TRANSFORM PAIR

■ Consider the discrete time periodic signal x[n] = x[n+N]

•
$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\omega_0 n}$$
 synthesis equation

$$a_k = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jk\omega_0 n}$$
 analysis equation

- *N* fundamental period (smallest value such that periodicity constraint holds)
- $\omega_0 = 2\pi/N$ fundamental frequency
- $\blacksquare \sum_{n=\langle N \rangle}$ indicates summation over a period (N samples)

DTFS REMARKS

- DTFS representation is a finite sum, so there is always pointwise convergence
- ■FS coefficients are periodic with period N

DTFS PROOF

- Proof for the DTFS pair is similar to the CT case
- Relies on orthogonality of harmonically related DT period complex exponentials

■ Will not show in class

HOW TO FIND DTFS REPRESENTATION

Like CTFS, will use important examples to demonstrate common techniques

- Sinusoidal signals Euler's relationship
- Direct FS summation evaluation periodic rectangular wave and impulse train
- ■FS properties table and transform pairs

SINUSOIDAL SIGNAL

$$x[n] = 1 + \frac{1}{2}\cos\left(\frac{2\pi}{N}\right)n + \sin\left(\frac{4\pi}{N}\right)n$$
 $x[n] = 1 + \frac{1}{2}\cos\left(\frac{2\pi}{N}\right)n + \sin\left(\frac{4\pi}{N}\right)n$

- First find the period
- Rewrite x[n] using Euler's and read off a_k coefficients by inspection

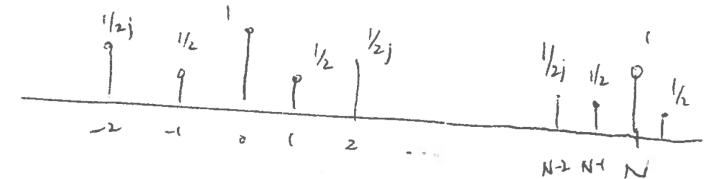
Shortcut here

$$x[n] = 1 + \frac{1}{2}\cos\left(\frac{2\pi}{N}\right)n + \sin\left(\frac{4\pi}{N}\right)n$$

$$= 1 + \frac{1}{4}\left(e^{j\frac{2\pi}{N}n} + e^{-j\frac{2\pi}{N}n}\right) + \frac{1}{2j}\left(e^{j\frac{4\pi}{N}n} - e^{-j\frac{4\pi}{N}n}\right)$$

$$= 1 + \frac{1}{4}\left(e^{j\frac{2\pi}{N}n} + e^{-j\frac{2\pi}{N}n}\right) + \frac{1}{2j}\left(e^{j2\frac{2\pi}{N}n} - e^{-j2\frac{2\pi}{N}n}\right)$$

$$a_0 = 1, a_{\pm 1} = \frac{1}{4}, a_2 = a_{-2}^* = \frac{1}{2j}$$



SINUSOIDAL COMPARISON

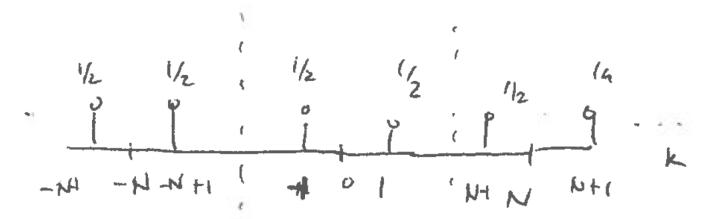
$$x(t) = \cos \omega_0 t$$

$$a_k = \begin{cases} 1/2 & k = \pm 1 \\ 0 & else \end{cases}$$

$$x[n] = \cos \omega_0 n$$

$$a_k = \begin{cases} 1/2 & k = \pm 1 \\ 0 & else \end{cases}$$

■ Over a single period → must specify period with period N



PERIODIC RECTANGLE WAVE

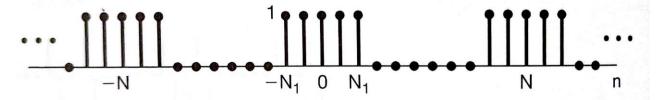


Figure 3.16 Discrete-time periodic square wave.

$$k = \pm 2N$$

$$a_0 = \frac{1}{N} \sum_{n=-N_1}^{N_1} 1 = \frac{2N_1 + 1}{N}$$
:

$$x[n] = \begin{cases} 1 & |n| < N_1 \\ 0 & N_1 < |n| < N/2 \end{cases}$$

$$\updownarrow$$

$$a_k = \begin{cases} \frac{(2N_1 + 1)/N}{\sin 2\pi k (N_1 + 1/2)/N} & k = 0, \pm N, \pm 2N, \dots \\ \frac{\sin 2\pi k (N_1 + 1/2)/N}{\sin k\pi/N} & k \neq 0, \pm N, \pm 2N, \dots \end{cases}$$

$$a_k = \frac{1}{N} \sum_{n=} x[n] e^{-jk\omega_0 n}$$

$$= \frac{1}{N} \sum_{n=-N/2}^{N/2-1} x[n] e^{-jk\omega_0 n} = \frac{1}{N} \sum_{n=-N_1}^{N_1} e^{-jk\omega_0 n} = \frac{1}{N} \sum_{n=-N_1}^{N_1} \alpha^n$$

Remember the truncated geometric series $\sum_{n=0}^{N-1} \alpha^n = \frac{1-\alpha^N}{1-\alpha}$

$$a_k = \frac{1}{N} \sum_{m=0}^{2N_1} \alpha^{m-N_1}$$

$$= \frac{1}{N} \alpha^{-N_1} \sum_{m=0}^{2N_1} \alpha^m = \frac{1}{N} \alpha^{-N_1} \left(\frac{1 - \alpha^{2N_1 + 1}}{1 - \alpha} \right)$$

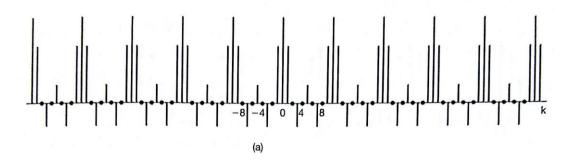
$$= \frac{1}{N} e^{-jk\omega_0 N_1} \left(\frac{1 - e^{jk\omega_0 (2N_1 + 1)}}{1 - e^{-jk\omega_0}} \right)$$

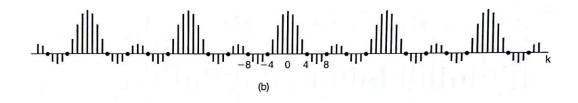
$$= \dots$$

$$= \frac{\sin 2\pi k \left(N_1 + \frac{1}{2} \right) / N}{\sin k\omega_0 / 2} = \frac{\sin 2\pi k (N_1 + 1/2) / N}{\sin k\pi / N}$$

RECTANGLE WAVE COEFFICIENTS

- Consider different "duty cycle" for the rectangle wave
 - 50% (square wave)
 - **25**%
 - **1**2.5%
- Note all plots are still a sinc shaped, but periodic
 - Difference is how the sync is sampled
 - Longer in time (larger N) smaller spacing in frequency → more samples between zero crossings





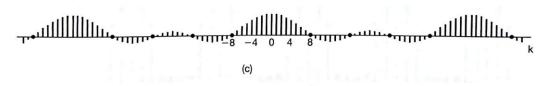


Figure 3.17 Fourier series coefficients for the periodic square wave of Example 3.12; plots of Na_k for $2N_1 + 1 = 5$ and (a) N = 10; (b) N = 20; and (c) N = 40.

PERIODIC IMPULSE TRAIN

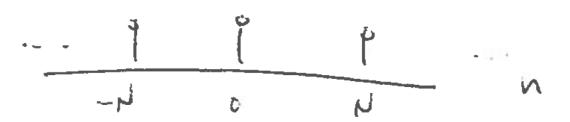
- $x[n] = \sum_{k=-\infty}^{\infty} \delta[n-kN]$
- Using FS integral

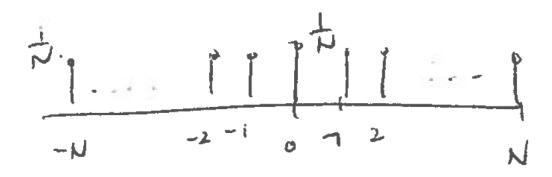
$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk\omega_0 n} dt$$
$$= \frac{1}{N} \sum_{n=0}^{N-1} \sum_{n=0} \delta[n - kN] e^{-jk\omega_0 n} dt$$

Notice only one impulse in the interval

$$= \frac{1}{N} \sum_{n=0}^{N-1} \delta[n] e^{-jk\omega_0 n} dt$$

$$a_k = \frac{1}{N} \sum_{n=0}^{N-1} \delta[n] e^{-jk\omega_0 0} dt = \frac{1}{N} \sum_{n=0}^{N-1} \delta[n] = \frac{1}{N}$$





PROPERTIES OF FOURIER SERIES

CHAPTER 3.5, 3.7

PROPERTIES OF FOURIER SERIES

■ See Table 3.1 pg. 206 (CT) and Table 3.2 pg. 221 (DT)

■ In the following slides, suppose:

$$x(t) \stackrel{\text{FS}}{\longleftrightarrow} a_k$$
 $x[n] \stackrel{\text{FS}}{\longleftrightarrow} a_k$ $y(t) \stackrel{\text{FS}}{\longleftrightarrow} b_k$ $y[n] \stackrel{\text{FS}}{\longleftrightarrow} b_k$

■ Most times, will only show proof for one of CT or DT

LINEARITY

- \blacksquare CT
- $\blacksquare Ax(t) + By(t) \longleftrightarrow Aa_k + Bb_k$

- DT
- $\blacksquare Ax[n] + By[n] \longleftrightarrow Aa_k + Bb_k$

TIME-SHIFT

 \blacksquare CT

DT

 $\mathbf{x}(t-t_0) \longleftrightarrow a_k e^{-jk\omega_0 t_0}$

 $\blacksquare x[n-n_0] \longleftrightarrow a_k e^{-jk\omega_0 n_0}$

- Proof
 - $\blacksquare \text{ Let } y(t) = x(t t_0)$

$$b_k = \frac{1}{T} \int_T y(t)e^{-jk\omega_0 t} dt = \frac{1}{T} \int_T x(t-t_0)e^{-jk\omega_0 t} dt$$

Let $\tau = t - t_0$

$$= \frac{1}{T} \int_{T} x(\tau) e^{-jk\omega_{0}(\tau+t_{0})} d\tau$$

$$= e^{-jk\omega_{0}t_{0}} \underbrace{\frac{1}{T} \int_{T} x(\tau) e^{-jk\omega_{0}\tau} d\tau}_{a_{k}} = e^{-jk\omega_{0}t_{0}} a_{k}$$

FREQUENCY SHIFT

- \blacksquare CT
- $\bullet e^{jM\omega_0t}x(t)\longleftrightarrow a_{k-M}$

- DT
- $\bullet e^{jM\omega_0n}x[n] \longleftrightarrow a_{k-M}$

Note: Similar relationship with Time Shift (duality). Multiplication by exponential in time is a shift in frequency. Shift in time is a multiplication by exponential in frequency.

TIME REVERSAL

 \blacksquare CT

DT

 $x(-t) \longleftrightarrow a_{-k}$

 $x[-n] \longleftrightarrow a_{-k}$

Proof, let y(t) = x(-t)

$$y(t) = \sum_{\substack{k = -\infty \\ \infty}}^{\infty} b_k e^{jk\omega_0 t} = x(-t)$$

$$x(-t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 - t}$$

Let m = -k

$$=\sum_{k=-\infty}^{\infty}a_{-k}e^{jk\omega_0t}$$

$$\Rightarrow b_k = a_{-k}$$

PERIODIC CONVOLUTION

- \blacksquare CT

- DT

MULTIPLICATION

- \blacksquare CT
- $x(t)y(t) \longleftrightarrow \sum_{l=-\infty}^{\infty} a_l b_{k-l} = a_k * b_k$
- DT
- - Convolution over a single period (DT FS is periodic)

Note: Similar relationship with Convolution (dualilty). Convolution in time results in multiplication in frequency domain. Multiplication in time results in convolution in frequency domain.

PARSEVAL'S RELATION

 \blacksquare CT

Note: Total average power in a periodic signal equals the sum of the average power in all its harmonic components

$$\frac{1}{T} \int_{T} |a_{k}e^{jk\omega_{0}t}|^{2} dt = \frac{1}{T} \int_{T} |a_{k}|^{2} dt = |a_{k}|^{2}$$

Average power in the kth harmonic

TIME SCALING

- \blacksquare CT
- $\blacksquare x(\alpha t) \longleftrightarrow a_k$
 - $\alpha > 0$
 - Periodic with period T/α

- DT
- $x_{(m)}[n] = \begin{cases} x[n/m] & n \text{ multiple of } m \\ 0 & else \end{cases}$
 - \blacksquare Periodic with period mN
- $x_{(m)}[n] \longleftrightarrow \frac{1}{m} a_k$
 - \blacksquare Periodic with period mN

Note: Not all properties are exactly the same. Must be careful due to constraints on periodicity for DT signal.

FOURIER SERIES AND LTI SYSTEMS

CHAPTER 3.8

EIGENSIGNAL REMINDER

$$x(t) = e^{st} \longleftrightarrow y(t) = H(s)e^{st} \qquad x[n] = z^n \longleftrightarrow y[n] = H(z)z^n$$

$$H(s) = \int_{-\infty}^{\infty} h(t)e^{-st}dt \qquad H(z) = \sum_{n=-\infty}^{\infty} h[n]z^{-k}$$

■ H(s), H(z) known as system function $(s, z \in \mathbb{C})$

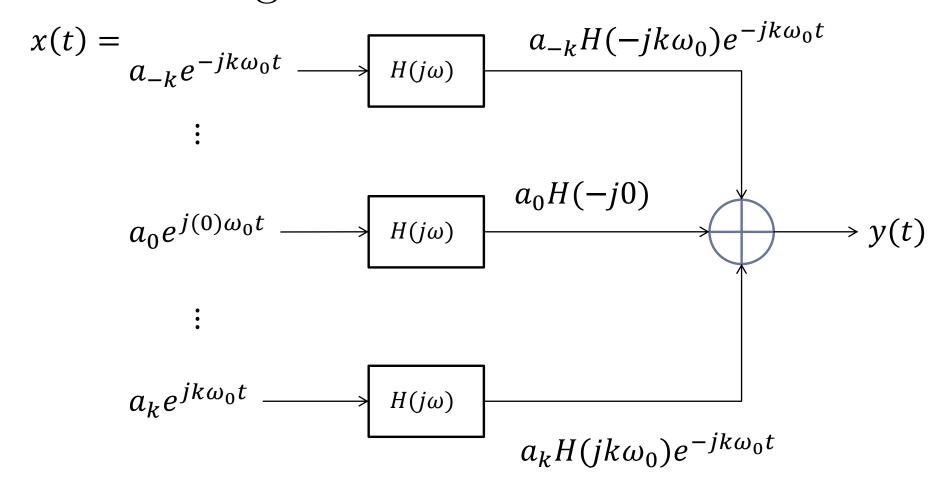
- For Fourier Analysis (e.g. FS)
 - Let $s = j\omega$ and $z = e^{j\omega}$
- Frequency response (system response to particular input frequency)
 - $H(j\omega) = H(s)|_{s=j\omega} = \int_{-\infty}^{\infty} h(t)e^{-j\omega t}dt$

FOURIER SERIES AND LTI SYSTEMS I

- Consider now a FS representation of a periodic signals
- $x(t) = \sum_{k} a_k e^{jk\omega_0 t}$
- $\to y(t) = \sum_{k} a_k H(jk\omega_0) e^{jk\omega_0 t}$
 - Due to superposition (LTI system)
 - Each harmonic in results in harmonic out with eigenvalue
- y(t) periodic with same fundamental frequency as $x(t) \Rightarrow \omega_0$
 - $T = \frac{2\pi}{\omega_0} \text{fundamental period}$
- FS coefficients for y(t)
 - $\bullet b_k = a_k H(jk\omega_0)$
 - b_k is the FS coefficient a_k multiplied/affected by frequency response at $k\omega_0$

FOURIER SERIES AND LTI SYSTEMS III

System block diagram



DTFS AND LTI SYSTEMS

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk2\pi/Nn} \rightarrow$$

$$y[n] = \sum_{k=\langle N \rangle} a_k H(e^{j\frac{2\pi}{N}k}) e^{jk2\pi/Nn}$$

- Same idea as in the continuous case
 - Each harmonic is modified by the Frequency Response at the harmonic frequency

|EXAMPLE| 1

- LTI system with
 - $h[n] = \alpha^n u[n], -1 < \alpha < 1$
- Find FS of y[n] given input
 - $x[n] = \cos \frac{2\pi n}{N}$
- Find FS representation of x[n]
 - $\omega_0 = 2\pi/N$
 - $x[n] = \frac{1}{2}e^{j2\pi/Nn} + \frac{1}{2}e^{-j2\pi/Nn}$
 - $a_k = \begin{cases} \frac{1}{2} & k = \pm 1, \pm (N+1), \dots \\ 0 & \text{else} \end{cases}$

- Find frequency response
 - $H(e^{j\omega}) = \sum_{n} h[n]e^{-j\omega n}$
 - $H(e^{j\omega}) = \sum_{n} \alpha^{n} u[n] e^{-j\omega n}$

$$H(j\omega) = \sum_{n=0}^{\infty} \alpha^n e^{-j\omega n}$$

$$H(j\omega) = \sum_{n=0}^{\infty} (\alpha e^{-j\omega})^n$$

Let
$$\beta = \alpha e^{-j\omega}$$

$$H(j\omega) = \frac{1}{1 - \beta}$$

$$H(j\omega) = \frac{1}{1 - \alpha e^{-j\omega}}$$

EXAMPLE 1 II

- Use FS LTI relationship to find output
 - $y[n] = \sum_{k=\leq N >} a_k H(e^{jk\omega_0}) e^{jk\omega_0 n}$
 - $y[n] = \frac{1}{2}H(e^{j1\frac{2\pi}{N}n})e^{j1\frac{2\pi}{N}n} + \frac{1}{2}H(e^{-j1\frac{2\pi}{N}n})e^{-j1\frac{2\pi}{N}n}$
 - $y[n] = \frac{1}{2} \left(\frac{1}{1 \alpha e^{-jk2\pi/N}} \right) e^{j\frac{2\pi}{N}n} + \frac{1}{2} \left(\frac{1}{1 \alpha e^{jk2\pi/N}} \right) e^{-j\frac{2\pi}{N}n}$
- Output FS coefficients

$$b_k = \begin{cases} \frac{1}{2} \left(\frac{1}{1 - \alpha e^{-jk2\pi/N}} \right) & k = \pm 1 \\ 0 & else \end{cases}$$

Periodic with period N

EXAMPLE PROBLEM 3.7

- x(t) has fundamental period T and FS a_k
- Sometimes direct calculation of a_k is difficult, at times easier to calculate transformation
 - $b_k \leftrightarrow g(t) = \frac{dx(t)}{dt}$
- Find a_k in terms of b_k and T, given

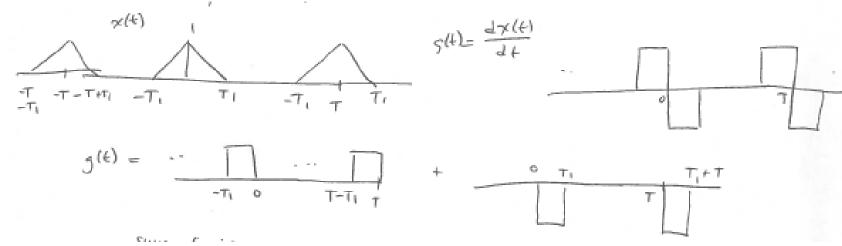
- $a_0 = \frac{1}{T} \int_T x(t) e^{-j(0)\omega_0 t} dt =$ $\frac{1}{T} \int_T x(t) dt \Rightarrow \frac{2}{T}$
- From Table 3.1 pg 206

$$b_k \leftrightarrow jk \frac{2\pi}{T} a_k \Rightarrow a_k = \frac{b_k}{jk2\pi/T}$$

$$a_k = \begin{cases} 2/T & k = 0\\ \frac{b_k}{jk2\pi/T} & k \neq 0 \end{cases}$$

EXAMPLE PROBLEM 3.7 II

• Find FS of periodic sawtooth wave



- Take derivative of sawtooth
 - Results in sum of rectangular waves
- FS coefficients of rectangular waves from Table 3.2 to get $b_k \leftrightarrow g(t)$
- Then use previous result to find $a_k \leftrightarrow x(t)$
- See examples 3.6, 3.7 for similar treatment

CHAPTER 3.9

FILTERING

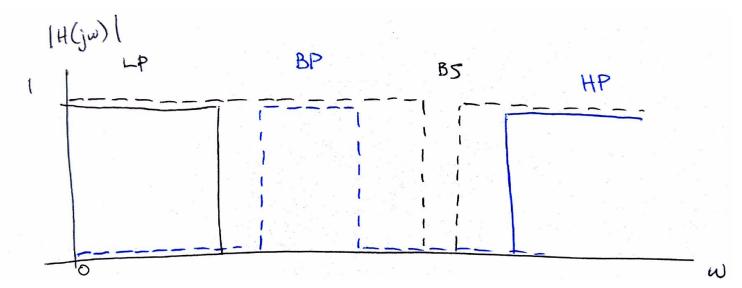
FILTERING

■ Important process in many applications

- The goal is to change the relative amplitudes of frequency components in a signal
 - In EE480: DSP you can learn how to design a filter with desired properties/specifications

LTI FILTERS

- Frequency-shaping filters general LTI systems
- Frequency-selective filters pass some frequencies and eliminate others
 - Common examples include low-pass (LP), high-pass (HP), bandpass (BP), and bandstop (BS) [notch]

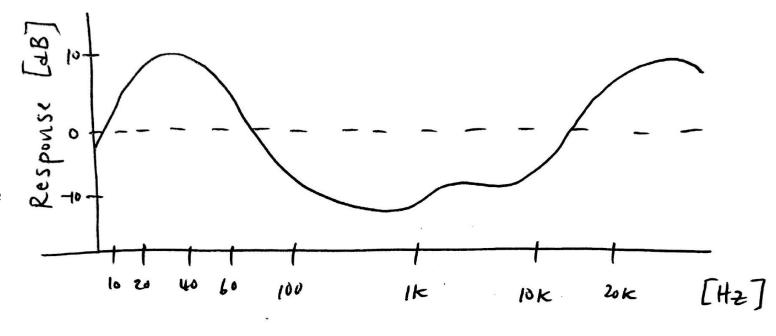


MOTIVATION: AUDIO EQUALIZER

- Basic equalizer gives user ability to adjust sound from to match taste e.g. bass (low freq) and treble (high freq)
- Log-log plot to show larger range of frequencies and response

$$dB = 20 \log_{10} |H(j\omega)|$$

- Magnitude response matches are intuition
 - Boost low and high frequencies but attenuate mid frequencies



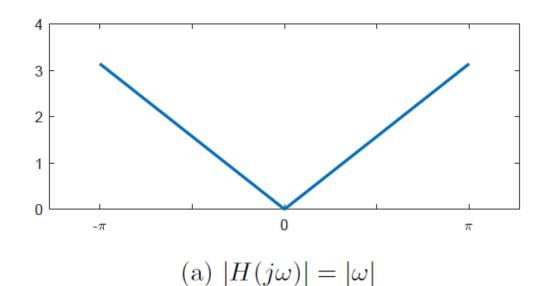
frequency

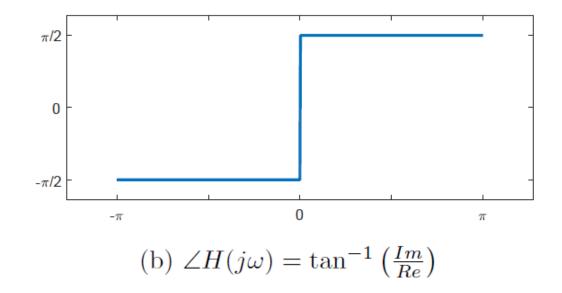
 $f = \frac{\omega}{2\pi}$

EXAMPLE: DERIVATIVE FILTER

$$y(t) = \frac{d}{dt}x(t) \longleftrightarrow H(j\omega) = j\omega$$

High-pass filter used for "edge" detection





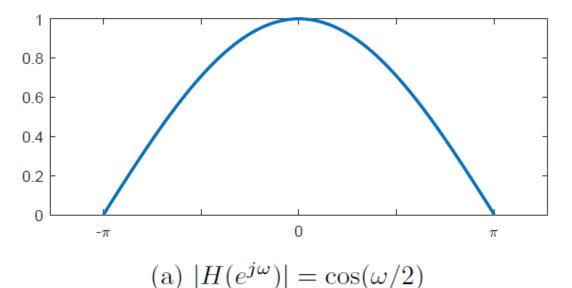
EXAMPLE: AVERAGE FILTER

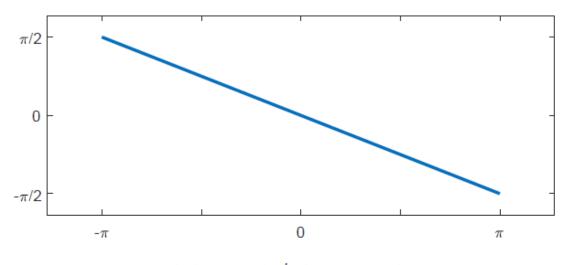
$$y[n] = \frac{1}{2}(x[n] + x[n-1])$$

$$h[n] = \frac{1}{2} \left(\delta[n] + \delta[n-1] \right) \qquad \longleftrightarrow \qquad H(e^{j\omega}) = \frac{1}{2} \left[1 + e^{-j\omega} \right]$$

 $H(e^{j\omega}) = \frac{1}{2} \left[1 + e^{-j\omega} \right]$ $\cos\left(\frac{\omega}{2}\right) \underbrace{e^{-j\omega/2}}_{H(e^{j\omega})}$

Low-pass filter used for smoothing





(b)
$$\angle H(e^{j\omega}) = -\omega/2$$

MATLAB FOR FILTERS

Very helpful to visualize filters

FOURIER SERIES SUMMARY

- Continuous Case
- $x(t) = \sum_{k} a_k e^{jk\omega_0 t}$
- $a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt$
- Fundamental frequency ω_0
- Fundamental period $T = \frac{2\pi}{\omega_0}$

- Discrete Case
- $x[n] = \sum_{k=< N>} a_k e^{jk\omega_0 n}$
- $a_k = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jk\omega_0 n}$
- Fundamental frequency ω_0
- Fundamental period $N = \frac{2\pi}{\omega_0}$